More stories

  • in

    Unlocking ammonia as a fuel source for heavy industry

    At a high level, ammonia seems like a dream fuel: It’s carbon-free, energy-dense, and easier to move and store than hydrogen. Ammonia is also already manufactured and transported at scale, meaning it could transform energy systems using existing infrastructure. But burning ammonia creates dangerous nitrous oxides, and splitting ammonia molecules to create hydrogen fuel typically requires lots of energy and specialized engines.The startup Amogy, founded by four MIT alumni, believes it has the technology to finally unlock ammonia as a major fuel source. The company has developed a catalyst it says can split — or “crack” — ammonia into hydrogen and nitrogen up to 70 percent more efficiently than state-of-the-art systems today. The company is planning to sell its catalysts as well as modular systems including fuel cells and engines to convert ammonia directly to power. Those systems don’t burn or combust ammonia, and thus bypass the health concerns related to nitrous oxides.Since Amogy’s founding in 2020, the company has used its ammonia-cracking technology to create the world’s first ammonia-powered drone, tractor, truck, and tugboat. It has also attracted partnerships with industry leaders including Samsung, Saudi Aramco, KBR, and Hyundai, raising more than $300 million along the way.“No one has showcased that ammonia can be used to power things at the scale of ships and trucks like us,” says CEO Seonghoon Woo PhD ’15, who founded the company with Hyunho Kim PhD ’18, Jongwon Choi PhD ’17, and Young Suk Jo SM ’13, PhD ’16. “We’ve demonstrated this approach works and is scalable.”Earlier this year, Amogy completed a research and manufacturing facility in Houston and announced a pilot deployment of its catalyst with the global engineering firm JGC Holdings Corporation. Now, with a manufacturing contract secured with Samsung Heavy Industries, Amogy is set to start delivering more of its systems to customers next year. The company will deploy a 1-megawatt ammonia-to-power pilot project with the South Korean city of Pohang in 2026, with plans to scale up to 40 megawatts at that site by 2028 or 2029. Woo says dozens of other projects with multinational corporations are in the works.Because of the power density advantages of ammonia over renewables and batteries, the company is targeting power-hungry industries like maritime shipping, power generation, construction, and mining for its early systems.“This is only the beginning,” Woo says. “We’ve worked hard to build the technology and the foundation of our company, but the real value will be generated as we scale. We’ve proved the potential for ammonia to decarbonize heavy industry, and now we really want to accelerate adoption of our technology. We’re thinking long term about the energy transition.”Unlocking a new fuel sourceWoo completed his PhD in MIT’s Department of Materials Science and Engineering before his eventual co-founders, Kim, Choi, and Jo, completed their PhDs in MIT’s Department of Mechanical Engineering. Jo worked on energy science and ran experiments to make engines run more efficiently as part of his PhD.“The PhD programs at MIT teach you how to think deeply about solving technical problems using systems-based approaches,” Woo says. “You also realize the value in learning from failures, and that mindset of iteration is similar to what you need to do in startups.”In 2020, Woo was working in the semiconductor industry when he reached out to his eventual co-founders asking if they were working on anything interesting. At that time, Jo was still working on energy systems based on hydrogen and ammonia while Kim was developing new catalysts to create ammonia fuel.“I wanted to start a company and build a business to do good things for society,” Woo recalls. “People had been talking about hydrogen as a more sustainable fuel source, but it had never come to fruition. We thought there might be a way to improve ammonia catalyst technology and accelerate the hydrogen economy.”The founders started experimenting with Jo’s technology for ammonia cracking, the process in which ammonia (NH3) molecules split into their nitrogen (N2) and hydrogen (H2) constituent parts. Ammonia cracking to date has been done at huge plants in high-temperature reactors that require large amounts of energy. Those high temperatures limited the catalyst materials that could be used to drive the reaction.Starting from scratch, the founders were able to identify new material recipes that could be used to miniaturize the catalyst and work at lower temperatures. The proprietary catalyst materials allow the company to create a system that can be deployed in new places at lower costs.“We really had to redevelop the whole technology, including the catalyst and reformer, and even the integration with the larger system,” Woo says. “One of the most important things is we don’t combust ammonia — we don’t need pilot fuel, and we don’t generate any nitrogen gas or CO2.”Today Amogy has a portfolio of proprietary catalyst technologies that use base metals along with precious metals. The company has proven the efficiency of its catalysts in demonstrations beginning with the first ammonia-powered drone in 2021. The catalyst can be used to produce hydrogen more efficiently, and by integrating the catalyst with hydrogen fuel cells or engines, Amogy also offers modular ammonia-to-power systems that can scale to meet customer energy demands.“We’re enabling the decarbonization of heavy industry,” Woo says. “We are targeting transportation, chemical production, manufacturing, and industries that are carbon-heavy and need to decarbonize soon, for example to achieve domestic goals. Our vision in the longer term is to enable ammonia as a fuel in a variety of applications, including power generation, first at microgrids and then eventually full grid-scale.”Scaling with industryWhen Amogy completed its facility in Houston, one of their early visitors was MIT Professor Evelyn Wang, who is also MIT’s vice president for energy and climate. Woo says other people involved in the Climate Project at MIT have been supportive.Another key partner for Amogy is Samsung Heavy Industries, which announced a multiyear deal to manufacturing Amogy’s ammonia-to-power systems on Nov. 12.“Our strategy is to partner with the existing big players in heavy industry to accelerate the commercialization of our technology,” Woo says. “We have worked with big oil and gas companies like BHP and Saudi Aramco, companies interested in hydrogen fuel like KBR and Mitsubishi, and many more industrial companies.”When paired with other clean energy technologies to provide the power for its systems, Woo says Amogy offers a way to completely decarbonize sectors of the economy that can’t electrify on their own.“In heavy transport, you have to use high-energy density liquid fuel because of the long distances and power requirements,” Woo says. “Batteries can’t meet those requirements. It’s why hydrogen is such an exciting molecule for heavy industry and shipping. But hydrogen needs to be kept super cold, whereas ammonia can be liquid at room temperature. Our job now is to provide that power at scale.” More

