More stories

  • in

    MIT students advance solutions for water and food with the help of J-WAFS

    For the past decade, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has been instrumental in promoting student engagement across the Institute to help solve the world’s most pressing water and food system challenges. As part of J-WAFS’ central mission of securing the world’s water and food supply, J-WAFS aims to cultivate the next generation of leaders in the water and food sectors by encouraging MIT student involvement through a variety of programs and mechanisms that provide research funding, mentorship, and other types of support.J-WAFS offers a range of opportunities for both undergraduate and graduate students to engage in the advancement of water and food systems research. These include graduate student fellowships, travel grants for participation in conferences, funding for research projects in India, video competitions highlighting students’ water and food research, and support for student-led organizations and initiatives focused on critical areas in water and food.As J-WAFS enters its second decade, it continues to expose students across the Institute to experiential hands-on water and food research, career and other networking opportunities, and a platform to develop their innovative and collaborative solutions.Graduate student fellowshipsIn 2017, J-WAFS inaugurated two graduate student fellowships: the Rasikbhai L. Meswani Fellowship for Water Solutions and the J-WAFS Graduate Student Fellowship Program. The Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water for human need at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family. Each year, up to two outstanding students are selected to receive fellowship support for one academic semester. Through it, J-WAFS seeks to support distinguished MIT students who are pursuing solutions to the pressing global water supply challenges of our time. The J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship.Aditya Avinash Ghodgaonkar, a PhD student in the Department of Mechanical Engineering (MechE), reflects on how receiving a J-WAFS graduate student fellowship positively impacted his research on the design of low-cost emitters for affordable, resilient drip irrigation for farmers: “My J-WAFS fellowship gave me the flexibility and financial support needed to explore new directions in the area of clog-resistant drip irrigation that had a higher risk element that might not have been feasible to manage on an industrially sponsored project,” Ghodgaonkar explains. Emitters, which control the volume and flow rate of water used during irrigation, often clog due to small particles like sand. Ghodgaonkar worked with Professor Amos Winter, and with farmers in resource-constrained communities in countries like Jordan and Morocco, to develop an emitter that is mechanically more resistant to clogging. Ghodgaonkar reports that their energy-efficient, compact, clog-resistant drip emitters are being commercialized by Toro and may be available for retail in the next few years. The opportunities and funding support Ghodgaonkar has received from J-WAFS contributed greatly to his entrepreneurial success and the advancement of the water and agricultural sectors.Linzixuan (Rhoda) Zhang, a PhD student advised by Professor Robert Langer and Principal Research Scientist Ana Jaklenec of the Department of Chemical Engineering, was a 2022 J-WAFS Graduate Student Fellow. With the fellowship, Zhang was able to focus on her innovative research on a novel micronutrient delivery platform that fortifies food with essential vitamins and nutrients. “We intake micronutrients from basically all the healthy food that we eat; however, around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” Zhang says. Her research involves the development of biodegradable polymers that can deliver these micronutrients in harsh environments in underserved regions of the world. “Vitamin A is not very stable, for example; we have vitamin A in different vegetables but when we cook them, the vitamin can easily degrade,” Zhang explains. However, when vitamin A is encapsulated in the microparticle platform, simulation of boiling and of the stomach environment shows that vitamin A was stabilized. “The meaningful factors behind this experiment are real,” says Zhang. The J-WAFS Fellowship helped position Zhang to win the 2024 Collegiate Inventors Competition for this work.J-WAFS grant for water and food projects in IndiaJ-WAFS India Grants are intended to further the work being pursued by MIT individuals as a part of their research, innovation, entrepreneurship, coursework, or related activities. Faculty, research staff, and undergraduate and graduate students are eligible to apply. The program aims to support projects that will benefit low-income communities in India, and facilitates travel and other expenses related to directly engaging with those communities.Gokul Sampath, a PhD student in the Department of Urban Studies and Planning, and Jonathan Bessette, a PhD student in MechE, initially met through J-WAFS-sponsored conference travel, and discovered their mutual interest in the problem of arsenic in water in India. Together, they developed a cross-disciplinary proposal that received a J-WAFS India Grant. Their project is studying how women in rural India make decisions about where they fetch water for their families, and how these decisions impact exposure to groundwater contaminants like naturally-occurring arsenic. Specifically, they are developing low-cost remote sensors to better understand water-fetching practices. The grant is enabling Sampath and Bessette to equip Indian households with sensor-enabled water collection devices (“smart buckets”) that will provide them data about fetching practices in arsenic-affected villages. By demonstrating the efficacy of a sensor-based approach, the team hopes to address a major data gap in international development. “It is due to programs like the Jameel Water and Food Systems Lab that I was able to obtain the support for interdisciplinary work on connecting water security, public health, and regional planning in India,” says Sampath.J-WAFS travel grants for water conferencesIn addition to funding graduate student research, J-WAFS also provides grants for graduate students to attend water conferences worldwide. Typically, students will only receive travel funding to attend conferences where they are presenting their research. However, the J-WAFS travel grants support learning, networking, and career exploration opportunities for exceptional MIT graduate students who are interested in a career in the water sector, whether in academia, nonprofits, government, or industry.Catherine Lu ’23, MNG ’24 was awarded a 2023 Travel Grant to attend the UNC Water and Health Conference in North Carolina. The conference serves as a curated space for policymakers, practitioners, and researchers to convene and assess data, scrutinize scientific findings, and enhance new and existing strategies for expanding access to and provision of services for water, sanitation, and hygiene (WASH). Lu, who studied civil and environmental engineering, worked with Professor Dara Entekhabi on modeling and predicting droughts in Africa using satellite Soil Moisture Active Passive (SMAP) data. As she evaluated her research trajectory and career options in the water sector, Lu found the conference to be informative and enlightening. “I was able to expand my knowledge on all the sectors and issues that are related to water and the implications they have on my research topic.” Furthermore, she notes: “I was really impressed by the diverse range of people that were able to attend the conference. The global perspective offered at the conference provided a valuable context for understanding the challenges and successes of different regions around the world — from WASH education in schools in Zimbabwe and India to rural water access disparities in the United States … Being able to engage with such passionate and dedicated people has motivated me to continue progress in this sector.” Following graduation, Lu secured a position as a water resources engineer at CDM Smith, an engineering and construction firm.Daniela Morales, a master’s student in city planning in the Department of Urban Studies and Planning, was a 2024 J-WAFS Travel Grant recipient who attended World Water Week in Stockholm, Sweden. The annual global conference is organized by the Stockholm International Water Institute and convenes leading experts, decision-makers, and professionals in the water sector to actively engage in discussions and developments addressing critical water-related challenges. Morales’ research interests involve drinking water quality and access in rural and peri-urban areas affected by climate change impacts, the effects of municipal water shutoffs on marginalized communities, and the relationship between regional water management and public health outcomes. When reflecting on her experience at the conference, Morales writes: “Being part of this event has given me so much motivation to continue my professional and academic journey in water management as it relates to public health and city planning … There was so much energy that was collectively generated in the conference, and so many new ideas that I was able to process around my own career interests and my role as a future planner in water management, that the last day of the conference felt less like an ending and more of the beginning of a new chapter. I am excited to take all the information I learned to work towards my own research, and continue to build relationships with all the new contacts I made.” Morales also notes that without the support of the J-WAFS grant, “I would not have had the opportunity to make it to Stockholm and participate in such a unique week of water wisdom.”Seed grants and Solutions grantsJ-WAFS offers seed grants for early-stage research and Solutions Grants for later-stage research that is ready to move from the lab to the commercial world. Proposals for both types of grants must be submitted and led by an MIT principal investigator, but graduate students, and sometimes undergraduates, are often supported by these grants.Arjav Shah, a PhD-MBA student in MIT’s Department of Chemical Engineering and the MIT Sloan School of Management, is