More stories

  • in

    Vapor-collection technology saves water while clearing the air

    About two-fifths of all the water that gets withdrawn from lakes, rivers, and wells in the U.S. is used not for agriculture, drinking, or sanitation, but to cool the power plants that provide electricity from fossil fuels or nuclear power. Over 65 percent of these plants use evaporative cooling, leading to huge white plumes that billow from their cooling towers, which can be a nuisance and, in some cases, even contribute to dangerous driving conditions.

    Now, a small company based on technology recently developed at MIT by the Varanasi Research Group is hoping to reduce both the water needs at these plants and the resultant plumes — and to potentially help alleviate water shortages in areas where power plants put pressure on local water systems.

    The technology is surprisingly simple in principle, but developing it to the point where it can now be tested at full scale on industrial plants was a more complex proposition. That required the real-world experience that the company’s founders gained from installing prototype systems, first on MIT’s natural-gas-powered cogeneration plant and then on MIT’s nuclear research reactor.

    In these demanding tests, which involved exposure to not only the heat and vibrations of a working industrial plant but also the rigors of New England winters, the system proved its effectiveness at both eliminating the vapor plume and recapturing water. And, it purified the water in the process, so that it was 100 times cleaner than the incoming cooling water. The system is now being prepared for full-scale tests in a commercial power plant and in a chemical processing plant.

    “Campus as a living laboratory”

    The technology was originally envisioned by professor of mechanical engineering Kripa Varanasi to develop efficient water-recovery systems by capturing water droplets from both natural fog and plumes from power plant cooling towers. The project began as part of doctoral thesis research of Maher Damak PhD ’18, with funding from the MIT Tata Center for Technology and Design, to improve the efficiency of fog-harvesting systems like the ones used in some arid coastal regions as a source of potable water. Those systems, which generally consist of plastic or metal mesh hung vertically in the path of fogbanks, are extremely inefficient, capturing only about 1 to 3 percent of the water droplets that pass through them.

    Varanasi and Damak found that vapor collection could be made much more efficient by first zapping the tiny droplets of water with a beam of electrically charged particles, or ions, to give each droplet a slight electric charge. Then, the stream of droplets passes through a wire mesh, like a window screen, that has an opposite electrical charge. This causes the droplets to be strongly attracted to the mesh, where they fall away due to gravity and can be collected in trays placed below the mesh.

    Lab tests showed the concept worked, and the researchers, joined by Karim Khalil PhD ’18, won the MIT $100K Entrepreneurship Competition in 2018 for the basic concept. The nascent company, which they called Infinite Cooling, with Damak as CEO, Khalil as CTO, and Varanasi as chairperson, immediately went to work setting up a test installation on one of the cooling towers of MIT’s natural-gas-powered Central Utility Plant, with funding from the MIT Office of Sustainability. After experimenting with various configurations, they were able to show that the system could indeed eliminate the plume and produce water of high purity.

    Professor Jacopo Buongiorno in the Department of Nuclear Science and Engineering immediately spotted a good opportunity for collaboration, offering the use of MIT’s Nuclear Reactor Laboratory research facility for further testing of the system with the help of NRL engineer Ed Block. With its 24/7 operation and its higher-temperature vapor emissions, the plant would provide a more stringent real-world test of the system, as well as proving its effectiveness in an actual operating reactor licensed by the Nuclear Regulatory Commission, an important step in “de-risking” the technology so that electric utilities could feel confident in adopting the system.

    After the system was installed above one of the plant’s four cooling towers, testing showed that the water being collected was more than 100 times cleaner than the feedwater coming into the cooling system. It also proved that the installation — which, unlike the earlier version, had its mesh screens mounted vertically, parallel to the vapor stream — had no effect at all on the operation of the plant. Video of the tests dramatically illustrates how as soon as the power is switched on to the collecting mesh, the white plume of vapor immediately disappears completely.

    The high temperature and volume of the vapor plume from the reactor’s cooling towers represented “kind of a worst-case scenario in terms of plumes,” Damak says, “so if we can capture that, we can basically capture anything.”

    Working with MIT’s Nuclear Reactor Laboratory, Varanasi says, “has been quite an important step because it helped us to test it at scale. … It really both validated the water quality and the performance of the system.” The process, he says, “shows the importance of using the campus as a living laboratory. It allows us to do these kinds of experiments at scale, and also showed the ability to sustainably reduce the water footprint of the campus.”