  • in

    How artificial intelligence can help achieve a clean energy future

    There is growing attention on the links between artificial intelligence and increased energy demands. But while the power-hungry data centers being built to support AI could potentially stress electricity grids, increase customer prices and service interruptions, and generally slow the transition to clean energy, the use of artificial intelligence can also help the energy transition.For example, use of AI is reducing energy consumption and associated emissions in buildings, transportation, and industrial processes. In addition, AI is helping to optimize the design and siting of new wind and solar installations and energy storage facilities.On electric power grids, using AI algorithms to control operations is helping to increase efficiency and reduce costs, integrate the growing share of renewables, and even predict when key equipment needs servicing to prevent failure and possible blackouts. AI can help grid planners schedule investments in generation, energy storage, and other infrastructure that will be needed in the future. AI is also helping researchers discover or design novel materials for nuclear reactors, batteries, and electrolyzers.Researchers at MIT and elsewhere are actively investigating aspects of those and other opportunities for AI to support the clean energy transition. At its 2025 research conference, MITEI announced the Data Center Power Forum, a targeted research effort for MITEI member companies interested in addressing the challenges of data center power demand.Controlling real-time operationsCustomers generally rely on receiving a continuous supply of electricity, and grid operators get help from AI to make that happen — while optimizing the storage and distribution of energy from renewable sources at the same time.But with more installation of solar and wind farms — both of which provide power in smaller amounts, and intermittently — and the growing threat of weather events and cyberattacks, ensuring reliability is getting more complicated. “That’s exactly where AI can come into the picture,” explains Anuradha Annaswamy, a senior research scientist in MIT’s Department of Mechanical Engineering and director of MIT’s Active-Adaptive Control Laboratory. “Essentially, you need to introduce a whole information infrastructure to supplement and complement the physical infrastructure.”The electricity grid is a complex system that requires meticulous control on time scales ranging from decades all the way down to microseconds. The challenge can be traced to the basic laws of power physics: electricity supply must equal electricity demand at every instant, or generation can be interrupted. In past decades, grid operators generally assumed that generation was fixed — they could count on how much electricity each large power plant would produce — while demand varied over time in a fairly predictable way. As a result, operators could commission specific power plants to run as needed to meet demand the next day. If some outages occurred, specially designated units would start up as needed to make up the shortfall.Today and in the future, that matching of supply and demand must still happen, even as the number of small, intermittent sources of generation grows and weather disturbances and other threats to the grid increase. AI algorithms provide a means of achieving the complex management of information needed to forecast within just a few hours which plants should run while also ensuring that the frequency, voltage, and other characteristics of the incoming power are as required for the grid to operate properly.Moreover, AI can make possible new ways of increasing supply or decreasing demand at times when supplies on the grid run short. As Annaswamy points out, the battery in your electric vehicle (EV), as well as the one charged up by solar panels or wind turbines, can — when needed — serve as a source of extra power to be fed into the grid. And given real-time price signals, EV owners can choose to shift charging from a time when demand is peaking and prices are high to a time when demand and therefore prices are both lower. In addition, new smart thermostats can be set to allow the indoor temperature to drop or rise —  a range defined by the customer — when demand on the grid is peaking. And data centers themselves can be a source of demand flexibility: selected AI calculations could be delayed as needed to smooth out peaks in demand. Thus, AI can provide many opportunities to fine-tune both supply and demand as needed.In addition, AI makes possible “predictive maintenance.” Any downtime is costly for the company and threatens shortages for the customers served. AI algorithms can collect key performance data during normal operation and, when readings veer off from that normal, the system can alert operators that something might be going wrong, giving them a chance to intervene. That capability prevents equipment failures, reduces the need for routine inspections, increases worker productivity, and extends the lifetime of key equipment.Annaswamy stresses that “figuring out how to architect this new power grid with these AI components will require many different experts to come together.” She notes that electrical engineers, computer scientists, and energy economists “will have to rub shoulders with enlightened regulators and policymakers to make sure that this is not just an academic exercise, but will actually get implemented. All the different stakeholders have to learn from each other. And you need guarantees that nothing is going to fail. You can’t have blackouts.”Using AI to help plan investments in infrastructure for the futureGrid companies constantly need to plan for expanding generation, transmission, storage, and more, and getting all the necessary infrastructure built and operating may take many years, in some cases more than a decade. So, they need to predict what infrastructure they’ll need to ensure reliability in the future. “It’s complicated because you have to forecast over a decade ahead of time what to build and where to build it,” says Deepjyoti Deka, a research scientist in MITEI.One challenge with anticipating what will be needed is predicting how the future system will operate. “That’s becoming increasingly difficult,” says Deka, because more renewables are coming online and displacing traditional generators. In the past, operators could rely on “spinning reserves,” that is, generating capacity that’s not currently in use but could come online in a matter of minutes to meet any shortfall on the system. The presence of so many intermittent generators — wind and solar — means there’s now less stability and inertia built into the grid. Adding to the complication is that those intermittent generators can be built by various vendors, and grid planners may not have access to the physics-based equations that govern the operation of each piece of equipment at sufficiently fine time scales. “So, you probably don’t know exactly how it’s going to run,” says Deka.And then there’s the weather. Determining the reliability of a proposed future energy system requires knowing what it’ll be up against in terms of weather. The future grid has to be reliable not only in everyday weather, but also during low-probability but high-risk events such as hurricanes, floods, and wildfires, all of which are becoming more and more frequent, notes Deka. AI can help by predicting such events and even tracking changes in weather patterns due to climate change.Deka points out another, less-obvious benefit of the speed of AI analysis. Any infrastructure development plan must be reviewed and approved, often by several regulatory and other bodies. Traditionally, an applicant would develop a plan, analyze its impacts, and submit the plan to one set of reviewers. After making any requested changes and repeating the analysis, the applicant would resubmit a revised version to the reviewers to see if the new version was acceptable. AI tools can speed up the required analysis so the process moves along more quickly. Planners can even reduce the number of times a proposal is rejected by using large language models to search regulatory publications and summarize what’s important for a proposed infrastructure installation.Harnessing AI to discover and exploit advanced materials needed for the energy transition“Use of AI for materials development is booming right now,” says Ju Li, MIT’s Carl Richard Soderberg Professor of Power Engineering. He notes two main directions.First, AI makes possible faster physics-based simulations at the atomic scale. The result is a better atomic-level understanding of how composition, processing, structure, and chemical reactivity relate to the performance of materials. That understanding provides design rules to help guide the development and discovery of novel materials for energy generation, storage, and conversion needed for a sustainable future energy system.And second, AI can help guide experiments in real time as they take place in the lab. Li explains: “AI assists us in choosing the best experiment to do based on our previous experiments and — based on literature searches — makes hypotheses and suggests new experiments.”He describes what happens in his own lab. Human scientists interact with a large language model, which then makes suggestions about what specific experiments to do next. The human researcher accepts or modifies the suggestion, and a robotic arm responds by setting up and performing the next step in the experimental sequence, synthesizing the material, testing the performance, and taking images of samples when appropriate. Based on a mix of literature knowledge, human intuition, and previous experimental results, AI thus coordinates active learning that balances the goals of reducing uncertainty with improving performance. And, as Li points out, “AI has read many more books and papers than any human can, and is thus naturally more interdisciplinary.”The outcome, says Li, is both better design of experiments and speeding up the “work flow.” Traditionally, the process of developing new materials has required synthesizing the precursors, making the material, testing its performance and characterizing the structure, making adjustments, and repeating the same series of steps. AI guidance speeds up that process, “helping us to design critical, cheap experiments that can give us the maximum amount of information feedback,” says Li.“Having this capability certainly will accelerate material discovery, and this may be the thing that can really help us in the clean energy transition,” he concludes. “AI [has the potential to] lubricate the material-discovery and optimization process, perhaps shortening it from decades, as in the past, to just a few years.” MITEI’s contributionsAt MIT, researchers are working on various aspects of the opportunities described above. In projects supported by MITEI, teams are using AI to better model and predict disruptions in plasma flows inside fusion reactors — a necessity in achieving practical fusion power generation. Other MITEI-supported teams are using AI-powered tools to interpret regulations, climate data, and infrastructure maps in order to achieve faster, more adaptive electric grid planning. AI-guided development of advanced materials continues, with one MITEI project using AI to optimize solar cells and thermoelectric materials.Other MITEI researchers are developing robots that can learn maintenance tasks based on human feedback, including physical intervention and verbal instructions. The goal is to reduce costs, improve safety, and accelerate the deployment of the renewable energy infrastructure. And MITEI-funded work continues on ways to reduce the energy demand of data centers, from designing more efficient computer chips and computing algorithms to rethinking the architectural design of the buildings, for example, to increase airflow so as to reduce the need for air conditioning.In addition to providing leadership and funding for many research projects, MITEI acts as a convenor, bringing together interested parties to consider common problems and potential solutions. In May 2025, MITEI’s annual spring symposium — titled “AI and energy: Peril and promise” — brought together AI and energy experts from across academia, industry, government, and nonprofit organizations to explore AI as both a problem and a potential solution for the clean energy transition. At the close of the symposium, William H. Green, director of MITEI and Hoyt C. Hottel Professor in the MIT Department of Chemical Engineering, noted, “The challenge of meeting data center energy demand and of unlocking the potential benefits of AI to the energy transition is now a research priority for MITEI.” More