currently pursuing the commercialization of a water treatment technology that was first supported through a 2019 J-WAFS seed grant and then a 2022 J-WAFS Solutions Grant with Professor Patrick Doyle. The technology uses hydrogels to remove a broad range of micropollutants from water. The Solutions funding enables entrepreneurial students and postdocs to lay the groundwork to commercialize a technology by assessing use scenarios and exploring business needs with actual potential customers. “With J-WAFS’ support, we were not only able to scale up the technology, but also gain a deeper understanding of market needs and develop a strong business case,” says Shah. Shah and the Solutions team have discovered that the hydrogels could be used in several real-world contexts, ranging from large-scale industrial use to small-scale, portable, off-grid applications. “We are incredibly grateful to J-WAFS for their support, particularly in fostering industry connections and facilitating introductions to investors, potential customers, and experts,” Shah adds.Shah was also a 2023 J-WAFS Travel Grant awardee who attended Stockholm World Water Week that year. He says, “J-WAFS has played a pivotal role in both my academic journey at MIT and my entrepreneurial pursuits. J-WAFS support has helped me grow both as a scientist and an aspiring entrepreneur. The exposure and opportunities provided have allowed me to develop critical skills such as customer discovery, financial modeling, business development, fundraising, and storytelling — all essential for translating technology into real-world impact. These experiences provided invaluable insights into what it takes to bring a technology from the lab to market.”Shah is currently leading efforts to spin out a company to commercialize the hydrogel research. Since receiving J-WAFS support, the team has made major strides toward launching a startup company, including winning the Pillar VC Moonshot Prize, Cleantech Open National Grand Prize, MassCEC Catalyst Award, and participation in the NSF I-Corps National Program.J-WAFS student video competitionsJ-WAFS has hosted two video competitions: MIT Research for a Water Secure Future and MIT Research for a Food Secure Future, in honor of World Water Day and Word Food Day, respectively. In these competitions, students are tasked with creating original videos showcasing their innovative water and food research conducted at MIT. The opportunity is open to MIT students, postdocs, and recent alumni.Following a review by a distinguished panel of judges, Vishnu Jayaprakash SM ’19, PhD ’22 won first place in the 2022 J-WAFS World Food Day Student Video Competition for his video focused on eliminating pesticide pollution and waste. Jayaprakash delved into the science behind AgZen-Cloak, a new generation of agricultural sprays that prevents pesticides from bouncing off of plants and seeping into the ground, thus causing harmful runoff. The J-WAFS competition provided Jayaprakash with a platform to highlight the universal, low-cost, and environmentally sustainable benefits of AgZen-Cloak. Jayaprakash worked on similar technology as a funded student on a J-WAFS Solutions grant with Professor Kripa Varanasi. The Solutions grant, in fact, helped Jayaprakash and Varanasi to launch AgZen, a company that deploys AgZen-Cloak and other products and technologies to control the interactions of droplets and sprays with crop surfaces. AgZen is currently helping farmers sustainably tend to their agricultural plots while also protecting the environment.  In 2021, Hilary Johnson SM ’18, PhD ’22, won first place in the J-WAFS World Water Day video competition. Her video highlighted her work on a novel pump that uses adaptive hydraulics for improved pump efficiency. The pump was part of a sponsored research project with Xylem Inc., a J-WAFS Research Affiliate company, and Professor Alex Slocum of MechE. At the time, Johnson was a PhD student in Slocum’s lab. She was instrumental in the development of the pump by engineering the volute to expand and contract to meet changing system flow rates. Johnson went on to later become a 2021-22 J-WAFS Fellow, and is now a full-time mechanical engineer at the Lawrence Livermore National Laboratory.J-WAFS-supported student clubsJ-WAFS-supported student clubs provide members of the MIT student community the opportunity for networking and professional advancement through events focused on water and food systems topics.J-WAFS is a sponsor of the MIT Water Club, a student-led group that supports and promotes the engagement of the MIT community in water-sector-related activism, dissemination of information, and research innovation. The club allows students to spearhead the organization of conferences, lectures, outreach events, research showcases, and entrepreneurship competitions including the former MIT Water Innovation Prize and MIT Water Summit. J-WAFS not only sponsors the MIT Water Club financially, but offers mentorship and guidance to the leadership team.The MIT Food and Agriculture Club is also supported by J-WAFS. The club’s mission is to promote the engagement of the MIT community in food and agriculture-related topics. In doing so, the students lead initiatives to share the innovative technology and business solutions researchers are developing in food and agriculture systems. J-WAFS assists in the connection of passionate MIT students with those who are actively working in the food and agriculture industry beyond the Institute. From 2015 to 2022, J-WAFS also helped the club co-produce the Rabobank-MIT Food and Agribusiness Innovation Prize — a student business plan competition for food and agricultural startups.From 2023 onward, the MIT Water Club and the MIT Food and Ag Club have been joining forces to organize a combined prize competition: The MIT Water, Food and Agriculture (WFA) Innovation Prize. The WFA Innovation Prize is a business plan competition for student-led startups focused on any region or market. The teams present business plans involving a technology, product, service, or process that is aimed at solving a problem related to water, food, or agriculture. The competition encourages all approaches to innovation, from engineering and product design to policy and data analytics. The goal of the competition is to help emerging entrepreneurs translate research and ideas into businesses, access mentors and resources, and build networks in the water, food, and agriculture industries. J-WAFS offers financial and in-kind support, working with student leaders to plan, organize, and implement the stages of the competition through to the final pitch event. This year, J-WAFS is continuing to support the WFA team, which is led by Ali Decker, an MBA student at MIT Sloan, and Sam Jakshtis, a master’s student in MIT’s science in real estate development program. The final pitch event will take place on April 30 in the MIT Media Lab.“I’ve had the opportunity to work with Renee Robins, executive director of J-WAFS, on MIT’s Water, Food and Agriculture Innovation Prize for the past two years, and it has been both immensely valuable and a delight to have her support,” says Decker. “Renee has helped us in all areas of prize planning: brainstorming new ideas, thinking through startup finalist selection, connecting to potential sponsors and partners, and more. Above all, she supports us with passion and joy; each time we meet, I look forward to our discussion,” Decker adds.J-WAFS eventsThroughout the year, J-WAFS aims to offer events that will engage any in the MIT student community who are working in water or food systems. For example, on April 19, 2023, J-WAFS teamed up with the MIT Energy Initiative (MITEI) and the Environmental Solutions Initiative (ESI) to co-host an MIT student poster session for Earth Month. The theme of the poster session was “MIT research for a changing planet,” and it featured work from 11 MIT students with projects in water, food, energy, and the environment. The students, who represented a range of MIT departments, labs, and centers, were on hand to discuss their projects and engage with those attending the event. Attendees could vote for their favorite poster after being asked to consider which poster most clearly communicated the research problem and the potential solution. At the end of the night, votes were tallied and the winner of the “People’s Choice Award” for best poster was Elaine Liu ’24, an undergraduate in mathematics at the time of the event. Liu’s poster featured her work on managing failure cascades in systems with wind power.J-WAFS also hosts less-structured student networking events. For instance, during MIT’s Independent Activities Period (IAP) in January 2024, J-WAFS hosted an ice cream social for student networking. The informal event was an opportunity for graduate and undergraduate students from across the Institute to meet and mingle with like-minded peers working in, or interested in, water and food systems. Students were able to explain their current and future research, interests, and projects and ask questions while exchanging ideas, engaging with one another, and potentially forming collaborations, or at the very least sharing insights.Looking ahead to 10 more years of student impactOver the past decade, J-WAFS has demonstrated a strong commitment to empowering students in the water and food sectors, fostering an environment where they can confidently drive meaningful change and innovation. PhD student Jonathan Bessette sums up the J-WAFS community as a “one-of-a-kind community that enables essential research in water and food that otherwise would not be pursued. It’s this type of research that is not often the focus of major funding, yet has such a strong impact in sustainable development.”J-WAFS aims to provide students with the support and tools they need to conduct authentic and meaningful water and food-related research that will benefit communities around the world. This support, coupled with an MIT education, enables students to become leaders in sustainable water and food systems. As the second decade of J-WAFS programming begins, the J-WAFS team remains committed to fostering student collaboration across the Institute, driving innovative solutions to revitalize the world’s water and food systems while empowering the next generation of pioneers in these critical fields.  More

