More stories

  • in

    Four researchers with MIT ties earn 2023 Schmidt Science Fellowships

    Four researchers with ties to MIT have been named Schmidt Science Fellows this year. Lillian Chin ’17, SM ’19; Neil Dalvie PD ’22, PhD ’22; Suong Nguyen, and Yirui Zhang SM ’19, PhD ’23 are among the 32 exceptional early-career scientists worldwide chosen to receive the prestigious fellowships.

    “History provides powerful examples of what happens when scientists are given the freedom to ask big questions which can achieve real breakthroughs across disciplines,” says Wendy Schmidt, co-founder of Schmidt Futures and president of the Schmidt Family Foundation. “Schmidt Science Fellows are tackling climate destruction, discovering new drugs against disease, developing novel materials, using machine learning to understand the drivers of human health, and much more. This new cohort will add to this legacy in applying scientific discovery to improve human health and opportunity, and preserve and restore essential planetary systems.”

    Schmidt Futures is a philanthropic initiative that brings talented people together in networks to prove out their ideas and solve hard problems in science and society. Schmidt Science Fellows receive a stipend of $100,000 a year for up to two years of postdoctoral research in a discipline different from their PhD at a world-leading lab anywhere across the globe.

    Lillian Chin ’17, SM ’19 is currently pursuing her PhD in the Department of Electrical Engineering and Computer Science. Her research focuses on creating new materials for robots. By designing the geometry of a material, Chin creates new “meta-materials” that have different properties from the original. Using this technique, she has created robot balls that dramatically expand in volume and soft grippers that can work in dangerous environments. All of these robots are built out of a single material, letting the researchers 3D print them with extra internal features like channels. These channels help to measure the deformation of metamaterials, enabling Chin and her collaborators to create robots that are strong, can move, and sense their own shape, like muscles do.

    “I feel very honored to have been chosen for this fellowship,” says Chin. “I feel like I proposed a very risky pivot, since my background is only in engineering, with very limited exposure to neuroscience. I’m very excited to be given the opportunity to learn best practices for interacting with patients and be able to translate my knowledge from robotics to biology.”

    With the Schmidt Fellowship, Chin plans to pursue new frontiers for custom materials with internal sensors, which can measure force and deformation and can be placed anywhere within the material. “I want to use these materials to make tools for clinicians and neuroscientists to better understand how humans touch and grasp objects around them,” says Chin. “I’m especially interested in seeing how my materials could help in diagnosis motor-related diseases or improve rehab outcomes by providing the patient with feedback. This will help me create robots that have a better sense of touch and learn how to move objects around like humans do.”

    Neil Dalvie PD ’22, PhD ’22 is a graduate of the Department of Chemical Engineering, where he worked with Professor J. Christopher Love on manufacturing of therapeutic proteins. Dalvie developed molecular biology techniques for manufacturing high-quality proteins in yeast, which enables rapid testing of new products and low-cost manufacturing and large scales. During the pandemic, he led a team that applied these learnings to develop a Covid-19 vaccine that was deployed in multiple low-income countries. After graduating, Dalvie wanted to apply the precision biological engineering that is routinely deployed in medicinal manufacturing to other large-scale bioprocesses.

    “It’s rare for scientists to cross large technical gaps after so many years of specific training to get a PhD — you get comfy being an expert in your field,” says Dalvie. “I was definitely intimidated by the giant leap from vaccine manufacturing to the natural rock cycle. The fellowship has allowed me to dive into the new field by removing immediate pressure to publish or find my next job. I am excited for what commonalities we will find between biomanufacturing and biogeochemistry.”

    As a Schmidt Science Fellow, Dalvie will work with Professor Pamela Silver at Harvard Medical School on engineering microorganisms for enhanced rock weathering and carbon sequestration to combat climate change. They are applying modern molecular biology to enhance natural biogeochemical processes at gigaton scales.

    Suong (Su) Nguyen, a postdoctoral researcher in Professor Jeremiah Johnson’s lab in the Department of Chemistry, earned her PhD from Princeton University, where she developed light-driven, catalytic methodologies for organic synthesis, biomass valorization, plastic waste recycling, and functionalization of quantum sensing materials.

    As a Schmidt Science fellow, Nguyen will pivot from organic chemistry to nanomaterials. Biological systems are able to synthesize macromolecules with precise structure essential for their biological function. Scientists have long dreamed of achieving similar control over synthetic materials, but existing methods are inefficient and limited in scope. Nguyen hopes to develop new strategies to achieve such high level of control over the structure and properties of nanomaterials and explore their potential for use in therapeutic applications.

    “I feel extremely honored and grateful to receive the Schmidt Science Fellowship,” says Nguyen. “The fellowship will provide me with a unique opportunity to engage with scientists from a very wide range of research backgrounds. I believe this will significantly shape the research objectives for my future career.”

    Yirui Zhang SM ’19, PhD ’22 is a graduate of the Department of Mechanical Engineering. Zhang’s research focuses on electrochemical energy storage and conversion, including lithium-ion batteries and electrocatalysis. She has developed in situ spectroscopy and electrochemical methods to probe the electrode-electrolyte interface, understand the interfacial molecular structures, and unravel the fundamental thermodynamics and kinetics of (electro)chemical reactions in energy storage. Further, she has leveraged the physical chemistry of liquids and tuned the molecular structures at the interface to improve the stability and kinetics of electrochemical reactions. 