  • in

    MIT Energy Initiative conference spotlights research priorities amidst a changing energy landscape

    “We’re here to talk about really substantive changes, and we want you to be a participant in that,” said Desirée Plata, the School of Engineering Distinguished Professor of Climate and Energy in MIT’s Department of Civil and Environmental Engineering, at Energizing@MIT: the MIT Energy Initiative’s (MITEI) Annual Research Conference that was held on Sept. 9-10.Plata’s words resonated with the 150-plus participants from academia, industry, and government meeting in Cambridge for the conference, whose theme was “tackling emerging energy challenges.” Meeting such challenges and ultimately altering the trajectory of global climate outcomes requires partnerships, speakers agreed.“We have to be humble and open,” said Giacomo Silvestri, chair of Eniverse Ventures at Eni, in a shared keynote address. “We cannot develop innovation just focusing on ourselves and our competencies … so we need to partner with startups, venture funds, universities like MIT and other public and private institutions.” Added his Eni colleague, Annalisa Muccioli, head of research and technology, “The energy transition is a race we can win only by combining mature solutions ready to deploy, together with emerging technologies that still require acceleration and risk management.”Research targetsIn a conference that showcased a suite of research priorities MITEI has identified as central to ensuring a low-carbon energy future, participants shared both promising discoveries and strategies for advancing proven technologies in the face of shifting political winds and policy uncertainties.One panel focused on grid resiliency — a topic that has moved from the periphery to the center of energy discourse as climate-driven disruptions, cyber threats, and the integration of renewables challenge legacy systems. A dramatic case in point: the April 2025 outage in Spain and Portugal that left millions without power for eight to 15 hours. “I want to emphasize that this failure was about more than the power system,” said MITEI research scientist Pablo Duenas-Martinez. While he pinpointed technical problems with reactive power and voltage control behind the system collapse, Duenas-Martinez also called out a lack of transmission capacity with Central Europe and out-of-date operating procedures, and recommended better preparation and communication among transmission systems and utility operators.“You can’t plan for every single eventuality, which means we need to broaden the portfolio of extreme events we prepare for,” noted Jennifer Pearce, vice president at energy company Avangrid. “We are making the system smarter, stronger, and more resilient to better protect from a wide range of threats such as storms, flooding, and extreme heat events.” Pearce noted that Avangrid’s commitment to deliver safe, reliable power to its customers necessitates “meticulous emergency planning procedures.”The resiliency of the electric grid under greatly increased demand is an important motivation behind MITEI’s September 2025 launch of the Data Center Power Forum, which was also announced during the annual research conference. The forum will include research projects, webinars, and other content focused on energy supply and storage, grid design and management, infrastructure, and public and economic policy related to data centers. The forum’s members include MITEI companies that also participate in MIT’s Center for Environmental and Energy Policy Research (CEEPR).Storage and transportation: Staggering challengesMeeting climate goals to decarbonize the world by 2050 requires building around 300 terawatt-hours of storage, according to Asegun Henry, a professor in the MIT Department of Mechanical Engineering. “It’s an unbelievably enormous problem people have to wrap their minds around,” he said. Henry has been developing a high-temperature thermal energy storage system he has nicknamed “sun in a box.” His system uses liquid metal and graphite to hold electricity as heat and then convert it back to electricity, enabling storage anywhere from five to 500 hours.“At the end of the day, storage provides a service, and the type of technology that you need is a function of the service that you value the most,” said Nestor Sepulveda, commercial lead for advanced energy investments and partnerships at Google. “I don’t think there is one winner-takes-all type of market here.”Another panel explored sustainable fuels that could help decarbonize hard-to-electrify sectors like aviation, shipping, and long-haul trucking. Randall Field, MITEI’s director of research, noted that sustainably produced drop-in fuels — fuels that are largely compatible with existing engines — “could eliminate potentially trillions of dollars of cost for fleet replacement and for infrastructure build-out, while also helping us to accelerate the rate of decarbonization of the transportation sectors.”Erik G. Birkerts is the chief growth officer of LanzaJet, which produces a drop-in, high-energy-density aviation fuel derived from agricultural residue and other waste carbon sources. “The key to driving broad sustainable aviation fuel adoption is solving both the supply-side challenge through more production and the demand-side hurdle by reducing costs,” he said.“We think a good policy framework [for sustainable fuels] would be something that is technology-neutral, does not exclude any pathways to produce, is based on life cycle accounting practices, and on market mechanisms,” said Veronica L. Robertson, energy products technology portfolio manager at ExxonMobil.MITEI plans a major expansion of its research on sustainable fuels, announcing a two-year study, “The future of fuels: Pathways to sustainable transportation,” starting in early 2026. According to Field, the study will analyze and assess biofuels and e-fuels.Solutions from labs big and smallGlobal energy leaders offered glimpses of their research projects. A panel on carbon capture in power generation featured three takes on the topic: Devin Shaw, commercial director of decarbonization technologies at Shell, described post-combustion carbon capture in power plants using steam for heat recovery; Jan Marsh, a global program lead at Siemens Energy, discussed deploying novel materials to capture carbon dioxide directly from the air; and Jeffrey Goldmeer, senior director of technology strategy at GE Vernova, explained integrating carbon capture into gas-powered turbine systems.During a panel on vehicle electrification, Brian Storey, vice president of energy and materials at the Toyota Research Institute, provided an overview of Toyota’s portfolio of projects for decarbonization, including solid-state batteries, flexible manufacturing lines, and grid-forming inverters to support EV charging infrastructure.A session on MITEI seed fund projects revealed promising early-stage research inside MIT’s own labs. A new process for decarbonizing the production of ethylene was presented by Yogesh Surendranath, Donner Professor of Science in the MIT Department of Chemistry. Materials Science and Engineering assistant professor Aristide Gumyusenge also discussed the development of polymers essential for a new kind of sodium-ion battery.Shepherding bold, new technologies like these from academic labs into the real world cannot succeed without ample support and deft management. A panel on paths to commercialization featured the work of Iwnetim Abate, Chipman Career Development Professor and assistant professor in the MIT Department of Materials Science and Engineering, who has spun out a company, Addis Energy, based on a novel geothermal process for harvesting clean hydrogen and ammonia from subsurface, iron-rich rocks. Among his funders: ARPA-E and MIT’s own The Engine Ventures.The panel also highlighted the MIT Proto Ventures Program, an initiative to seize early-stage MIT ideas and unleash them as world-changing startups. “A mere 4.2 percent of all the patents that are actually prosecuted in the world are ever commercialized, which seems like a shocking number,” said Andrew Inglis, an entrepreneur working with Proto Ventures to translate geothermal discoveries into businesses. “Can’t we do this better? Let’s do this better!”Geopolitical hazardsThroughout the conference, participants often voiced concern about the impacts of competition between the United States and China. Kelly Sims Gallagher, dean of the Fletcher School at Tufts University and an expert on China’s energy landscape, delivered the sobering news in her keynote address: “U.S. competitiveness in low-carbon technologies has eroded in nearly every category,” she said. “The Chinese are winning the clean tech race.”China enjoys a 51 percent share in global wind turbine manufacture and 75 percent in solar modules. It also controls low-carbon supply chains that much of the world depends on. “China is getting so dominant that nobody can carve out a comparative advantage in anything,” said Gallagher. “China is just so big, and the scale is so huge that the Chinese can truly conquer markets and make it very hard for potential competitors to find a way in.”And for the United States, the problem is “the seesaw of energy policy,” she says. “It’s incredibly difficult for the private sector to plan and to operate, given the lack of predictability and policy here.”Nevertheless, Gallagher believes the United States still has a chance of at least regaining competitiveness, by setting up a stable, bipartisan energy policy, rebuilding domestic manufacturing and supply chains; providing consistent fiscal incentives; attracting and retaining global talent; and fostering international collaboration.The conference shone a light on one such collaboration: a China-U.S. joint venture to manufacture lithium iron phosphate batteries for commercial vehicles in the United States. The venture brings together Eve Energy, a Chinese battery technology and manufacturing company; Daimler, a global commercial vehicle manufacturer; PACCAR Inc., a U.S.-based truck manufacturer; and Accelera, the zero-emissions business of Cummins Inc. “Manufacturing batteries in the U.S. makes the supply chain more robust and reduces geopolitical risks,” said Mike Gerty, of PACCAR.While she acknowledged the obstacles confronting her colleagues in the room, Plata nevertheless concluded her remarks as a panel moderator with some optimism: “I hope you all leave this conference and look back on it in the future, saying I was in the room when they actually solved some of the challenges standing between now and the future that we all wish to manifest.” More

  • in

    Ultrasonic device dramatically speeds harvesting of water from the air

    Feeling thirsty? Why not tap into the air? Even in desert conditions, there exists some level of humidity that, with the right material, can be soaked up and squeezed out to produce clean drinking water. In recent years, scientists have developed a host of promising sponge-like materials for this “atmospheric water harvesting.”But recovering the water from these materials usually requires heat — and time. Existing designs rely on heat from the sun to evaporate water from the materials and condense it into droplets. But this step can take hours or even days. Now, MIT engineers have come up with a way to quickly recover water from an atmospheric water harvesting material. Rather than wait for the sun to evaporate water out, the team uses ultrasonic waves to shake the water out.The researchers have developed an ultrasonic device that vibrates at high frequency. When a water-harvesting material, known as a “sorbent,” is placed on the device, the device emits ultrasound waves that are tuned to shake water molecules out of the sorbent. The team found that the device recovers water in minutes, versus the tens of minutes or hours required by thermal designs.

    Play video

    MIT engineers design an ultrasonic system to “shake” water out of an atmospheric water harvester. The new design can recover captured water in minutes rather than hours.