    Far-reaching benefits

    Power plant plumes are often considered an eyesore and can lead to local opposition to new power plants because of the potential for obscured views, and even potential traffic hazards when the obscuring plumes blow across roadways. “The ability to eliminate the plumes could be an important benefit, allowing plants to be sited in locations that might otherwise be restricted,” Buongiorno says. At the same time, the system could eliminate a significant amount of water used by the plants and then lost to the sky, potentially alleviating pressure on local water systems, which could be especially helpful in arid regions.

    The system is essentially a distillation process, and the pure water it produces could go into power plant boilers — which are separate from the cooling system — that require high-purity water. That might reduce the need for both fresh water and purification systems for the boilers.

    What’s more, in many arid coastal areas power plants are cooled directly with seawater. This system would essentially add a water desalination capability to the plant, at a fraction of the cost of building a new standalone desalination plant, and at an even smaller fraction of its operating costs since the heat would essentially be provided for free.

    Contamination of water is typically measured by testing its electrical conductivity, which increases with the amount of salts and other contaminants it contains. Water used in power plant cooling systems typically measures 3,000 microsiemens per centimeter, Khalil explains, while the water supply in the City of Cambridge is typically around 500 or 600 microsiemens per centimeter. The water captured by this system, he says, typically measures below 50 microsiemens per centimeter.

    Thanks to the validation provided by the testing on MIT’s plants, the company has now been able to secure arrangements for its first two installations on operating commercial plants, which should begin later this year. One is a 900-megawatt power plant where the system’s clean water production will be a major advantage, and the other is at a chemical manufacturing plant in the Midwest.

    In many locations power plants have to pay for the water they use for cooling, Varanasi says, and the new system is expected to reduce the need for water by up to 20 percent. For a typical power plant, that alone could account for about a million dollars saved in water costs per year, he says.

    “Innovation has been a hallmark of the U.S. commercial industry for more than six decades,” says Maria G. Korsnick, president and CEO of the Nuclear Energy Institute, who was not involved in the research. “As the changing climate impacts every aspect of life, including global water supplies, companies across the supply chain are innovating for solutions. The testing of this innovative technology at MIT provides a valuable basis for its consideration in commercial applications.” More

  • in

    Amy Watterson: Model engineer

    “I love that we are doing something that no one else is doing.”

    Amy Watterson is excited when she talks about SPARC, the pilot fusion plant being developed by MIT spinoff Commonwealth Fusion Systems (CSF). Since being hired as a mechanical engineer at the Plasma Science and Fusion Center (PSFC) two years ago, Watterson has found her skills stretching to accommodate the multiple needs of the project.

    Fusion, which fuels the sun and stars, has long been sought as a carbon-free energy source for the world. For decades researchers have pursued the “tokamak,” a doughnut-shaped vacuum chamber where hot plasma can be contained by magnetic fields and heated to the point where fusion occurs. Sustaining the fusion reactions long enough to draw energy from them has been a challenge.

    Watterson is intimately aware of this difficulty. Much of her life she has heard the quip, “Fusion is 50 years away and always will be.” The daughter of PSFC research scientist Catherine Fiore, who headed the PSFC’s Office of Environment, Safety and Health, and Reich Watterson, an optical engineer working at the center, she had watched her parents devote years to making fusion a reality. She determined before entering Rensselaer Polytechnic Institute that she could forgo any attempt to follow her parents into a field that might not produce results during her career.

    Working on SPARC has changed her mindset. Taking advantage of a novel high-temperature superconducting tape, SPARC’s magnets will be compact while generating magnetic fields stronger than would be possible from other mid-sized tokamaks, and producing more fusion power. It suggests a high-field device that produces net fusion gain is not 50 years away. SPARC is scheduled to be begin operation in 2025.

    An education in modeling

    Watterson’s current excitement, and focus, is due to an approaching milestone for SPARC: a test of the Toroidal Field Magnet Coil (TFMC), a scaled prototype for the HTS magnets that will surround SPARC’s toroidal vacuum chamber. Its design and manufacture have been shaped by computer models and simulations. As part of a large research team, Waterson has received an education in modeling over the past two years.