    “I am honored and thrilled to have been named a Schmidt Science Fellow,” says Zhang. “The fellowship will not only provide me with the unique opportunity to broaden my scientific perspectives and pursue pivoting research, but also create a lifelong network for us to collaborate across diverse fields and become scientific and societal thought leaders. I look forward to pushing the boundaries of my research and advancing technologies to tackle global challenges in energy storage and health care with interdisciplinary efforts!”

    As a Schmidt Science Fellow, Zhang will work across disciplines and pivot to biosensing. She plans to combine spectroscopy, electrokinetics, and machine learning to develop a fast and cost-effective technique for monitoring and understanding infectious disease. The innovations will benefit next-generation point-of-care medical devices and wastewater-based epidemiology to provide timely diagnosis and help protect humans against deadly infections and antimicrobial resistance. More

  • in

    The answer may be blowing in the wind

    Capturing energy from the winds gusting off the coasts of the United States could more than double the nation’s electricity generation. It’s no wonder the Biden administration views this immense, clean-energy resource as central to its ambitious climate goals of 100 percent carbon-emissions-free electricity by 2035 and a net-zero emissions economy by 2050. The White House is aiming for 30 gigawatts of offshore wind by 2030 — enough to power 10 million homes.

    At the MIT Energy Initiative’s Spring Symposium, academic experts, energy analysts, wind developers, government officials, and utility representatives explored the immense opportunities and formidable challenges of tapping this titanic resource, both in the United States and elsewhere in the world.

    “There’s a lot of work to do to figure out how to use this resource economically — and sooner rather than later,” said Robert C. Armstrong, MITEI director and the Chevron Professor of Chemical Engineering, in his introduction to the event. 

    In sessions devoted to technology, deployment and integration, policy, and regulation, participants framed the issues critical to the development of offshore wind, described threats to its rapid rollout, and offered potential paths for breaking through gridlock.

    R&D advances

    Moderating a panel on MIT research that is moving the industry forward, Robert Stoner, MITEI’s deputy director for science and technology, provided context for the audience about the industry.

    “We have a high degree of geographic coincidence between where that wind capacity is and where most of us are, and it’s complementary to solar,” he said. Turbines sited in deeper, offshore waters gain the advantage of higher-velocity winds. “You can make these machines huge, creating substantial economies of scale,” said Stoner. An onshore turbine generates approximately 3 megawatts; offshore structures can each produce 15 to 17 megawatts, with blades the length of a football field and heights greater than the Washington Monument.

    To harness the power of wind farms spread over hundreds of nautical miles in deep water, Stoner said, researchers must first address some serious issues, including building and maintaining these massive rigs in harsh environments, laying out wind farms to optimize generation, and creating reliable and socially acceptable connections to the onshore grid. MIT scientists described how they are tackling a number of these problems.

    “When you design a floating structure, you have to prepare for the worst possible conditions,” said Paul Sclavounos, a professor of mechanical engineering and naval architecture who is developing turbines that can withstand severe storms that batter turbine blades and towers with thousands of tons of wind force. Sclavounos described systems used in the oil industry for tethering giant, buoyant rigs to the ocean floor that could be adapted for wind platforms. Relatively inexpensive components such as polyester mooring lines and composite materials “can mitigate the impact of high waves and big, big wind loads.”

    To extract the maximum power from individual turbines, developers must take into account the aerodynamics among turbines in a single wind farm and between adjacent wind farms, according to Michael Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering. Howland’s work modeling turbulence in the atmosphere and wind speeds has demonstrated that angling turbines by just a small amount relative to each other can increase power production significantly for offshore installations, dramatically improving their efficiencies. Howland hopes his research will promote “changing the design of wind farms from the beginning of the process.”

    There’s a staggering complexity to integrating electricity from offshore wind into regional grids such as the one operated by ISO New England, whether converting voltages or monitoring utility load. Steven B. Leeb, a professor of electrical engineering and computer science and of mechanical engineering, is developing sensors that can indicate electronic failures in a micro grid connected to a wind farm. And Marija Ilić, a joint adjunct professor in the Department of Electrical Engineering and Computer Science and a senior research scientist at the Laboratory for Information and Decision Systems, is developing software that would enable real-time scheduling of controllable equipment to compensate for the variable power generated by wind and other variable renewable resources. She is also working on adaptive distributed automation of this equipment to ensure a stable electric power grid.

    “How do we get from here to there?”

    Symposium speakers provided snapshots of the emerging offshore industry, sharing their sense of urgency as well as some frustrations.

    Climate poses “an existential crisis” that calls for “a massive war-footing undertaking,” said Melissa Hoffer, who occupies the newly created cabinet position of climate chief for the Commonwealth of Massachusetts. She views wind power “as the backbone of electric sector decarbonization.” With the Vineyard Wind project, the state will be one of the first in the nation to add offshore wind to the grid. “We are actually going to see the first 400 megawatts … likely interconnected and coming online by the end of this year, which is a fantastic milestone for us,” said Hoffer.

    The journey to completing Vineyard Wind involved a plethora of painstaking environmental reviews, lawsuits over lease siting, negotiations over the price of the electricity it will produce, buy-in from towns where its underground cable comes ashore, and travels to an Eversource substation. It’s a familiar story to Alla Weinstein, founder and CEO of Trident Winds, Inc. On the West Coast, where deep waters (greater than 60 meters) begin closer to shore, Weinstein is trying to launch floating offshore wind projects. “I’ve been in marine renewables for 20 years, and when people ask why I do what I do, I tell them it’s because it matters,” she said. “Because if we don’t do it, we may not have a planet that’s suitable for humans.”