    Unlike heat-based designs, the device does require a power source. The team envisions that the device could be powered by a small solar cell, which could also act as a sensor to detect when the sorbent is full. It could also be programmed to automatically turn on whenever a material has harvested enough moisture to be extracted. In this way, a system could soak up and shake out water from the air over many cycles in a single day.“People have been looking for ways to harvest water from the atmosphere, which could be a big source of water particularly for desert regions and places where there is not even saltwater to desalinate,” says Svetlana Boriskina, principal research scientist in MIT’s Department of Mechanical Engineering. “Now we have a way to recover water quickly and efficiently.”Boriskina and her colleagues report on their new device in a study appearing today in the journal Nature Communications. The study’s first author is Ikra Iftekhar Shuvo, an MIT graduate student in media arts and sciences, along with Carlos Díaz-Marín, Marvin Christen, Michael Lherbette, and Christopher Liem.Precious hoursBoriskina’s group at MIT develops materials that interact with the environment in novel ways. Recently, her group explored atmospheric water harvesting (AWH), and ways that materials can be designed to efficiently absorb water from the air. The hope is that, if they can work reliably, AWH systems would be of most benefit to communities where traditional sources of drinking water — and even saltwater — are scarce.Like other groups, Boriskina’s lab had generally assumed that an AWH system in the field would absorb moisture during the night, and then use the heat from the sun during the day to naturally evaporate the water and condense it for collection.“Any material that’s very good at capturing water doesn’t want to part with that water,” Boriskina explains. “So you need to put a lot of energy and precious hours into pulling water out of the material.”She realized there could be a faster way to recover water after Ikra Shuvo joined her group. Shuvo had been working with ultrasound for wearable medical device applications. When he and Boriskina considered ideas for new projects, they realized that ultrasound could be a way to speed up the recovery step in atmospheric water harvesting.“It clicked: We have this big problem we’re trying to solve, and now Ikra seemed to have a tool that can be used to solve this problem,” Boriskina recalls.Water danceUltrasound, or ultrasonic waves, are acoustic pressure waves that travel at frequencies of over 20 kilohertz (20,000 cycles per second). Such high-frequency waves are not visible or audible to humans. And, as the team found, ultrasound vibrates at just the right frequency to shake water out of a material.“With ultrasound, we can precisely break the weak bonds between water molecules and the sites where they’re sitting,” Shuvo says. “It’s like the water is dancing with the waves, and this targeted disturbance creates momentum that releases the water molecules, and we can see them shake out in droplets.”Shuvo and Boriskina designed a new ultrasonic actuator to recover water from an atmospheric water harvesting material. The heart of the device is a flat ceramic ring that vibrates when voltage is applied. This ring is surrounded by an outer ring that is studded with tiny nozzles. Water droplets that shake out of a material can drop through the nozzle and into collection vessels attached above and below the vibrating ring.They tested the device on a previously designed atmospheric water harvesting material. Using quarter-sized samples of the material, the team first placed each sample in a humidity chamber, set to various humidity levels. Over time, the samples absorbed moisture and became saturated. The researchers then placed each sample on the ultrasonic actuator and powered it on to vibrate at ultrasonic frequencies. In all cases, the device was able to shake out enough water to dry out each sample in just a few minutes.The researchers calculate that, compared to using heat from the sun, the ultrasonic design is 45 times more efficient at extracting water from the same material.“The beauty of this device is that it’s completely complementary and can be an add-on to almost any sorbent material,” says Boriskina, who envisions a practical, household system might consist of a fast-absorbing material and an ultrasonic actuator, each about the size of a window. Once the material is saturated, the actuator would briefly turn on, powered by a solar cell, to shake out the water. The material would then be ready to harvest more water, in multiple cycles throughout a single day.“It’s all about how much water you can extract per day,” she says. “With ultrasound, we can recover water quickly, and cycle again and again. That can add up to a lot per day.”This work was supported, in part, by the MIT Abdul Latif Jameel Water and Food Systems Lab and the MIT-Israel Zuckerman STEM Fund. More

  • in

    From nanoscale to global scale: Advancing MIT’s special initiatives in manufacturing, health, and climate