  • in

    Creating smart buildings with privacy-first sensors

    Gaining a better understanding of how people move through the spaces where they live and work could make those spaces safer and more sustainable. But no one wants cameras watching them 24/7.Two former Media Lab researchers think they have a solution. Their company, Butlr, offers places like skilled nursing facilities, offices, and senior living communities a way to understand how people are using buildings without compromising privacy. Butlr uses low-resolution thermal sensors and an analytics platform to help detect falls in elderly populations, save energy, and optimize spaces for work.“We have this vision of using the right technology to understand people’s movements and behaviors in space,” says Jiani Zeng SM ’20, who co-founded Butlr with former Media Lab research affiliate Honghao Deng. “So many resources today go toward cameras and AI that take away people’s privacy. We believe we can make our environments safer, healthier, and more sustainable without violating privacy.”To date, the company has sold more than 20,000 of its privacy-preserving sensors to senior living and skilled nursing facilities as well as businesses with large building footprints, including Verizon, Netflix, and Microsoft. In the future, Butlr hopes to enable more dynamic spaces that can understand and respond to the ways people use them.“Space should be like a digital user interface: It should be multi-use and responsive to your needs,” Deng says. “If the office has a big room with people working individually, it should automatically separate into smaller rooms, or lights and temperature should be adjusted to save energy.”Building intelligence, with privacyAs an undergraduate at Tianjin University in China, Deng joined the Media Lab’s City Science Group as a visiting student in 2016. He went on to complete his master’s at Harvard University, but he returned to the Media Lab as a research affiliate and led projects around what he calls responsive architecture: spaces that can understand their users’ needs through non-camera sensors.“My vision of the future of building environments emerged from the Media Lab,” Deng says. “The real world is the largest user interface around us — it’s not the screens. We all live in a three-dimensional world and yet, unlike the digital world, this user interface doesn’t yet understand our needs, let alone the critical situations when someone falls in a room. That could be life-saving.”Zeng came to MIT as a master’s student in the Integrated Design and Management program, which was run jointly out of the MIT Sloan School of Management and the School of Engineering. She also worked as a research assistant at the Media Lab and the Computer Science and Artificial Intelligence Lab (CSAIL).The pair met during a hackathon at the Media Lab and continued collaborating on various projects. During that time, they worked with MIT’s Venture Mentoring Service (VMS) and the MIT I-Corps Program. When they graduated in 2019, they decided to start a company based on the idea of creating smart buildings with privacy-preserving sensors. Crucial early funding came from the Media Lab-affiliated E14 Fund.“I tell every single MIT founder they should have the E14 Fund in their cap table,” Deng says. “They understand what it takes to go from an MIT student to a founder, and to transition from the ‘scientist brain’ to the ‘inventor brain.’ We wouldn’t be where we are today without MIT.”Ray Stata ’57, SM ’58, the founder of Analog Devices, is also an investor in Butlr and serves as Butlr’s board director.“We would love to give back to the MIT community once we become successful entrepreneurs like Ray, whose advice and mentoring has been invaluable,” Deng says.After launching, the founders had to find the right early customers for their real-time sensors, which can discern rough body shapes but no personally identifiable information. They interviewed hundreds of people before starting with owners of office spaces.“People have zero baseline data on what’s happening in their workplace,” Deng says. “That’s especially true since the Covid-19 pandemic made people hybrid, which has opened huge opportunities to cut the energy use of large office spaces. Sometimes, the only people in these buildings are the receptionist and the cleaner.”Butlr’s multiyear, battery-powered sensors can track daily occupancy in each room and give other insights into space utilization that can be used to reduce energy use. For companies with a lot of office space, the opportunities are immense. One Butlr customer has 40 building leases. Deng says optimizing the HVAC controls based on usage could amount to millions of dollars saved.“We can be like the Google Analytics for these spaces without any concerns in terms of privacy,” Deng says.The founders also knew the problem went well beyond office spaces.“In skilled nursing facilities, instead of office spaces it’s individual rooms, all with people who may need the nurse’s help,” Deng says. “But the nurses have no visibility into what’s happening unless they physically enter the room.”Acute care environments and senior living facilities are another key market for Butlr. The company’s platform can detect falls and instances when someone isn’t getting out of bed to alert staff. The system integrates with nurse calling systems to alert staff when something is wrong.The “nerve cells” of the buildingButlr is continuing to develop analytics that give important insights into spaces. For instance, today the platform can use information around movement in elderly populations to help detect problems like urinary tract infections. Butlr also recently started a collaboration with Harvard Medical School’s Beth Israel Deaconess Medical Center and the University of Massachusetts at Amherst’s Artificial Intelligence and Technology Center for Connected Care in Aging and Alzheimer’s Disease. Through the project, Butlr will try to detect changes in movement that could indicate declining cognitive or physical abilities. Those insights could be used to provide aging patients with more supervision.“In the near term we are preventing falls, but the vision is when you look up in any buildings or homes, you’ll see Butlr,” Deng says. “This could allow older adults to age in place with dignity and privacy.”More broadly, Butlr’s founders see their work as an important way to shape the future of AI technology, which is expected to be a growing part of everyone’s lives.“We’re the nerve cells in the building, not the eyes,” Deng says. “That’s the future of AI we believe in: AI that can transform regular rooms into spaces that understand people and can use that understanding to do everything from making efficiency improvements to saving lives in senior care communities. That’s the right way to use this powerful technology.” More