    Weinstein’s “picture of reality” describes a multiyear process during which Trident Winds must address the concerns of such stakeholders as tribal communities and the fishing industry and ensure compliance with, among other regulations, the Marine Mammal Protection Act and the Migratory Bird Species Act. Construction of these massive floating platforms, when it finally happens, will require as-yet unbuilt specialized port infrastructure and boats, and a large skilled labor force for assembly and transmission. “This is a once-in-a-lifetime opportunity to create a new industry,” she said, but “how do we get from here to there?”

    Danielle Jensen, technical manager for Shell’s Offshore Wind Americas, is working on a project off of Rhode Island. The blueprint calls for high-voltage, direct-current cable snaking to landfall in Massachusetts, where direct-current lines switch to alternating current to connect to the grid. “None of this exists, so we have to find a space, the lands, and the right types of cables, tie into the interconnection point, and work with interconnection operators to do that safely and reliably,” she said.

    Utilities are partnering with developers to begin clearing some of these obstacles. Julia Bovey, director of offshore wind for Eversource, described her firm’s redevelopment or improvement of five ports, and new transport vessels for offshore assembly of wind farm components in Atlantic waters. The utility is also digging under roads to lay cables for new power lines. Bovey notes that snags in supply chains and inflation have been driving up costs. This makes determining future electricity rates more complex, especially since utility contracts and markets work differently in each state.

    Just seven up

    Other nations hold a commanding lead in offshore wind: To date, the United States claims just seven operating turbines, while Denmark boasts 6,200 and the U.K. 2,600. Europe’s combined offshore power capacity stands at 30 gigawatts — which, as MITEI Research Scientist Tim Schittekatte notes, is the U.S. goal for 2030.

    The European Union wants 400 gigawatts of offshore wind by 2050, a target made all the more urgent by threats to Europe’s energy security from the war in Ukraine. “The idea is to connect all those windmills, creating a mesh offshore grid,” Schittekatte said, aided by E.U. regulations that establish “a harmonized process to build cross-border infrastructure.”

    Morten Pindstrup, the international chief engineer at Energinet, Denmark’s state-owned energy enterprise, described one component of this pan-European plan: a hybrid Danish-German offshore wind network. Energinet is also constructing energy islands in the North Sea and the Baltic to pool power from offshore wind farms and feed power to different countries.

    The European wind industry benefits from centralized planning, regulation, and markets, said Johannes P. Pfeifenberger, a principal of The Brattle Group. “The grid planning process in the U.S. is not suitable today to find cost-effective solutions to get us to a clean energy grid in time,” he said. Pfeifenberger recommended that the United States immediately pursue a series of moves including a multistate agreement for cooperating on offshore wind and establishment by grid operators of compatible transmission technologies.

    Symposium speakers expressed sharp concerns that complicated and prolonged approvals, as well as partisan politics, could hobble the nation’s nascent offshore industry. “You can develop whatever you want and agree on what you’re doing, and then the people in charge change, and everything falls apart,” said Weinstein. “We can’t slow down, and we actually need to accelerate.”

    Larry Susskind, the Ford Professor of Urban and Environmental Planning, had ideas for breaking through permitting and political gridlock. A negotiations expert, he suggested convening confidential meetings for stakeholders with competing interests for collaborative problem-solving sessions. He announced the creation of a Renewable Energy Facility Siting Clinic at MIT. “We get people to agree that there is a problem, and to accept that without a solution, the system won’t work in the future, and we have to start fixing it now.”

    Other symposium participants were more sanguine about the success of offshore wind. “Trust me, floating wind is not a pie-in-the-sky, exotic technology that is difficult to implement,” said Sclavounos. “There will be companies investing in this technology because it produces huge amounts of energy, and even though the process may not be streamlined, the economics will work itself out.” More

  • in

    Asegun Henry wins National Science Foundation’s Alan T. Waterman Award

    The National Science Foundation (NSF) today named Asegun Henry, an associate professor in MIT’s Department of Mechanical Engineering, as a 2023 recipient of its Alan T. Waterman Award. This award is the NSF’s highest honor for early-career researchers and provides funding for research in any science or engineering field. 

    This is the second year NSF has chosen to honor three researchers with the award. Henry is the sixth faculty member from MIT to receive this honor in its 47-year history, and is only the second mechanical engineer to ever win the award. In addition to a medal, Henry and his fellow awardees, Natalie S. King of Georgia State University and William Anderegg from the University of Utah, will each receive $1 million over five years for research in their chosen field of science.

    “I am thrilled to congratulate this year’s Waterman awardees, three outstanding scientists who are courageously tackling some of the most challenging societal problems through their ingenuity and innovative mindset,” says NSF Director Sethuraman Panchanathan. “Their pioneering accomplishments are precisely what the Waterman Award was created to recognize, and I look forward to their tremendous contributions in the future.”

    NSF recognizes Henry as an international thermal science and engineering leader. Henry has made breakthrough advances in nanoscale heat transfer and high-temperature energy systems. He directs the Atomistic Simulation and Energy (ASE) Research Group at MIT, focusing on heat transfer at the atomic level. He also works on developing technologies that can help mitigate climate change, addressing many problems from the atomic to the gigawatt scale.