    “MIT.nano is essential to making progress in high-priority areas where I believe that MIT has a responsibility to lead,” opened MIT president Sally Kornbluth at the 2025 Nano Summit. “If we harness our collective efforts, we can make a serious positive impact.”It was these collective efforts that drove discussions at the daylong event hosted by MIT.nano and focused on the importance of nanoscience and nanotechnology across MIT’s special initiatives — projects deemed critical to MIT’s mission to help solve the world’s greatest challenges. With each new talk, common themes were reemphasized: collaboration across fields, solutions that can scale up from lab to market, and the use of nanoscale science to enact grand-scale change.“MIT.nano has truly set itself apart, in the Institute’s signature way, with an emphasis on cross-disciplinary collaboration and open access,” said Kornbluth. “Today, you’re going to hear about the transformative impact of nanoscience and nanotechnology, and how working with the very small can help us do big things for the world together.”Collaborating on healthAngela Koehler, faculty director of the MIT Health and Life Sciences Collaborative (MIT HEALS) and the Charles W. and Jennifer C. Johnson Professor of Biological Engineering, opened the first session with a question: How can we build a community across campus to tackle some of the most transformative problems in human health? In response, three speakers shared their work enabling new frontiers in medicine.Ana Jaklenec, principal research scientist at the Koch Institute for Integrative Cancer Research, spoke about single-injection vaccines, and how her team looked to the techniques used in fabrication of electrical engineering components to see how multiple pieces could be packaged into a tiny device. “MIT.nano was instrumental in helping us develop this technology,” she said. “We took something that you can do in microelectronics and the semiconductor industry and brought it to the pharmaceutical industry.”While Jaklenec applied insight from electronics to her work in health care, Giovanni Traverso, the Karl Van Tassel Career Development Professor of Mechanical Engineering, who is also a gastroenterologist at Brigham and Women’s Hospital, found inspiration in nature, studying the cephalopod squid and remora fish to design ingestible drug delivery systems. Representing the industry side of life sciences, Mirai Bio senior vice president Jagesh Shah SM ’95, PhD ’99 presented his company’s precision-targeted lipid nanoparticles for therapeutic delivery. Shah, as well as the other speakers, emphasized the importance of collaboration between industry and academia to make meaningful impact, and the need to strengthen the pipeline for young scientists.Manufacturing, from the classroom to the workforcePaving the way for future generations was similarly emphasized in the second session, which highlighted MIT’s Initiative for New Manufacturing (MIT INM). “MIT’s dedication to manufacturing is not only about technology research and education, it’s also about understanding the landscape of manufacturing, domestically and globally,” said INM co-director A. John Hart, the Class of 1922 Professor and head of the Department of Mechanical Engineering. “It’s about getting people — our graduates who are budding enthusiasts of manufacturing — out of campus and starting and scaling new companies,” he said.On progressing from lab to market, Dan Oran PhD ’21 shared his career trajectory from technician to PhD student to founding his own company, Irradiant Technologies. “How are companies like Dan’s making the move from the lab to prototype to pilot production to demonstration to commercialization?” asked the next speaker, Elisabeth Reynolds, professor of the practice in urban studies and planning at MIT. “The U.S. capital market has not historically been well organized for that kind of support.” She emphasized the challenge of scaling innovations from prototype to production, and the need for workforce development.“Attracting and retaining workforce is a major pain point for manufacturing businesses,” agreed John Liu, principal research scientist in mechanical engineering at MIT. To keep new ideas flowing from the classroom to the factory floor, Liu proposes a new worker type in advanced manufacturing — the technologist — someone who can be a bridge to connect the technicians and the engineers.Bridging ecosystems with nanoscienceBridging people, disciplines, and markets to affect meaningful change was also emphasized by Benedetto Marelli, mission director for the MIT Climate Project and associate professor of civil and environmental engineering at MIT.“If we’re going to have a tangible impact on the trajectory of climate change in the next 10 years, we cannot do it alone,” he said. “We need to take care of ecology, health, mobility, the built environment, food, energy, policies, and trade and industry — and think about these as interconnected topics.”Faculty speakers in this session offered a glimpse of nanoscale solutions for climate resiliency. Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering, presented his group’s work on using nanoparticles to turn waste methane and urea into renewable materials. Desirée Plata, the School of Engineering Distinguished Climate and Energy Professor, spoke about scaling carbon dioxide removal systems. Mechanical engineering professor Kripa Varanasi highlighted, among other projects, his lab’s work on improving agricultural spraying so pesticides adhere to crops, reducing agricultural pollution and cost.In all of these presentations, the MIT faculty highlighted the tie between climate and the economy. “The economic systems that we have today are depleting to our resources, inherently polluting,” emphasized Plata. “The goal here is to use sustainable design to transition the global economy.”What do people do at MIT.nano?This is where MIT.nano comes in, offering shared access facilities where researchers can design creative solutions to these global challenges. “What do people do at MIT.nano?” asked associate director for Fab.nano Jorg Scholvin ’00, MNG ’01, PhD ’06 in the session on MIT.nano’s ecosystem. With 1,500 individuals and over 20 