    Computer models move scientific experiments forward by allowing researchers to predict what will happen to an experiment — or its materials — if a parameter is changed. Modeling a component of the TFMC, for example, researchers can test how it is affected by varying amounts of current, different temperatures or different materials. With this information they can make choices that will improve the success of the experiment.

    In preparation for the magnet testing, Watterson has modeled aspects of the cryogenic system that will circulate helium gas around the TFMC to keep it cold enough to remain superconducting. Taking into consideration the amount of cooling entering the system, the flow rate of the helium, the resistance created by valves and transfer lines and other parameters, she can model how much helium flow will be necessary to guarantee the magnet stays cold enough. Adjusting a parameter can make the difference between a magnet remaining superconducting and becoming overheated or even damaged.

    Watterson and her teammates have also modeled pressures and stress on the inside of the TFMC. Pumping helium through the coil to cool it down will add 20 atmospheres of pressure, which could create a degree of flex in elements of the magnet that are welded down. Modeling can help determine how much pressure a weld can sustain.

    “How thick does a weld need to be, and where should you put the weld so that it doesn’t break — that’s something you don’t want to leave until you’re finally assembling it,” says Watterson.

    Modeling the behavior of helium is particularly challenging because its properties change significantly as the pressure and temperature change.

    “A few degrees or a little pressure will affect the fluid’s viscosity, density, thermal conductivity, and heat capacity,” says Watterson. “The flow has different pressures and temperatures at different places in the cryogenic loop. You end up with a set of equations that are very dependent on each other, which makes it a challenge to solve.”

    Role model

    Watterson notes that her modeling depends on the contributions of colleagues at the PSFC, and praises the collaborative spirit among researchers and engineers, a community that now feels like family. Her teammates have been her mentors. “I’ve learned so much more on the job in two years than I did in four years at school,” she says.

    She realizes that having her mother as a role model in her own family has always made it easier for her to imagine becoming a scientist or engineer. Tracing her early passion for engineering to a middle school Lego robotics tournament, her eyes widen as she talks about the need for more female engineers, and the importance of encouraging girls to believe they are equal to the challenge.

    “I want to be a role model and tell them ‘I’m a successful engineer, you can be too.’ Something I run into a lot is that little girls will say, ‘I can’t be an engineer, I’m not cut out for that.’ And I say, ‘Well that’s not true. Let me show you. If you can make this Lego robot, then you can be an engineer.’ And it turns out they usually can.”

    Then, as if making an adjustment to one of her computer models, she continues.

    “Actually, they always can.” More

  • in

    What will happen to sediment plumes associated with deep-sea mining?

    In certain parts of the deep ocean, scattered across the seafloor, lie baseball-sized rocks layered with minerals accumulated over millions of years. A region of the central Pacific, called the Clarion Clipperton Fracture Zone (CCFZ), is estimated to contain vast reserves of these rocks, known as “polymetallic nodules,” that are rich in nickel and cobalt  — minerals that are commonly mined on land for the production of lithium-ion batteries in electric vehicles, laptops, and mobile phones.

    As demand for these batteries rises, efforts are moving forward to mine the ocean for these mineral-rich nodules. Such deep-sea-mining schemes propose sending down tractor-sized vehicles to vacuum up nodules and send them to the surface, where a ship would clean them and discharge any unwanted sediment back into the ocean. But the impacts of deep-sea mining — such as the effect of discharged sediment on marine ecosystems and how these impacts compare to traditional land-based mining — are currently unknown.

    Now oceanographers at MIT, the Scripps Institution of Oceanography, and elsewhere have carried out an experiment at sea for the first time to study the turbulent sediment plume that mining vessels would potentially release back into the ocean. Based on their observations, they developed a model that makes realistic predictions of how a sediment plume generated by mining operations would be transported through the ocean.

    The model predicts the size, concentration, and evolution of sediment plumes under various marine and mining conditions. These predictions, the researchers say, can now be used by biologists and environmental regulators to gauge whether and to what extent such plumes would impact surrounding sea life.

    “There is a lot of speculation about [deep-sea-mining’s] environmental impact,” says Thomas Peacock, professor of mechanical engineering at MIT. “Our study is the first of its kind on these midwater plumes, and can be a major contributor to international discussion and the development of regulations over the next two years.”