    Henry and colleagues have led the development of several technological breakthroughs, setting a world record for the highest-temperature pump, using an all-ceramic mechanical pump to move liquid metal above 1,400 degrees Celsius, as well as the world record for thermophotovoltaic efficiency.

    “It has been challenging to push the field towards acceptance of new ideas, and it has been a path fraught with resistance and questioning of the validity of our results,” says Henry. “Receiving this award is vindicating and will impact my career greatly as it helps validate that the advances we’ve pioneered really do register as major contributions, and I pride myself on the impact of my work.”

    The Waterman Award will be presented to Henry at a ceremony held in Washington on May 9 during the National Science Board meeting.  More

  • in

    Ingestible “electroceutical” capsule stimulates hunger-regulating hormone

    Hormones released by the stomach, such as ghrelin, play a key role in stimulating appetite. These hormones are produced by endocrine cells that are part of the enteric nervous system, which controls hunger, nausea, and feelings of fullness.

    MIT engineers have now shown that they can stimulate these endocrine cells to produce ghrelin, using an ingestible capsule that delivers an electrical current to the cells. This approach could prove useful for treating diseases that involve nausea or loss of appetite, such as cachexia (loss of body mass that can occur in patients with cancer or other chronic diseases).

    In tests in animals, the researchers showed that this “electroceutical” capsule could significantly boost ghrelin production in the stomach. They believe this approach could also be adapted to deliver electrical stimulation to other parts of the GI tract.

    “This study helps establish electrical stimulation by ingestible electroceuticals as a mode of triggering hormone release via the GI tract,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, and the senior author of the study. “We show one example of how we’re able to engage with the stomach mucosa and release hormones, and we anticipate that this could be used in other sites in the GI tract that we haven’t explored here.”

    Khalil Ramadi SM ’16, PhD ’19, a graduate of the Department of Mechanical Engineering and the Harvard-MIT Program in Health Sciences and Technology who is now an assistant professor of bioengineering at the New York University (NYU) Tandon School of Engineering and the director of the Laboratory for Advanced Neuroengineering and Translational Medicine at NYU Abu Dhabi, and James McRae, an MIT graduate student, are the lead authors of the paper, which appears today in Science Robotics.

    Electrical stimulation

    The enteric nervous system controls all aspects of digestion, including the movement of food through the GI tract. Some patients with gastroparesis, a disorder of the stomach nerves that leads to very slow movement of food, have shown symptomatic improvement after electrical stimulation generated by a pacemaker-like device that can be surgically implanted in the stomach.

    Doctors had theorized that the electrical stimulation would provoke the stomach into contracting, which would help push food along. However, it was later found that while the treatment does help patients feel better, it affected motility to a lesser degree. The MIT team hypothesized that the electrical stimulation of the stomach might be leading to the release of ghrelin, which is known to promote hunger and reduce feelings of nausea.

    To test that hypothesis, the researchers used an electrical probe to deliver electrical stimulation in the stomachs of animals. They found that after 20 minutes of stimulation, ghrelin levels in the bloodstream were considerably elevated. They also found that electrical stimulation did not lead to any significant inflammation or other adverse effects.

    Once they established that electrical stimulation was provoking ghrelin release, the researchers set out to see if they could achieve the same thing using a device that could be swallowed and temporarily reside in the stomach. One of the main challenges in designing such a device is ensuring that the electrodes on the capsule can contact the stomach tissue, which are coated with fluid. 

    Play video

    To create a drier surface that electrodes can interact with, the researchers gave their capsule a grooved surface that wicks fluid away from the electrodes. The surface they designed is inspired by the skin of the Australian thorny devil lizard, which uses ridged scales to collect water. When the lizard touches water with any part of its skin, water is transported by capillary action along the channels to the lizard’s mouth.

    “We were inspired by that to incorporate surface textures and patterns onto the outside of this capsule,” McRae says. “That surface can manage the fluid that could potentially prevent the electrodes from touching the tissue in the stomach, so it can reliably deliver electrical stimulation.”

    The capsule surface consists of grooves with a hydrophilic coating. These grooves function as channels that draw fluid away from the stomach tissue. Inside the device are battery-powered electronics that produce an electric current that flows across electrodes on the surface of the capsule. In the prototype used in this study, the current runs constantly, but future versions could be designed so that the current can be wirelessly turned on and off, according to the researchers.

    Hormone boost

    The researchers tested their capsule by administering it into the stomachs of large animals, and they found that the capsule produced a substantial spike in ghrelin levels in the bloodstream.

    “As far as we know, this is the first example of using electrical stimuli through an ingestible device to increase endogenous levels of hormones in the body, like ghrelin. And so, it has this effect of utilizing the body’s own systems rather than introducing external agents,” Ramadi says.

    The researchers found that in order for this stimulation to work, the vagus nerve, which controls digestion, must be intact. They theorize that the electrical pulses transmit to the brain via the vagus nerve, which then stimulates endocrine cells in the stomach to produce ghrelin.

    Traverso’s lab now plans to explore using this approach in other parts of the GI tract, and the researchers hope to test the device in human patients within the next three years. If developed for use in human patients, this type of treatment could potentially replace or complement some of the existing drugs used to prevent nausea and stimulate appetite in people with cachexia or anorexia, the researchers say.