  • in

    New AI tool generates realistic satellite images of future flooding

    Visualizing the potential impacts of a hurricane on people’s homes before it hits can help residents prepare and decide whether to evacuate.MIT scientists have developed a method that generates satellite imagery from the future to depict how a region would look after a potential flooding event. The method combines a generative artificial intelligence model with a physics-based flood model to create realistic, birds-eye-view images of a region, showing where flooding is likely to occur given the strength of an oncoming storm.As a test case, the team applied the method to Houston and generated satellite images depicting what certain locations around the city would look like after a storm comparable to Hurricane Harvey, which hit the region in 2017. The team compared these generated images with actual satellite images taken of the same regions after Harvey hit. They also compared AI-generated images that did not include a physics-based flood model.The team’s physics-reinforced method generated satellite images of future flooding that were more realistic and accurate. The AI-only method, in contrast, generated images of flooding in places where flooding is not physically possible.The team’s method is a proof-of-concept, meant to demonstrate a case in which generative AI models can generate realistic, trustworthy content when paired with a physics-based model. In order to apply the method to other regions to depict flooding from future storms, it will need to be trained on many more satellite images to learn how flooding would look in other regions.“The idea is: One day, we could use this before a hurricane, where it provides an additional visualization layer for the public,” says Björn Lütjens, a postdoc in MIT’s Department of Earth, Atmospheric and Planetary Sciences, who led the research while he was a doctoral student in MIT’s Department of Aeronautics and Astronautics (AeroAstro). “One of the biggest challenges is encouraging people to evacuate when they are at risk. Maybe this could be another visualization to help increase that readiness.”To illustrate the potential of the new method, which they have dubbed the “Earth Intelligence Engine,” the team has made it available as an online resource for others to try.The researchers report their results today in the journal IEEE Transactions on Geoscience and Remote Sensing. The study’s MIT co-authors include Brandon Leshchinskiy; Aruna Sankaranarayanan; and Dava Newman, professor of AeroAstro and director of the MIT Media Lab; along with collaborators from multiple institutions.Generative adversarial imagesThe new study is an extension of the team’s efforts to apply generative AI tools to visualize future climate scenarios.“Providing a hyper-local perspective of climate seems to be the most effective way to communicate our scientific results,” says Newman, the study’s senior author. “People relate to their own zip code, their local environment where their family and friends live. Providing local climate simulations becomes intuitive, personal, and relatable.”For this study, the authors use a conditional generative adversarial network, or GAN, a type of machine learning method that can generate realistic images using two competing, or “adversarial,” neural networks. The first “generator” network is trained on pairs of real data, such as satellite images before and after a hurricane. The second “discriminator” network is then trained to distinguish between the real satellite imagery and the one synthesized by the first network.Each network automatically improves its performance based on feedback from the other network. The idea, then, is that such an adversarial push and pull should ultimately produce synthetic images that are indistinguishable from the real thing. Nevertheless, GANs can still produce “hallucinations,” or factually incorrect features in an otherwise realistic image that shouldn’t be there.“Hallucinations can mislead viewers,” says Lütjens, who began to wonder whether such hallucinations could be avoided, such that generative AI tools can be trusted to help inform people, particularly in risk-sensitive scenarios. “We were thinking: How can we use these generative AI models in a climate-impact setting, where having trusted data sources is so important?”Flood hallucinationsIn their new work, the researchers considered a risk-sensitive scenario in which generative AI is tasked with creating satellite images of future flooding that could be trustworthy enough to inform decisions of how to prepare and potentially evacuate people out of harm’s way.Typically, policymakers can get an idea of where flooding might occur based on visualizations in the form of color-coded maps. These maps are the final product of a pipeline of physical models that usually begins with a hurricane track model, which then feeds into a wind model that simulates the pattern and strength of winds over a local region. This is combined with a flood or storm surge model that forecasts how wind might push any nearby body of water onto land. A hydraulic model then maps out where flooding will occur based on the local flood infrastructure and generates a visual, color-coded map of flood elevations over a particular region.“The question is: Can visualizations of satellite imagery add another level to this, that is a bit more tangible and emotionally engaging than a color-coded map of reds, yellows, and blues, while still being trustworthy?” Lütjens says.The team first tested how generative AI alone would produce satellite images of future flooding. They trained a GAN on actual satellite images taken by satellites as they passed over Houston before and after Hurricane Harvey. When they tasked the generator to produce new flood images of the same regions, they found that the images resembled typical satellite imagery, but a closer look revealed hallucinations in some images, in the form of floods where flooding should not be possible (for instance, in locations at higher elevation).To reduce hallucinations and increase the trustworthiness of the AI-generated images, the team paired the GAN with a physics-based flood model that incorporates real, physical parameters and phenomena, such as an approaching hurricane’s trajectory, storm surge, and flood patterns. With this physics-reinforced method, the team generated satellite images around Houston that depict the same flood extent, pixel by pixel, as forecasted by the flood model.“We show a tangible way to combine machine learning with physics for a use case that’s risk-sensitive, which requires us to analyze the complexity of Earth’s systems and project future actions and possible scenarios to keep people out of harm’s way,” Newman says. “We can’t wait to get our generative AI tools into the hands of decision-makers at the local community level, which could make a significant difference and perhaps save lives.”The research was supported, in part, by the MIT Portugal Program, the DAF-MIT Artificial Intelligence Accelerator, NASA, and Google Cloud. More