percent of MIT faculty labs using MIT.nano, it’s a difficult question to quickly answer. However, in a rapid-fire research showcase, students and postdocs gave a response that spanned 3D transistors and quantum devices to solar solutions and art restoration. Their work reflects the challenges and opportunities shared at the Nano Summit: developing technologies ready to scale, uniting disciplines to tackle complex problems, and gaining hands-on experience that prepares them to contribute to the future of hard tech.The researchers’ enthusiasm carried the excitement and curiosity that President Kornbluth mentioned in her opening remarks, and that many faculty emphasized throughout the day. “The solutions to the problems we heard about today may come from inventions that don’t exist yet,” said Strano. “These are some of the most creative people, here at MIT. I think we inspire each other.”Robert N. Noyce (1953) Cleanroom at MIT.nanoCollaborative inspiration is not new to the MIT culture. The Nano Summit sessions focused on where we are today, and where we might be going in the future, but also reflected on how we arrived at this moment. Honoring visionaries of nanoscience and nanotechnology, President Emeritus L. Rafael Reif delivered the closing remarks and an exciting announcement — the dedication of the MIT.nano cleanroom complex. Made possible through a gift by Ray Stata SB ’57, SM ’58, this research space, 45,000 square feet of ISO 5, 6, and 7 cleanrooms, will be named the Robert N. Noyce (1953) Cleanroom.“Ray Stata was — and is — the driving force behind nanoscale research at MIT,” said Reif. “I want to thank Ray, whose generosity has allowed MIT to honor Robert Noyce in such a fitting way.”Ray Stata co-founded Analog Devices in 1965, and Noyce co-founded Fairchild Semiconductor in 1957, and later Intel in 1968. Noyce, widely regarded as the “Mayor of Silicon Valley,” became chair of the Semiconductor Industry Association in 1977, and over the next 40 years, semiconductor technology advanced a thousandfold, from micrometers to nanometers.“Noyce was a pioneer of the semiconductor industry,” said Stata. “It is due to his leadership and remarkable contributions that electronics technology is where it is today. It is an honor to be able to name the MIT.nano cleanroom after Bob Noyce, creating a permanent tribute to his vision and accomplishments in the heart of the MIT campus.”To conclude his remarks and the 2025 Nano Summit, Reif brought the nano journey back to today, highlighting technology giants such as Lisa Su ’90, SM ’91, PhD ’94, for whom Building 12, the home of MIT.nano, is named. “MIT has educated a large number of remarkable leaders in the semiconductor space,” said Reif. “Now, with the Robert Noyce Cleanroom, this amazing MIT community is ready to continue to shape the future with the next generation of nano discoveries — and the next generation of nano leaders, who will become living legends in their own time.” More

  • in

    Burning things to make things

    Around 80 percent of global energy production today comes from the combustion of fossil fuels. Combustion, or the process of converting stored chemical energy into thermal energy through burning, is vital for a variety of common activities including electricity generation, transportation, and domestic uses like heating and cooking — but it also yields a host of environmental consequences, contributing to air pollution and greenhouse gas emissions.Sili Deng, the Doherty Chair in Ocean Utilization and associate professor of mechanical engineering at MIT, is leading research to drive the transition from the heavy dependence on fossil fuels to renewable energy with storage.“I was first introduced to flame synthesis in my junior year in college,” Deng says. “I realized you can actually burn things to make things, [and] that was really fascinating.”

    Play video

    Burning Things to Make ThingsVideo: Department of Mechanical Engineering

    Deng says she ultimately picked combustion as a focus of her work because she likes the intellectual challenge the concept offers. “In combustion you have chemistry, and you have fluid mechanics. Each subject is very rich in science. This also has very strong engineering implications and applications.”Deng’s research group targets three areas: building up fundamental knowledge on combustion processes and emissions; developing alternative fuels and metal combustion to replace fossil fuels; and synthesizing flame-based materials for catalysis and energy storage, which can bring down the cost of manufacturing battery materials.One focus of the team has been on low-cost, low-emission manufacturing of cathode materials for lithium-ion batteries. Lithium-ion batteries play an increasingly critical role in transportation electrification (e.g., batteries for electric vehicles) and grid energy storage for electricity that is generated from renewable energy sources like wind and solar. Deng’s team has developed a technology they call flame-assisted spray pyrolysis, or FASP, which can help reduce the high manufacturing costs associated with cathode materials.FASP is based on flame synthesis, a technology that dates back nearly 3,000 years. In ancient China, this was the primary way black ink materials were made. “[People burned] vegetables or woods, such that afterwards they can collect the solidified smoke,” Deng explains. “For our battery applications, we can try to fit in the same formula, but of course with new tweaks.”The team is also interested in developing alternative fuels, including looking at the use of metals like aluminum to power rockets. “We’re interested in utilizing aluminum as a fuel for civil applications,” Deng says, because aluminum is abundant in the earth, cheap, and it’s available globally. “What we are trying to do is to understand [aluminum combustion] and be able to tailor its ignition and propagation properties.”Among other accolades, Deng is a 2025 recipient of the Hiroshi Tsuji Early Career Researcher Award from the Combustion Institute, an award that recognizes excellence in fundamental or applied combustion science research. More

  • in

    MIT Maritime Consortium releases “Nuclear Ship Safety Handbook”