    “It’s a relatively simple device, so we believe it’s something that we can get into humans on a relatively quick time scale,” Traverso says.

    The research was funded by the Koch Institute Support (core) Grant from the National Cancer Institute, the National Institute for Diabetes and Digestive and Kidney Diseases, the Division of Engineering at New York University Abu Dhabi, a National Science Foundation graduate research fellowship, Novo Nordisk, and the Department of Mechanical Engineering at MIT. More

  • in

    Exploring the bow shock and beyond

    For most people, the night sky conjures a sense of stillness, an occasional shooting star the only visible movement. A conversation with Rishabh Datta, however, unveils the supersonic drama crashing above planet Earth. The PhD candidate has focused his recent study on the plasma speeding through space, flung from sources like the sun’s corona and headed toward Earth, halted abruptly by colliding with the planet’s magnetosphere. The resulting shock wave is similar to the “bow shock” that forms around the nose cone of a supersonic jet, which manifests as the familiar sonic boom.

    The bow shock phenomenon has been well studied. “It’s probably one of the things that’s keeping life alive,” says Datta, “protecting us from the solar wind.” While he feels the magnetosphere provides “a very interesting space laboratory,” Datta’s main focus is, “Can we create this high-energy plasma that is moving supersonically in a laboratory, and can we study it? And can we learn things that are hard to diagnose in an astrophysical plasma?”

    Datta’s research journey to the bow shock and beyond began when he joined a research program for high school students at the National University Singapore. Tasked with culturing bacteria and measuring the amount of methane they produced in a biogas tank, Datta found his first research experience “quite nasty.”

    “I was working with chicken manure, and every day I would come home smelling completely awful,” he says.

    As an undergraduate at Georgia Tech, Datta’s interests turned toward solar power, compelled by a new technology he felt could generate sustainable energy. By the time he joined MIT’s Department of Mechanical Engineering, though, his interests had morphed into researching the heat and mass transfer from airborne droplets. After a year of study, he felt the need to go in a yet another direction.

    The subject of astrophysical plasmas had recently piqued his interest, and he followed his curiosity to Department of Nuclear Science and Engineering Professor Nuno Loureiro’s introductory plasma class. There he encountered Professor Jack Hare, who was sitting in on the class and looking for students to work with him.

    “And that’s how I ended up doing plasma physics and studying bow shocks,” he says, “a long and circuitous route that started with culturing bacteria.”

    Gathering measurements from MAGPIE

    Datta is interested in what he can learn about plasma from gathering measurements of a laboratory-created bow shock, seeking to verify theoretical models. He uses data already collected from experiments on a pulsed-power generator known as MAGPIE (the Mega-Ampere Generator of Plasma Implosion Experiments), located at Imperial College, London. By observing how long it takes a plasma to reach an obstacle, in this case a probe that measures magnetic fields, Datta was able to determine its velocity.   

    With the velocity established, an interferometry system was able to provide images of the probe and the plasma around it, allowing Datta to characterize the structure of the bow shock.

    “The shape depends on how fast sound waves can travel in a plasma,” says Datta. “And this ‘sound speed’ depends on the temperature.”

    The interdependency of these characteristics means that by imaging a shock it’s possible to determine temperature, sound speed, and other measurements more easily and cheaply than with other methods.

    “And knowing more about your plasma allows you to make predictions about, for example, electrical resistivity, which can be important for understanding other physics that might interest you,” says Datta, “like magnetic reconnection.”

    This phenomenon, which controls the evolution of such violent events as solar flares, coronal mass ejections, magnetic storms that drive auroras, and even disruptions in fusion tokamaks, has become the focus of his recent research. It happens when opposing magnetic fields in a plasma break and then reconnect, generating vast quantities of heat and accelerating the plasma to high velocities.

    Onward to Z

    Datta travels to Sandia National Laboratories in Albuquerque, New Mexico, to work on the largest pulsed power facility in the world, informally known as “the Z machine,” to research how the properties of magnetic reconnection change when a plasma emits strong radiation and cools rapidly.

    In future years, Datta will only have to travel across Albany Street on the MIT campus to work on yet another machine, PUFFIN, currently being built at the Plasma Science and Fusion Center (PSFC). Like MAGPIE and Z, PUFFIN is a pulsed power facility, but with the ability to drive the current 10 times longer than other machines, opening up new opportunities in high-energy-density laboratory astrophysics.

    Hare, who leads the PUFFIN team, is pleased with Datta’s increasing experience.

    “Working with Rishabh is a real pleasure,” he says, “He has quickly learned the ins and outs of experimental plasma physics, often analyzing data from machines he hasn’t even yet had the chance to see! While we build PUFFIN it’s really useful for us to carry out experiments at other pulsed-power facilities worldwide, and Rishabh has already written papers on results from MAGPIE, COBRA at Cornell in Ithaca, New York, and the Z Machine.”

    Pursuing climate action at MIT

    Hand-in-hand with Datta’s quest to understand plasma is his pursuit of sustainability, including carbon-free energy solutions. A member of the Graduate Student Council’s Sustainability Committee since he arrived in 2019, he was heartened when MIT, revising their climate action plan, provided him and other students the chance to be involved in decision-making. He led focus groups to provide graduate student input on the plan, raising issues surrounding campus decarbonization, the need to expand hiring of early-career researchers working on climate and sustainability, and waste reduction and management for MIT laboratories.