  • in

    Study evaluates impacts of summer heat in U.S. prison environments

    When summer temperatures spike, so does our vulnerability to heat-related illness or even death. For the most part, people can take measures to reduce their heat exposure by opening a window, turning up the air conditioning, or simply getting a glass of water. But for people who are incarcerated, freedom to take such measures is often not an option. Prison populations therefore are especially vulnerable to heat exposure, due to their conditions of confinement.A new study by MIT researchers examines summertime heat exposure in prisons across the United States and identifies characteristics within prison facilities that can further contribute to a population’s vulnerability to summer heat.The study’s authors used high-spatial-resolution air temperature data to determine the daily average outdoor temperature for each of 1,614 prisons in the U.S., for every summer between the years 1990 and 2023. They found that the prisons that are exposed to the most extreme heat are located in the southwestern U.S., while prisons with the biggest changes in summertime heat, compared to the historical record, are in the Pacific Northwest, the Northeast, and parts of the Midwest.Those findings are not entirely unique to prisons, as any non-prison facility or community in the same geographic locations would be exposed to similar outdoor air temperatures. But the team also looked at characteristics specific to prison facilities that could further exacerbate an incarcerated person’s vulnerability to heat exposure. They identified nine such facility-level characteristics, such as highly restricted movement, poor staffing, and inadequate mental health treatment. People living and working in prisons with any one of these characteristics may experience compounded risk to summertime heat. The team also looked at the demographics of 1,260 prisons in their study and found that the prisons with higher heat exposure on average also had higher proportions of non-white and Hispanic populations. The study, appearing today in the journal GeoHealth, provides policymakers and community leaders with ways to estimate, and take steps to address, a prison population’s heat risk, which they anticipate could worsen with climate change.“This isn’t a problem because of climate change. It’s becoming a worse problem because of climate change,” says study lead author Ufuoma Ovienmhada SM ’20, PhD ’24, a graduate of the MIT Media Lab, who recently completed her doctorate in MIT’s Department of Aeronautics and Astronautics (AeroAstro). “A lot of these prisons were not built to be comfortable or humane in the first place. Climate change is just aggravating the fact that prisons are not designed to enable incarcerated populations to moderate their own exposure to environmental risk factors such as extreme heat.”The study’s co-authors include Danielle Wood, MIT associate professor of media arts and sciences, and of AeroAstro; and Brent Minchew, MIT associate professor of geophysics in the Department of Earth, Atmospheric and Planetary Sciences; along with Ahmed Diongue ’24, Mia Hines-Shanks of Grinnell College, and Michael Krisch of Columbia University.Environmental intersectionsThe new study is an extension of work carried out at the Media Lab, where Wood leads the Space Enabled research group. The group aims to advance social and environmental justice issues through the use of satellite data and other space-enabled technologies.The group’s motivation to look at heat exposure in prisons came in 2020 when, as co-president of MIT’s Black Graduate Student Union, Ovienmhada took part in community organizing efforts following the murder of George Floyd by Minneapolis police.“We started to do more organizing on campus around policing and reimagining public safety. Through that lens I learned more about police and prisons as interconnected systems, and came across this intersection between prisons and environmental hazards,” says Ovienmhada, who is leading an effort to map the various environmental hazards that prisons, jails, and detention centers face. “In terms of environmental hazards, extreme heat causes some of the most acute impacts for incarcerated people.”She, Wood, and their colleagues set out to use Earth observation data to characterize U.S. prison populations’ vulnerability, or their risk of experiencing negative impacts, from heat.The team first looked through a database maintained by the U.S. Department of Homeland Security that lists the location and boundaries of carceral facilities in the U.S. From the database’s more than 6,000 prisons, jails, and detention centers, the researchers highlighted 1,614 prison-specific facilities, which together incarcerate nearly 1.4 million people, and employ about 337,000 staff.They then looked to Daymet, a detailed weather and climate database that tracks daily temperatures across the United States, at a 1-kilometer resolution. For each of the 1,614 prison locations, they mapped the daily outdoor temperature, for every summer between the years 1990 to 2023, noting that the majority of current state and federal correctional facilities in the U.S. were built by 1990.The team also obtained U.S. Census data on each facility’s demographic and facility-level characteristics, such as prison labor activities and conditions of confinement. One limitation of the study that the researchers acknowledge is a lack of information regarding a prison’s climate control.“There’s no comprehensive public resource where you can look up whether a facility has air conditioning,” Ovienmhada notes. “Even in facilities with air conditioning, incarcerated people may not have regular access to those cooling systems, so our measurements of outdoor air temperature may not be far off from reality.”Heat factorsFrom their analysis, the researchers found that more than 98 percent of all prisons in the U.S. experienced at least 10 days in the summer that were hotter than every previous summer, on average, for a given location. Their analysis also revealed the most heat-exposed prisons, and the prisons that experienced the highest temperatures on average, were mostly in the Southwestern U.S. The researchers note that with the exception of New Mexico, the Southwest is a region where there are no universal air conditioning regulations in state-operated prisons.“States run their own prison systems, and there is no uniformity of data collection or policy regarding air conditioning,” says Wood, who notes that there is some information on cooling systems in some states and individual prison facilities, but the data is sparse overall, and too inconsistent to include in the group’s nationwide study.While the researchers could not incorporate air conditioning data, they did consider other facility-level factors that could worsen the effects that outdoor heat triggers. They looked through the scientific literature on heat, health impacts, and prison conditions, and focused on 17 measurable facility-level variables that contribute to heat-related health problems. These include factors such as overcrowding and understaffing.“We know that whenever you’re in a room that has a lot of people, it’s going to feel hotter, even if there’s air conditioning in that environment,” Ovienmhada says. “Also, staffing is a huge factor. Facilities that don’t have air conditioning but still try to do heat risk-mitigation procedures might rely on staff to distribute ice or water every few hours. If that facility is understaffed or has neglectful staff, that may increase people’s susceptibility to hot days.”The study found that prisons with any of nine of the 17 variables showed statistically significant greater heat exposures than the prisons without those variables. Additionally, if a prison exhibits any one of the nine variables, this could worsen people’s heat risk through the combination of elevated heat exposure and vulnerability. The variables, they say, could help state regulators and activists identify prisons to prioritize for heat interventions.“The prison population is aging, and even if you’re not in a ‘hot state,’ every state has responsibility to respond,” Wood emphasizes. “For instance, areas in the Northwest, where you might expect to be temperate overall, have experienced a number of days in recent years of increasing heat risk. A few days out of the year can still be dangerous, particularly for a population with reduced agency to regulate their own exposure to heat.”This work was supported, in part, by NASA, the MIT Media Lab, and MIT’s Institute for Data, Systems and Society’s Research Initiative on Combatting Systemic Racism. More

  • in

    Tracking emissions to help companies reduce their environmental footprint

    Amidst a global wave of corporate pledges to decarbonize or reach net-zero emissions, a system for verifying actual greenhouse gas reductions has never been more important. Context Labs, founded by former MIT Sloan Fellow and serial entrepreneur Dan Harple SM ’13, is rising to meet that challenge with an analytics platform that brings more transparency to emissions data.The company’s platform adds context to data from sources like equipment sensors and satellites, provides third-party verification, and records all that information on a blockchain. Context Labs also provides an interactive view of emissions across every aspect of a company’s operations, allowing leaders to pinpoint the dirtiest parts of their business.“There’s an old adage: Unless you measure something, you can’t change it,” says Harple, who is the firm’s CEO. “I think of what we’re doing as an AI-driven digital lens into what’s happening across organizations. Our goal is to help the planet get better, faster.”Context Labs is already working with some of the largest energy companies in the world — including EQT, Williams Companies, and Coterra Energy — to verify emissions reductions. A partnership with Microsoft, announced at last year’s COP28 United Nations climate summit, allows any organization on Microsoft’s Azure cloud to integrate their sensor data into Context Lab’s platform to get a granular view of their environmental impact.Harple says the progress enables more informed sustainability initiatives at scale. He also sees the work as a way to combat overly vague statements about sustainable practices that don’t lead to actual emissions reductions, or what’s known as “greenwashing.”“Just producing data isn’t good enough, and our customers realize that, because they know even if they have good intentions to reduce emissions, no one is going to believe them,” Harple says. “One way to think about our platform is as antigreenwashing insurance, because if you get attacked for your emissions, we unbundle the data like it’s in shrink-wrap and roll it back through time on the blockchain. You can click on it and see exactly where and how it was measured, monitored, timestamped, its serial number, everything. It’s really the gold standard of proof.”An unconventional master’sHarple came to MIT as a serial founder whose companies had pioneered several foundational internet technologies, including real-time video streaming technology still used in applications like Zoom and Netflix, as well as some of the core technology for the popular Chinese microblogging website Weibo.Harple’s introduction to MIT started with a paper he wrote for his venture capital contacts in the U.S. to make the case for investment in the Netherlands, where he was living with his family. The paper caught the attention of MIT Professor Stuart Madnick, the John Norris Maguire Professor of Information Technology at the MIT Sloan School of Management, who suggested Harple come to MIT as a Sloan Fellow to further develop his ideas about what makes a strong innovation ecosystem.Having successfully founded and exited multiple companies, Harple was not a typical MIT student when he began the Sloan Fellows program in 2011. At one point, he held a summit at MIT for a group of leading Dutch entrepreneurs and government officials that included tours of major labs and a meeting with former MIT President L. Rafael Reif.“Everyone was super enamored with MIT, and that kicked off what became a course that I started at MIT called REAL, Regional Entrepreneurial Acceleration Lab,” Harple says. REAL was eventually absorbed by what is now REAP — the Regional Entrepreneurship Acceleration Program, which has worked with communities around the world.Harple describes REAL as a framework vehicle to put his theories on supporting innovation into action. Over his time at MIT, which also included collaborating with the Media Lab, he systematized those theories into what he calls pentalytics, which is a way to measure and predict the resilience of innovation ecosystems.“My sense was MIT should be analytical and data-driven,” Harple says. “The thesis I wrote was a framework for AI-driven network graph analytics. So, you can model things using analytics, and you can use AI to do predictive analytics to see where the innovation ecosystem is going to thrive.”Once Harple’s pentalytics theory was established, he wanted to put it to the test with a company. His initial idea for Context Labs was to build a verification platform to combat fake news, deepfakes, and other misinformation on the internet. Around 2018, Harple met climate investor Jeremy Grantham, who he says helped him realize the most important data are about the planet. Harple began to believe that U.S. Environmental Protection Agency (EPA) emissions estimates for things like driving a car or operating an oil rig were just that — estimates — and left room for improvement.“Our approach was very MIT-ish,” Harple says. “We said, ‘Let’s, measure it and let’s monitor it, and then let’s contextualize that data so you can never go back and say they faked it. I think there’s a lot of fakery that’s happened, and that’s why the voluntary carbon markets cratered in the last year. Our view is they cratered because the data wasn’t empirical enough.”Context Labs’ solution starts with a technology platform it calls Immutably that continuously combines disparate data streams, encrypts that information, and records it on a blockchain. Immutably also verifies the information with one or more third parties. (Context Labs has partnered with the global accounting firm KPMG.)On top of Immutably, Context Labs has built applications, including a product called Decarbonization-as-a-Service (DaaS), which uses Immutably’s data to give companies a digital twin of their entire operations. Customers can use DaaS to explore the emissions of their assets and create a certificate of verified CO2-equivalent emissions, which can be used in carbon credit markets.Putting emissions data into contextContext Labs is working with oil and gas companies, utilities, data centers, and large industrial operators, some using the platform to analyze more than 3 billion data points each day. For instance, EQT, the largest natural gas producer in the U.S., uses Context Labs to verify its lower-emission products and create carbon credits. Other customers include the nonprofits Rocky Mountain Institute and the Environmental Defense Fund.“I often get asked how big the total addressable market is,” Harple says. “My view is it’s the largest market in history. Why? Because every country needs a decarbonization plan, along with instrumentation and a digital platform to execute, as does every company.”With its headquarters in Kendall Square in Cambridge, Massachusetts, Context Labs is also serving as a test for Harple’s pentalytics theory for innovation ecosystems. It also has operations in Houston and Amsterdam.“This company is a living lab for pentalytics,” Harple says. “I believe Kendall Square 1.0 was factory buildings, Kendall Square 2.0 is biotech, and Kendall Square 3.0 will be climate tech.” More