    Commercial shipping accounts for 3 percent of all greenhouse gas emissions globally. As the sector sets climate goals and chases a carbon-free future, nuclear power — long used as a source for military vessels — presents an enticing solution. To date, however, there has been no clear, unified public document available to guide design safety for certain components of civilian nuclear ships. A new “Nuclear Ship Safety Handbook” by the MIT Maritime Consortium aims to change that and set the standard for safe maritime nuclear propulsion.“This handbook is a critical tool in efforts to support the adoption of nuclear in the maritime industry,” explains Themis Sapsis, the William I. Koch Professor of Mechanical Engineering at MIT, director of the MIT Center for Ocean Engineering, and co-director of the MIT Maritime Consortium. “The goal is to provide a strong basis for initial safety on key areas that require nuclear and maritime regulatory research and development in the coming years to prepare for nuclear propulsion in the maritime industry.”Using research data and standards, combined with operational experiences during civilian maritime nuclear operations, the handbook provides unique insights into potential issues and resolutions in the design efficacy of maritime nuclear operations, a topic of growing importance on the national and international stage. “Right now, the nuclear-maritime policies that exist are outdated and often tied only to specific technologies, like pressurized water reactors,” says Jose Izurieta, a graduate student in the Department of Mechanical Engineering (MechE) Naval Construction and Engineering (2N) Program, and one of the handbook authors. “With the recent U.K.-U.S. Technology Prosperity Deal now including civil maritime nuclear applications, I hope the handbook can serve as a foundation for creating a clear, modern regulatory framework for nuclear-powered commercial ships.”The recent memorandum of understanding signed by the U.S. and U.K calls for the exploration of “novel applications of advanced nuclear energy, including civil maritime applications,” and for the parties to play “a leading role informing the establishment of international standards, potential establishment of a maritime shipping corridor between the Participants’ territories, and strengthening energy resilience for the Participants’ defense facilities.”“The U.S.-U.K. nuclear shipping corridor offers a great opportunity to collaborate with legislators on establishing the critical framework that will enable the United States to invest on nuclear-powered merchant vessels — an achievement that will reestablish America in the shipbuilding space,” says Fotini Christia, the Ford International Professor of the Social Sciences, director of the Institute for Data, Systems, and Society (IDSS), director of the MIT Sociotechnical Systems Research Center, and co-director of the MIT Maritime Consortium.“With over 30 nations now building or planning their first reactors, nuclear energy’s global acceptance is unprecedented — and that momentum is key to aligning safety rules across borders for nuclear-powered ships and the respective ports,” says Koroush Shirvan, the Atlantic Richfield Career Development Professor in Energy Studies at MIT and director of the Reactor Technology Course for Utility Executives.The handbook, which is divided into chapters in areas involving the overlapping nuclear and maritime safety design decisions that will be encountered by engineers, is careful to balance technical and practical guidance with policy considerations.Commander Christopher MacLean, MIT associate professor of the practice in mechanical engineering, naval construction, and engineering, says the handbook will significantly benefit the entire maritime community, specifically naval architects and marine engineers, by providing standardized guidelines for design and operation specific to nuclear powered commercial vessels.“This will assist in enhancing safety protocols, improve risk assessments, and ensure consistent compliance with international regulations,” MacLean says. “This will also help foster collaboration amongst engineers and regulators. Overall, this will further strengthen the reliability, sustainability, and public trust in nuclear-powered maritime systems.”Anthony Valiaveedu, the handbook’s lead author, and co-author Nat Edmonds, are both students in the MIT Master’s Program in Technology and Policy (TPP) within the IDSS. The pair are also co-authors of a paper published in Science Policy Review earlier this year that offered structured advice on the development of nuclear regulatory policies.“It is important for safety and technology to go hand-in-hand,” Valiaveedu explains. “What we have done is provide a risk-informed process to begin these discussions for engineers and policymakers.”“Ultimately, I hope this framework can be used to build strong bilateral agreements between nations that will allow nuclear propulsion to thrive,” says fellow co-author Izurieta.Impact on industry“Maritime designers needed a source of information to improve their ability to understand and design the reactor primary components, and development of the ‘Nuclear Ship Safety Handbook’ was a good step to bridge this knowledge gap,” says Christopher J. Wiernicki, American Bureau of Shipping (ABS) chair and CEO. “For this reason, it is an important document for the industry.”The ABS, which is the American classification society for the maritime industry, develops criteria and provides safety certification for all ocean-going vessels. ABS is among the founding members of the MIT Maritime Consortium. Capital Clean Energy Carriers Corp., HD Korea Shipbuilding and Offshore Engineering, and Delos Navigation Ltd. are also consortium founding members. Innovation members are Foresight-Group, Navios Maritime Partners L.P., Singapore Maritime Institute, and Dorian LPG.“As we consider a net-zero framework for the shipping industry, nuclear propulsion represents a potential solution. Careful investigation remains the priority, with safety and regulatory standards at the forefront,” says Jerry Kalogiratos, CEO of Capital Clean Energy Carriers Corp. “As first movers, we are exploring all options. This handbook lays the technical foundation for the development of nuclear-powered commercial vessels.”Sangmin Park, senior vice president at HD Korea Shipbuilding and Offshore Engineering, says “The ‘Nuclear Ship Safety Handbook’ marks a groundbreaking milestone that bridges shipbuilding excellence and nuclear safety. It drives global collaboration between industry and academia, and paves the way for the safe advancement of the nuclear maritime era.”Maritime at MITMIT has been a leading center of ship research and design for over a century, with work at the Institute today representing significant advancements in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. Maritime Consortium projects, including the handbook, reflect national priorities aimed at revitalizing the U.S. shipbuilding and commercial maritime industries.The MIT Maritime Consortium, which launched in 2024, brings together MIT and maritime industry leaders to explore data-powered strategies to reduce harmful emissions, optimize vessel operations, and support economic priorities.“One of our most important efforts is the development of technologies, policies, and regulations to make nuclear propulsion for commercial ships a reality,” says Sapsis. “Over the last year, we have put together an interdisciplinary team with faculty and students from across the Institute. One of the outcomes of this effort is this very detailed document providing detailed guidance on how such effort should be implemented safely.”Handbook contributors come from multiple disciplines and MIT departments, labs, and research centers, including the Center for Ocean Engineering, IDSS, MechE’s Course 2N Program, the MIT Technology and Policy Program, and the Department of Nuclear Science and Engineering.MIT faculty members and research advisors on the project include Sapsis; Christia; Shirvan; MacLean; Jacopo Buongiorno, the Battelle Energy Alliance Professor in Nuclear Science and Engineering, director, Center for Advanced Nuclear Energy Systems, and director of science and technology for the Nuclear Reactor Laboratory; and Captain Andrew Gillespy, professor of the practice and director of the Naval Construction and Engineering (2N) Program.“Proving the viability of nuclear propulsion for civilian ships will entail getting the technologies, the economics and the regulations right,” says Buongiorno. “This handbook is a meaningful initial contribution to the development of a sound regulatory framework.”“We were lucky to have a team of students and knowledgeable professors from so many fields,” says Edmonds. “Before even beginning the outline of the handbook, we did significant archival and history research to understand the existing regulations and overarching story of nuclear ships. Some of the most relevant documents we found were written before 1975, and many of them were stored in the bellows of the NS Savannah.”The NS Savannah, which was built in the late 1950s as a demonstration project for the potential peacetime uses of nuclear energy, was the first nuclear-powered merchant ship. The Savannah was first launched on July 21, 1959, two years after the first nuclear-powered civilian vessel, the Soviet ice-breaker Lenin, and was retired in 1971.Historical context for this project is important, because the reactor technologies envisioned for maritime propulsion today are quite different from the traditional pressurized water reactors used by the U.S. Navy. These new reactors are being developed not just in the maritime context, but also to power ports and data centers on land; they all use low-enriched uranium and are passively cooled. For the maritime industry, Sapsis says, “the technology is there, it’s safe, and it’s ready.”“The Nuclear Ship Safety Handbook” is publicly available on the MIT Maritime Consortium website and from the MIT Libraries.  More