    When not focused on bringing astrophysics to the laboratory, Datta sometimes experiments in a lab closer to home — the kitchen — where he often challenges himself to duplicate a recipe he has recently tried at a favorite restaurant. His stated ambition could apply to his sustainability work as well as to his pursuit of understanding plasma.

    “The goal is to try and make it better,” he says. “I try my best to get there.”

    Datta’s work has been funded, in part, by the National Science Foundation, National Nuclear Security Administration, and the Department of Energy. More

  • in

    Moving perovskite advancements from the lab to the manufacturing floor

    The following was issued as a joint announcement from MIT.nano and the MIT Research Laboratory for Electronics; CubicPV; Verde Technologies; Princeton University; and the University of California at San Diego.

    Tandem solar cells are made of stacked materials — such as silicon paired with perovskites — that together absorb more of the solar spectrum than single materials, resulting in a dramatic increase in efficiency. Their potential to generate significantly more power than conventional cells could make a meaningful difference in the race to combat climate change and the transition to a clean-energy future.

    However, current methods to create stable and efficient perovskite layers require time-consuming, painstaking rounds of design iteration and testing, inhibiting their development for commercial use. Today, the U.S. Department of Energy Solar Energy Technologies Office (SETO) announced that MIT has been selected to receive an $11.25 million cost-shared award to establish a new research center to address this challenge by using a co-optimization framework guided by machine learning and automation.

    A collaborative effort with lead industry participant CubicPV, solar startup Verde Technologies, and academic partners Princeton University and the University of California San Diego (UC San Diego), the center will bring together teams of researchers to support the creation of perovskite-silicon tandem solar modules that are co-designed for both stability and performance, with goals to significantly accelerate R&D and the transfer of these achievements into commercial environments.

    “Urgent challenges demand rapid action. This center will accelerate the development of tandem solar modules by bringing academia and industry into closer partnership,” says MIT professor of mechanical engineering Tonio Buonassisi, who will direct the center. “We’re grateful to the Department of Energy for supporting this powerful new model and excited to get to work.”

    Adam Lorenz, CTO of solar energy technology company CubicPV, stresses the importance of thinking about scale, alongside quality and efficiency, to accelerate the perovskite effort into the commercial environment. “Instead of chasing record efficiencies with tiny pixel-sized devices and later attempting to stabilize them, we will simultaneously target stability, reproducibility, and efficiency,” he says. “It’s a module-centric approach that creates a direct channel for R&D advancements into industry.”

    The center will be named Accelerated Co-Design of Durable, Reproducible, and Efficient Perovskite Tandems, or ADDEPT. The grant will be administered through the MIT Research Laboratory for Electronics (RLE).

    David Fenning, associate professor of nanoengineering at UC San Diego, has worked with Buonassisi on the idea of merging materials, automation, and computation, specifically in this field of artificial intelligence and solar, since 2014. Now, a central thrust of the ADDEPT project will be to deploy machine learning and robotic screening to optimize processing of perovskite-based solar materials for efficiency and durability.

    “We have already seen early indications of successful technology transfer between our UC San Diego robot PASCAL and industry,” says Fenning. “With this new center, we will bring research labs and the emerging perovskite industry together to improve reproducibility and reduce time to market.”

    “Our generation has an obligation to work collaboratively in the fight against climate change,” says Skylar Bagdon, CEO of Verde Technologies, which received the American-Made Perovskite Startup Prize. “Throughout the course of this center, Verde will do everything in our power to help this brilliant team transition lab-scale breakthroughs into the world where they can have an impact.”

    Several of the academic partners echoed the importance of the joint effort between academia and industry. Barry Rand, professor of electrical and computer engineering at the Andlinger Center for Energy and the Environment at Princeton University, pointed to the intersection of scientific knowledge and market awareness. “Understanding how chemistry affects films and interfaces will empower us to co-design for stability and performance,” he says. “The center will accelerate this use-inspired science, with close guidance from our end customers, the industry partners.”

    A critical resource for the center will be MIT.nano, a 200,000-square-foot research facility set in the heart of the campus. MIT.nano Director Vladimir Bulović, the Fariborz Maseeh (1990) Professor of Emerging Technology, says he envisions MIT.nano as a hub for industry and academic partners, facilitating technology development and transfer through shared lab space, open-access equipment, and streamlined intellectual property frameworks.

    “MIT has a history of groundbreaking innovation using perovskite materials for solar applications,” says Bulović. “We’re thrilled to help build on that history by anchoring ADDEPT at MIT.nano and working to help the nation advance the future of these promising materials.”

    MIT was selected as a part of the SETO Fiscal Year 2022 Photovoltaics (PV) funding program, an effort to reduce costs and supply chain vulnerabilities, further develop durable and recyclable solar technologies, and advance perovskite PV technologies toward commercialization. ADDEPT is one project that will tackle perovskite durability, which will extend module life. The overarching goal of these projects is to lower the levelized cost of electricity generated by PV.

    Research groups involved with the ADDEPT project at MIT include Buonassisi’s Accelerated Materials Laboratory for Sustainability (AMLS), Bulović’s Organic and Nanostructured Electronics (ONE) Lab, and the Bawendi Group led by Lester Wolfe Professor in Chemistry Moungi Bawendi. Also working on the project is Jeremiah Mwaura, research scientist in the ONE Lab. More

  • in

    Even as temperatures rise, this hydrogel material keeps absorbing moisture

    The vast majority of absorbent materials will lose their ability to retain water as temperatures rise. This is why our skin starts to sweat and why plants dry out in the heat. Even materials that are designed to soak up moisture, such as the silica gel packs in consumer packaging, will lose their sponge-like properties as their environment heats up.