  • in

    “They can see themselves shaping the world they live in”

    During the journey from the suburbs to the city, the tree canopy often dwindles down as skyscrapers rise up. A group of New England Innovation Academy students wondered why that is.“Our friend Victoria noticed that where we live in Marlborough there are lots of trees in our own backyards. But if you drive just 30 minutes to Boston, there are almost no trees,” said high school junior Ileana Fournier. “We were struck by that duality.”This inspired Fournier and her classmates Victoria Leeth and Jessie Magenyi to prototype a mobile app that illustrates Massachusetts deforestation trends for Day of AI, a free, hands-on curriculum developed by the MIT Responsible AI for Social Empowerment and Education (RAISE) initiative, headquartered in the MIT Media Lab and in collaboration with the MIT Schwarzman College of Computing and MIT Open Learning. They were among a group of 20 students from New England Innovation Academy who shared their projects during the 2024 Day of AI global celebration hosted with the Museum of Science.The Day of AI curriculum introduces K-12 students to artificial intelligence. Now in its third year, Day of AI enables students to improve their communities and collaborate on larger global challenges using AI. Fournier, Leeth, and Magenyi’s TreeSavers app falls under the Telling Climate Stories with Data module, one of four new climate-change-focused lessons.“We want you to be able to express yourselves creatively to use AI to solve problems with critical-thinking skills,” Cynthia Breazeal, director of MIT RAISE, dean for digital learning at MIT Open Learning, and professor of media arts and sciences, said during this year’s Day of AI global celebration at the Museum of Science. “We want you to have an ethical and responsible way to think about this really powerful, cool, and exciting technology.”Moving from understanding to actionDay of AI invites students to examine the intersection of AI and various disciplines, such as history, civics, computer science, math, and climate change. With the curriculum available year-round, more than 10,000 educators across 114 countries have brought Day of AI activities to their classrooms and homes.The curriculum gives students the agency to evaluate local issues and invent meaningful solutions. “We’re thinking about how to create tools that will allow kids to have direct access to data and have a personal connection that intersects with their lived experiences,” Robert Parks, curriculum developer at MIT RAISE, said at the Day of AI global celebration.Before this year, first-year Jeremie Kwapong said he knew very little about AI. “I was very intrigued,” he said. “I started to experiment with ChatGPT to see how it reacts. How close can I get this to human emotion? What is AI’s knowledge compared to a human’s knowledge?”In addition to helping students spark an interest in AI literacy, teachers around the world have told MIT RAISE that they want to use data science lessons to engage students in conversations about climate change. Therefore, Day of AI’s new hands-on projects use weather and climate change to show students why it’s important to develop a critical understanding of dataset design and collection when observing the world around them.“There is a lag between cause and effect in everyday lives,” said Parks. “Our goal is to demystify that, and allow kids to access data so they can see a long view of things.”Tools like MIT App Inventor — which allows anyone to create a mobile application — help students make sense of what they can learn from data. Fournier, Leeth, and Magenyi programmed TreeSavers in App Inventor to chart regional deforestation rates across Massachusetts, identify ongoing trends through statistical models, and predict environmental impact. The students put that “long view” of climate change into practice when developing TreeSavers’ interactive maps. Users can toggle between Massachusetts’s current tree cover, historical data, and future high-risk areas.Although AI provides fast answers, it doesn’t necessarily offer equitable solutions, said David Sittenfeld, director of the Center for the Environment at the Museum of Science. The Day of AI curriculum asks students to make decisions on sourcing data, ensuring unbiased data, and thinking responsibly about how findings could be used.“There’s an ethical concern about tracking people’s data,” said Ethan Jorda, a New England Innovation Academy student. His group used open-source data to program an app that helps users track and reduce their carbon footprint.Christine Cunningham, senior vice president of STEM Learning at the Museum of Science, believes students are prepared to use AI responsibly to make the world a better place. “They can see themselves shaping the world they live in,” said Cunningham. “Moving through from understanding to action, kids will never look at a bridge or a piece of plastic lying on the ground in the same way again.”Deepening collaboration on earth and beyondThe 2024 Day of AI speakers emphasized collaborative problem solving at the local, national, and global levels.“Through different ideas and different perspectives, we’re going to get better solutions,” said Cunningham. “How do we start young enough that every child has a chance to both understand the world around them but also to move toward shaping the future?”Presenters from MIT, the Museum of Science, and NASA approached this question with a common goal — expanding STEM education to learners of all ages and backgrounds.“We have been delighted to collaborate with the MIT RAISE team to bring this year’s Day of AI celebration to the Museum of Science,” says Meg Rosenburg, manager of operations at the Museum of Science Centers for Public Science Learning. “This opportunity to highlight the new climate modules for the curriculum not only perfectly aligns with the museum’s goals to focus on climate and active hope throughout our Year of the Earthshot initiative, but it has also allowed us to bring our teams together and grow a relationship that we are very excited to build upon in the future.”Rachel Connolly, systems integration and analysis lead for NASA’s Science Activation Program, showed the power of collaboration with the example of how human comprehension of Saturn’s appearance has evolved. From Galileo’s early telescope to the Cassini space probe, modern imaging of Saturn represents 400 years of science, technology, and math working together to further knowledge.“Technologies, and the engineers who built them, advance the questions we’re able to ask and therefore what we’re able to understand,” said Connolly, research scientist at MIT Media Lab.New England Innovation Academy students saw an opportunity for collaboration a little closer to home. Emmett Buck-Thompson, Jeff Cheng, and Max Hunt envisioned a social media app to connect volunteers with local charities. Their project was inspired by Buck-Thompson’s father’s difficulties finding volunteering opportunities, Hunt’s role as the president of the school’s Community Impact Club, and Cheng’s aspiration to reduce screen time for social media users. Using MIT App Inventor, ​their combined ideas led to a prototype with the potential to make a real-world impact in their community.The Day of AI curriculum teaches the mechanics of AI, ethical considerations and responsible uses, and interdisciplinary applications for different fields. It also empowers students to become creative problem solvers and engaged citizens in their communities and online. From supporting volunteer efforts to encouraging action for the state’s forests to tackling the global challenge of climate change, today’s students are becoming tomorrow’s leaders with Day of AI.“We want to empower you to know that this is a tool you can use to make your community better, to help people around you with this technology,” said Breazeal.Other Day of AI speakers included Tim Ritchie, president of the Museum of Science; Michael Lawrence Evans, program director of the Boston Mayor’s Office of New Urban Mechanics; Dava Newman, director of the MIT Media Lab; and Natalie Lao, executive director of the App Inventor Foundation. More