  • in

    MIT engineers solve the sticky-cell problem in bioreactors and other industries

    To help mitigate climate change, companies are using bioreactors to grow algae and other microorganisms that are hundreds of times more efficient at absorbing CO2 than trees. Meanwhile, in the pharmaceutical industry, cell culture is used to manufacture biologic drugs and other advanced treatments, including lifesaving gene and cell therapies.Both processes are hampered by cells’ tendency to stick to surfaces, which leads to a huge amount of waste and downtime for cleaning. A similar problem slows down biofuel production, interferes with biosensors and implants, and makes the food and beverage industry less efficient.Now, MIT researchers have developed an approach for detaching cells from surfaces on demand, using electrochemically generated bubbles. In an open-access paper published in Science Advances, the researchers demonstrated their approach in a lab prototype and showed it could work across a range of cells and surfaces without harming the cells.“We wanted to develop a technology that could be high-throughput and plug-and-play, and that would allow cells to attach and detach on demand to improve the workflow in these industrial processes,” says Professor Kripa Varanasi, senior author of the study. “This is a fundamental issue with cells, and we’ve solved it with a process that can scale. It lends itself to many different applications.”Joining Varanasi on the study are co-first authors Bert Vandereydt, a PhD student in mechanical engineering, and former postdoc Baptiste Blanc.Solving a sticky problem

    Credit: Joy Zheng

    The researchers began with a mission.“We’ve been working on figuring out how we can efficiently capture CO2 across different sources and convert it into valuable products for various end markets,” Varanasi says. “That’s where this photobioreactor and cell detachment comes into the picture.”Photobioreactors are used to grow carbon-absorbing algae cells by creating tightly controlled environments involving water and sunlight. They feature long, winding tubes with clear surfaces to let in the light algae need to grow. When algae stick to those surfaces, they block out the light, requiring cleaning.“You have to shut down and clean up the entire reactor as frequently as every two weeks,” Varanasi says. “It’s a huge operational challenge.”The researchers realized other industries have similar problem due to many cells’ natural adhesion, or stickiness. Each industry has its own solution for cell adhesion depending on how important it is that the cells survive. Some people scrape the surfaces clean, while others use special coatings that are toxic to cells.In the pharmaceutical and biotech industries, cell detachment is typically carried out using enzymes. However, this method poses several challenges — it can damage cell membranes, is time-consuming, and requires large amounts of consumables, resulting in millions of liters of biowaste.To create a better solution, the researchers began by studying other efforts to clear surfaces with bubbles, which mainly involved spraying bubbles onto surfaces and had been largely ineffective.“We realized we needed the bubbles to form on the surfaces where we don’t want these cells to stick, so when the bubbles detach it creates a local fluid flow that creates shear stress at the interface and removes the cells,” Varanasi explains.Electric currents generate bubbles by splitting water into hydrogen and oxygen. But previous attempts at using electricity to detach cells were hampered because the cell culture mediums contain sodium chloride, which turns into bleach when combined with an electric current. The bleach damages the cells, making it impractical for many applications.“The culprit is the anode — that’s where the sodium chloride turns to bleach,” Vandereydt explained. “We figured if we could separate that electrode from the rest of the system, we could prevent bleach from being generated.”To make a better system, the researchers built a 3-square-inch glass surface and deposited a gold electrode on top of it. The layer of gold is so thin it doesn’t block out light. To keep the other electrode separate, the researchers integrated a special membrane that only allows protons to pass through. The set up allowed the researchers to send a current through without generating bleach.To test their setup, they allowed algae cells from a concentrated solution to stick to the surfaces. When they applied a voltage, the bubbles separated the cells from the surfaces without harming them.The researchers also studied the interaction between the bubbles and cells, finding the higher the current density, the more bubbles were created and the more algae was removed. They developed a model for understanding how much current would be needed to remove algae in different settings and matched it with results from experiments involving algae as well as cells from ovarian cancer and bones.“Mammalian cells are orders of magnitude more sensitive than algae cells, but even with those cells, we were able to detach them with no impact to the viability of the cell,” Vandereydt says.Getting to scaleThe researchers say their system could represent a breakthrough in applications where bleach or other chemicals would harm cells. That includes pharmaceutical and food production.“If we can keep these systems running without fouling and other problems, then we can make them much more economical,” Varanasi says.For cell culture plates used in the pharmaceutical industry, the team envisions their system comprising an electrode that could be robotically moved from one culture plate to the next, to detach cells as they’re grown. It could also be coiled around algae harvesting systems.“This has general applicability because it doesn’t rely on any specific biological or chemical treatments, but on a physical force that is system-agnostic,” Varanasi says. “It’s also highly scalable to a lot of different processes, including particle removal.”Varanasi cautions there is much work to be done to scale up the system. But he hopes it can one day make algae and other cell harvesting more efficient.“The burning problem of our time is to somehow capture CO2 in a way that’s economically feasible,” Varanasi says. “These photobioreactors could be used for that, but we have to overcome the cell adhesion problem.”The work was supported, in part, by Eni S.p.A through the MIT Energy Initiative, the Belgian American Educational Foundation Fellowship, and the Maria Zambrano Fellowship. More