    But one material appears to uniquely resist heat’s drying effects. MIT engineers have now found that polyethylene glycol (PEG) — a hydrogel commonly used in cosmetic creams, industrial coatings, and pharmaceutical capsules — can absorb moisture from the atmosphere even as temperatures climb.

    The material doubles its water absorption as temperatures climb from 25 to 50 degrees Celsius (77 to 122 degrees Fahrenheit), the team reports.

    PEG’s resilience stems from a heat-triggering transformation. As its surroundings heat up, the hydrogel’s microstructure morphs from a crystal to a less organized “amorphous” phase, which enhances the material’s ability to capture water.

    Based on PEG’s unique properties, the team developed a model that can be used to engineer other heat-resistant, water-absorbing materials. The group envisions such materials could one day be made into devices that harvest moisture from the air for drinking water, particularly in arid desert regions. The materials could also be incorporated into heat pumps and air conditioners to more efficiently regulate temperature and humidity.

    “A huge amount of energy consumption in buildings is used for thermal regulation,” says Lenan Zhang, a research scientist in MIT’s Department of Mechanical Engineering. “This material could be a key component of passive climate-control systems.”

    Zhang and his colleagues detail their work in a study appearing today in Advanced Materials. MIT co-authors include Xinyue Liu, Bachir El Fil, Carlos Diaz-Marin, Yang Zhong, Xiangyu Li, and Evelyn Wang, along with Shaoting Lin of Michigan State University.

    Against intuition

    Evelyn Wang’s group in MIT’s Device Research Lab aims to address energy and water challenges through the design of new materials and devices that sustainably manage water and heat. The team discovered PEG’s unusual properties as they were assessing a slew of similar hydrogels for their water-harvesting abilities.

    “We were looking for a high-performance material that could capture water for different applications,” Zhang says. “Hydrogels are a perfect candidate, because they are mostly made of water and a polymer network. They can simultaneously expand as they absorb water, making them ideal for regulating humidity and water vapor.”

    The team analyzed a variety of hydrogels, including PEG, by placing each material on a scale that was set within a climate-controlled chamber. A material became heavier as it absorbed more moisture. By recording a material’s changing weight, the researchers could track its ability to absorb moisture as they tuned the chamber’s temperature and humidity.

    What they observed was typical of most materials: as the temperature increased, the hyrogels’ ability to capture moisture from the air decreased. The reason for this temperature-dependence is well-understood: With heat comes motion, and at higher temperatures, water molecules move faster and are therefore more difficult to contain in most materials.

    “Our intuition tells us that at higher temperatures, materials tend to lose their ability to capture water,” says co-author Xinyue Liu. “So, we were very surprised by PEG because it has this inverse relationship.”

    In fact, they found that PEG grew heavier and continued to absorb water as the researchers raised the chamber’s temperature from 25 to 50 degrees Celsius.

    “At first, we thought we had measured some errors, and thought this could not be possible,” Liu says. “After we double-checked everything was correct in the experiment, we realized this was really happening, and this is the only known material that shows increasing water absorbing ability with higher temperature.”

    A lucky catch

    The group zeroed in on PEG to try and identify the reason for its unusual, heat-resilient performance. They found that the material has a natural melting point at around 50 degrees Celsius, meaning that the hydrogel’s normally crystal-like microstructure completely breaks down and transforms into an amorphous phase. Zhang says that this melted, amorphous phase provides more opportunity for polymers in the material to grab hold of any fast-moving water molecules.

    “In the crystal phase, there might be only a few sites on a polymer available to attract water and bind,” Zhang says. “But in the amorphous phase, you might have many more sites available. So, the overall performance can increase with increased temperature.”

    The team then developed a theory to predict how hydrogels absorb water, and showed that the theory could also explain PEG’s unusual behavior if the researchers added a “missing term” to the theory. That missing term was the effect of phase transformation. They found that when they included this effect, the theory could predict PEG’s behavior, along with that of other temperature-limiting hydrogels.

    The discovery of PEG’s unique properties was in large part by chance. The material’s melting temperature just happens to be within the range where water is a liquid, enabling them to catch PEG’s phase transformation and its resulting super-soaking behavior. The other hydrogels happen to have melting temperatures that fall outside this range. But the researchers suspect that these materials are also capable of similar phase transformations once they hit their melting temperatures.

    “Other polymers could in theory exhibit this same behavior, if we can engineer their melting points within a selected temperature range,” says team member Shaoting Lin.

    Now that the group has worked out a theory, they plan to use it as a blueprint to design materials specifically for capturing water at higher temperatures.

    “We want to customize our design to make sure a material can absorb a relatively high amount of water, at low humidity and high temperatures,” Liu says. “Then it could be used for atmospheric water harvesting, to bring people potable water in hot, arid environments.”

    This research was supported, in part, by U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. More

  • in

    MIT engineers devise technology to prevent fouling in photobioreactors for CO2 capture

    Algae grown in transparent tanks or tubes supplied with carbon dioxide can convert the greenhouse gas into other compounds, such as food supplements or fuels. But the process leads to a buildup of algae on the surfaces that clouds them and reduces efficiency, requiring laborious cleanout procedures every couple of weeks.