  • in

    School of Engineering welcomes new faculty

    The School of Engineering welcomes 15 new faculty members across six of its academic departments. This new cohort of faculty members, who have either recently started their roles at MIT or will start within the next year, conduct research across a diverse range of disciplines.Many of these new faculty specialize in research that intersects with multiple fields. In addition to positions in the School of Engineering, a number of these faculty have positions at other units across MIT. Faculty with appointments in the Department of Electrical Engineering and Computer Science (EECS) report into both the School of Engineering and the MIT Stephen A. Schwarzman College of Computing. This year, new faculty also have joint appointments between the School of Engineering and the School of Humanities, Arts, and Social Sciences and the School of Science.“I am delighted to welcome this cohort of talented new faculty to the School of Engineering,” says Anantha Chandrakasan, chief innovation and strategy officer, dean of engineering, and Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am particularly struck by the interdisciplinary approach many of these new faculty take in their research. They are working in areas that are poised to have tremendous impact. I look forward to seeing them grow as researchers and educators.”The new engineering faculty include:Stephen Bates joined the Department of Electrical Engineering and Computer Science as an assistant professor in September 2023. He is also a member of the Laboratory for Information and Decision Systems (LIDS). Bates uses data and AI for reliable decision-making in the presence of uncertainty. In particular, he develops tools for statistical inference with AI models, data impacted by strategic behavior, and settings with distribution shift. Bates also works on applications in life sciences and sustainability. He previously worked as a postdoc in the Statistics and EECS departments at the University of California at Berkeley (UC Berkeley). Bates received a BS in statistics and mathematics at Harvard University and a PhD from Stanford University.Abigail Bodner joined the Department of EECS and Department of Earth, Atmospheric and Planetary Sciences as an assistant professor in January. She is also a member of the LIDS. Bodner’s research interests span climate, physical oceanography, geophysical fluid dynamics, and turbulence. Previously, she worked as a Simons Junior Fellow at the Courant Institute of Mathematical Sciences at New York University. Bodner received her BS in geophysics and mathematics and MS in geophysics from Tel Aviv University, and her SM in applied mathematics and PhD from Brown University.Andreea Bobu ’17 will join the Department of Aeronautics and Astronautics as an assistant professor in July. Her research sits at the intersection of robotics, mathematical human modeling, and deep learning. Previously, she was a research scientist at the Boston Dynamics AI Institute, focusing on how robots and humans can efficiently arrive at shared representations of their tasks for more seamless and reliable interactions. Bobu earned a BS in computer science and engineering from MIT and a PhD in electrical engineering and computer science from UC Berkeley.Suraj Cheema will join the Department of Materials Science and Engineering, with a joint appointment in the Department of EECS, as an assistant professor in July. His research explores atomic-scale engineering of electronic materials to tackle challenges related to energy consumption, storage, and generation, aiming for more sustainable microelectronics. This spans computing and energy technologies via integrated ferroelectric devices. He previously worked as a postdoc at UC Berkeley. Cheema earned a BS in applied physics and applied mathematics from Columbia University and a PhD in materials science and engineering from UC Berkeley.Samantha Coday joins the Department of EECS as an assistant professor in July. She will also be a member of the MIT Research Laboratory of Electronics. Her research interests include ultra-dense power converters enabling renewable energy integration, hybrid electric aircraft and future space exploration. To enable high-performance converters for these critical applications her research focuses on the optimization, design, and control of hybrid switched-capacitor converters. Coday earned a BS in electrical engineering and mathematics from Southern Methodist University and an MS and a PhD in electrical engineering and computer science from UC Berkeley.Mitchell Gordon will join the Department of EECS as an assistant professor in July. He will also be a member of the MIT Computer Science and Artificial Intelligence Laboratory. In his research, Gordon designs interactive systems and evaluation approaches that bridge principles of human-computer interaction with the realities of machine learning. He currently works as a postdoc at the University of Washington. Gordon received a BS from the University of Rochester, and MS and PhD from Stanford University, all in computer science.Kaiming He joined the Department of EECS as an associate professor in February. He will also be a member of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). His research interests cover a wide range of topics in computer vision and deep learning. He is currently focused on building computer models that can learn representations and develop intelligence from and for the complex world. Long term, he hopes to augment human intelligence with improved artificial intelligence. Before joining MIT, He was a research scientist at Facebook AI. He earned a BS from Tsinghua University and a PhD from the Chinese University of Hong Kong.Anna Huang SM ’08 will join the departments of EECS and Music and Theater Arts as assistant professor in September. She will help develop graduate programming focused on music technology. Previously, she spent eight years with Magenta at Google Brain and DeepMind, spearheading efforts in generative modeling, reinforcement learning, and human-computer interaction to support human-AI partnerships in music-making. She is the creator of Music Transformer and Coconet (which powered the Bach Google Doodle). She was a judge and organizer for the AI Song Contest. Anna holds a Canada CIFAR AI Chair at Mila, a BM in music composition, and BS in computer science from the University of Southern California, an MS from the MIT Media Lab, and a PhD from Harvard University.Yael Kalai PhD ’06 will join the Department of EECS as a professor in September. She is also a member of CSAIL. Her research interests include cryptography, the theory of computation, and security and privacy. Kalai currently focuses on both the theoretical and real-world applications of cryptography, including work on succinct and easily verifiable non-interactive proofs. She received her bachelor’s degree from the Hebrew University of Jerusalem, a master’s degree at the Weizmann Institute of Science, and a PhD from MIT.Sendhil Mullainathan will join the departments of EECS and Economics as a professor in July. His research uses machine learning to understand complex problems in human behavior, social policy, and medicine. Previously, Mullainathan spent five years at MIT before joining the faculty at Harvard in 2004, and then the University of Chicago in 2018. He received his BA in computer science, mathematics, and economics from Cornell University and his PhD from Harvard University.Alex Rives will join the Department of EECS as an assistant professor in September, with a core membership in the Broad Institute of MIT and Harvard. In his research, Rives is focused on AI for scientific understanding, discovery, and design for biology. Rives worked with Meta as a New York University graduate student, where he founded and led the Evolutionary Scale Modeling team that developed large language models for proteins. Rives received his BS in philosophy and biology from Yale University and is completing his PhD in computer science at NYU.Sungho Shin will join the Department of Chemical Engineering as an assistant professor in July. His research interests include control theory, optimization algorithms, high-performance computing, and their applications to decision-making in complex systems, such as energy infrastructures. Shin is a postdoc at the Mathematics and Computer Science Division at Argonne National Laboratory. He received a BS in mathematics and chemical engineering from Seoul National University and a PhD in chemical engineering from the University of Wisconsin-Madison.Jessica Stark joined the Department of Biological Engineering as an assistant professor in January. In her research, Stark is developing technologies to realize the largely untapped potential of cell-surface sugars, called glycans, for immunological discovery and immunotherapy. Previously, Stark was an American Cancer Society postdoc at Stanford University. She earned a BS in chemical and biomolecular engineering from Cornell University and a PhD in chemical and biological engineering at Northwestern University.Thomas John “T.J.” Wallin joined the Department of Materials Science and Engineering as an assistant professor in January. As a researcher, Wallin’s interests lay in advanced manufacturing of functional soft matter, with an emphasis on soft wearable technologies and their applications in human-computer interfaces. Previously, he was a research scientist at Meta’s Reality Labs Research working in their haptic interaction team. Wallin earned a BS in physics and chemistry from the College of William and Mary, and an MS and PhD in materials science and engineering from Cornell University.Gioele Zardini joined the Department of Civil and Environmental Engineering as an assistant professor in September. He will also join LIDS and the Institute for Data, Systems, and Society. Driven by societal challenges, Zardini’s research interests include the co-design of sociotechnical systems, compositionality in engineering, applied category theory, decision and control, optimization, and game theory, with society-critical applications to intelligent transportation systems, autonomy, and complex networks and infrastructures. He received his BS, MS, and PhD in mechanical engineering with a focus on robotics, systems, and control from ETH Zurich, and spent time at MIT, Stanford University, and Motional. More