    The team’s study appears today in Nature Communications: Earth and Environment.

    Peacock’s co-authors at MIT include lead author Carlos Muñoz-Royo, Raphael Ouillon, Chinmay Kulkarni, Patrick Haley, Chris Mirabito, Rohit Supekar, Andrew Rzeznik, Eric Adams, Cindy Wang, and Pierre Lermusiaux, along with collaborators at Scripps, the U.S. Geological Survey, and researchers in Belgium and South Korea.

    Play video

    Out to sea

    Current deep-sea-mining proposals are expected to generate two types of sediment plumes in the ocean: “collector plumes” that vehicles generate on the seafloor as they drive around collecting nodules 4,500 meters below the surface; and possibly “midwater plumes” that are discharged through pipes that descend 1,000 meters or more into the ocean’s aphotic zone, where sunlight rarely penetrates.

    In their new study, Peacock and his colleagues focused on the midwater plume and how the sediment would disperse once discharged from a pipe.

    “The science of the plume dynamics for this scenario is well-founded, and our goal was to clearly establish the dynamic regime for such plumes to properly inform discussions,” says Peacock, who is the director of MIT’s Environmental Dynamics Laboratory.

    To pin down these dynamics, the team went out to sea. In 2018, the researchers boarded the research vessel Sally Ride and set sail 50 kilometers off the coast of Southern California. They brought with them equipment designed to discharge sediment 60 meters below the ocean’s surface.  

    “Using foundational scientific principles from fluid dynamics, we designed the system so that it fully reproduced a commercial-scale plume, without having to go down to 1,000 meters or sail out several days to the middle of the CCFZ,” Peacock says.

    Over one week the team ran a total of six plume experiments, using novel sensors systems such as a Phased Array Doppler Sonar (PADS) and epsilometer developed by Scripps scientists to monitor where the plumes traveled and how they evolved in shape and concentration. The collected data revealed that the sediment, when initially pumped out of a pipe, was a highly turbulent cloud of suspended particles that mixed rapidly with the surrounding ocean water.

    “There was speculation this sediment would form large aggregates in the plume that would settle relatively quickly to the deep ocean,” Peacock says. “But we found the discharge is so turbulent that it breaks the sediment up into its finest constituent pieces, and thereafter it becomes dilute so quickly that the sediment then doesn’t have a chance to stick together.”

    Dilution

    The team had previously developed a model to predict the dynamics of a plume that would be discharged into the ocean. When they fed the experiment’s initial conditions into the model, it produced the same behavior that the team observed at sea, proving the model could accurately predict plume dynamics within the vicinity of the discharge.

    The researchers used these results to provide the correct input for simulations of ocean dynamics to see how far currents would carry the initially released plume.

    “In a commercial operation, the ship is always discharging new sediment. But at the same time the background turbulence of the ocean is always mixing things. So you reach a balance. There’s a natural dilution process that occurs in the ocean that sets the scale of these plumes,” Peacock says. “What is key to determining the extent of the plumes is the strength of the ocean turbulence, the amount of sediment that gets discharged, and the environmental threshold level at which there is impact.”

    Based on their findings, the researchers have developed formulae to calculate the scale of a plume depending on a given environmental threshold. For instance, if regulators determine that a certain concentration of sediments could be detrimental to surrounding sea life, the formula can be used to calculate how far a plume above that concentration would extend, and what volume of ocean water would be impacted over the course of a 20-year nodule mining operation.

    “At the heart of the environmental question surrounding deep-sea mining is the extent of sediment plumes,” Peacock says. “It’s a multiscale problem, from micron-scale sediments, to turbulent flows, to ocean currents over thousands of kilometers. It’s a big jigsaw puzzle, and we are uniquely equipped to work on that problem and provide answers founded in science and data.”

    The team is now working on collector plumes, having recently returned from several weeks at sea to perform the first environmental monitoring of a nodule collector vehicle in the deep ocean in over 40 years.

    This research was supported in part by the MIT Environmental Solutions Initiative, the UC Ship Time Program, the MIT Policy Lab, the 11th Hour Project of the Schmidt Family Foundation, the Benioff Ocean Initiative, and Fundación Bancaria “la Caixa.” More