    MIT researchers have come up with a simple and inexpensive technology that could substantially limit this fouling, potentially allowing for a much more efficient and economical way of converting the unwanted greenhouse gas into useful products.

    The key is to coat the transparent containers with a material that can hold an electrostatic charge, and then applying a very small voltage to that layer. The system has worked well in lab-scale tests, and with further development might be applied to commercial production within a few years.

    The findings are being reported in the journal Advanced Functional Materials, in a paper by recent MIT graduate Victor Leon PhD ’23, professor of mechanical engineering Kripa Varanasi, former postdoc Baptiste Blanc, and undergraduate student Sophia Sonnert.

    No matter how successful efforts to reduce or eliminate carbon emissions may be, there will still be excess greenhouse gases that will remain in the atmosphere for centuries to come, continuing to affect global climate, Varanasi points out. “There’s already a lot of carbon dioxide there, so we have to look at negative emissions technologies as well,” he says, referring to ways of removing the greenhouse gas from the air or oceans, or from their sources before they get released into the air in the first place.

    When people think of biological approaches to carbon dioxide reduction, the first thought is usually of planting or protecting trees, which are indeed a crucial “sink” for atmospheric carbon. But there are others. “Marine algae account for about 50 percent of global carbon dioxide absorbed today on Earth,” Varanasi says. These algae grow anywhere from 10 to 50 times more quickly than land-based plants, and they can be grown in ponds or tanks that take up only a tenth of the land footprint of terrestrial plants.

    What’s more, the algae themselves can then be a useful product. “These algae are rich in proteins, vitamins and other nutrients,” Varanasi says, noting they could produce far more nutritional output per unit of land used than some traditional agricultural crops.

    If attached to the flue gas output of a coal or gas power plant, algae could not only thrive on the carbon dioxide as a nutrient source, but some of the microalgae species could also consume the associated nitrogen and sulfur oxides present in these emissions. “For every two or three kilograms of CO2, a kilogram of algae could be produced, and these could be used as biofuels, or for Omega-3, or food,” Varanasi says.

    Omega-3 fatty acids are a widely used food supplement, as they are an essential part of cell membranes and other tissues but cannot be made by the body and must be obtained from food. “Omega 3 is particularly attractive because it’s also a much higher-value product,” Varanasi says.

    Most algae grown commercially are cultivated in shallow ponds, while others are grown in transparent tubes called photobioreactors. The tubes can produce seven to 10 times greater yields than ponds for a given amount of land, but they face a major problem: The algae tend to build up on the transparent surfaces, requiring frequent shutdowns of the whole production system for cleaning, which can take as long as the productive part of the cycle, thus cutting overall output in half and adding to operational costs.

    The fouling also limits the design of the system. The tubes can’t be too small because the fouling would begin to block the flow of water through the bioreactor and require higher pumping rates.

    Varanasi and his team decided to try to use a natural characteristic of the algae cells to defend against fouling. Because the cells naturally carry a small negative electric charge on their membrane surface, the team figured that electrostatic repulsion could be used to push them away.

    The idea was to create a negative charge on the vessel walls, such that the electric field forces the algae cells away from the walls. To create such an electric field requires a high-performance dielectric material, which is an electrical insulator with a high “permittivity” that can produce a large change in surface charge with a smaller voltage.

    “What people have done before with applying voltage [to bioreactors] has been with conductive surfaces,” Leon explains, “but what we’re doing here is specifically with nonconductive surfaces.”

    He adds: “If it’s conductive, then you pass current and you’re kind of shocking the cells. What we’re trying to do is pure electrostatic repulsion, so the surface would be negative and the cell is negative so you get repulsion. Another way to describe it is like a force field, whereas before the cells were touching the surface and getting shocked.”

    The team worked with two different dielectric materials, silicon dioxide — essentially glass — and hafnia (hafnium oxide), both of which turned out to be far more efficient at minimizing fouling than conventional plastics used to make photobioreactors. The material can be applied in a coating that is vanishingly thin, just 10 to 20 nanometers (billionths of a meter) thick, so very little would be needed to coat a full photobioreactor system.

    “What we are excited about here is that we are able to show that purely from electrostatic interactions, we are able to control cell adhesion,” Varanasi says. “It’s almost like an on-off switch, to be able to do this.”

    Additionally, Leon says, “Since we’re using this electrostatic force, we don’t really expect it to be cell-specific, and we think there’s potential for applying it with other cells than just algae. In future work, we’d like to try using it with mammalian cells, bacteria, yeast, and so on.” It could also be used with other valuable types of algae, such as spirulina, that are widely used as food supplements.

    The same system could be used to either repel or attract cells by just reversing the voltage, depending on the particular application. Instead of algae, a similar setup might be used with human cells to produce artificial organs by producing a scaffold that could be charged to attract the cells into the right configuration, Varanasi suggests.

    “Our study basically solves this major problem of biofouling, which has been a bottleneck for photobioreactors,” he says. “With this technology, we can now really achieve the full potential” of such systems, although further development will be needed to scale up to practical, commercial systems.

    As for how soon this could be ready for widespread deployment, he says, “I don’t see why not in three years’ timeframe, if we get the right resources to be able to take this work forward.”

    The study was supported by energy company Eni S.p.A., through the MIT Energy Initiative. More