  • in

    Propelling atomically layered magnets toward green computers

    Globally, computation is booming at an unprecedented rate, fueled by the boons of artificial intelligence. With this, the staggering energy demand of the world’s computing infrastructure has become a major concern, and the development of computing devices that are far more energy-efficient is a leading challenge for the scientific community. 

    Use of magnetic materials to build computing devices like memories and processors has emerged as a promising avenue for creating “beyond-CMOS” computers, which would use far less energy compared to traditional computers. Magnetization switching in magnets can be used in computation the same way that a transistor switches from open or closed to represent the 0s and 1s of binary code. 

    While much of the research along this direction has focused on using bulk magnetic materials, a new class of magnetic materials — called two-dimensional van der Waals magnets — provides superior properties that can improve the scalability and energy efficiency of magnetic devices to make them commercially viable. 

    Although the benefits of shifting to 2D magnetic materials are evident, their practical induction into computers has been hindered by some fundamental challenges. Until recently, 2D magnetic materials could operate only at very low temperatures, much like superconductors. So bringing their operating temperatures above room temperature has remained a primary goal. Additionally, for use in computers, it is important that they can be controlled electrically, without the need for magnetic fields. Bridging this fundamental gap, where 2D magnetic materials can be electrically switched above room temperature without any magnetic fields, could potentially catapult the translation of 2D magnets into the next generation of “green” computers.

    A team of MIT researchers has now achieved this critical milestone by designing a “van der Waals atomically layered heterostructure” device where a 2D van der Waals magnet, iron gallium telluride, is interfaced with another 2D material, tungsten ditelluride. In an open-access paper published March 15 in Science Advances, the team shows that the magnet can be toggled between the 0 and 1 states simply by applying pulses of electrical current across their two-layer device. 

    Play video

    The Future of Spintronics: Manipulating Spins in Atomic Layers without External Magnetic FieldsVideo: Deblina Sarkar

    “Our device enables robust magnetization switching without the need for an external magnetic field, opening up unprecedented opportunities for ultra-low power and environmentally sustainable computing technology for big data and AI,” says lead author Deblina Sarkar, the AT&T Career Development Assistant Professor at the MIT Media Lab and Center for Neurobiological Engineering, and head of the Nano-Cybernetic Biotrek research group. “Moreover, the atomically layered structure of our device provides unique capabilities including improved interface and possibilities of gate voltage tunability, as well as flexible and transparent spintronic technologies.”

    Sarkar is joined on the paper by first author Shivam Kajale, a graduate student in Sarkar’s research group at the Media Lab; Thanh Nguyen, a graduate student in the Department of Nuclear Science and Engineering (NSE); Nguyen Tuan Hung, an MIT visiting scholar in NSE and an assistant professor at Tohoku University in Japan; and Mingda Li, associate professor of NSE.

    Breaking the mirror symmetries 

    When electric current flows through heavy metals like platinum or tantalum, the electrons get segregated in the materials based on their spin component, a phenomenon called the spin Hall effect, says Kajale. The way this segregation happens depends on the material, and particularly its symmetries.

    “The conversion of electric current to spin currents in heavy metals lies at the heart of controlling magnets electrically,” Kajale notes. “The microscopic structure of conventionally used materials, like platinum, have a kind of mirror symmetry, which restricts the spin currents only to in-plane spin polarization.”

    Kajale explains that two mirror symmetries must be broken to produce an “out-of-plane” spin component that can be transferred to a magnetic layer to induce field-free switching. “Electrical current can ‘break’ the mirror symmetry along one plane in platinum, but its crystal structure prevents the mirror symmetry from being broken in a second plane.”

    In their earlier experiments, the researchers used a small magnetic field to break the second mirror plane. To get rid of the need for a magnetic nudge, Kajale and Sarkar and colleagues looked instead for a material with a structure that could break the second mirror plane without outside help. This led them to another 2D material, tungsten ditelluride. The tungsten ditelluride that the researchers used has an orthorhombic crystal structure. The material itself has one broken mirror plane. Thus, by applying current along its low-symmetry axis (parallel to the broken mirror plane), the resulting spin current has an out-of-plane spin component that can directly induce switching in the ultra-thin magnet interfaced with the tungsten ditelluride. 

    “Because it’s also a 2D van der Waals material, it can also ensure that when we stack the two materials together, we get pristine interfaces and a good flow of electron spins between the materials,” says Kajale. 

    Becoming more energy-efficient 

    Computer memory and processors built from magnetic materials use less energy than traditional silicon-based devices. And the van der Waals magnets can offer higher energy efficiency and better scalability compared to bulk magnetic material, the researchers note. 

    The electrical current density used for switching the magnet translates to how much energy is dissipated during switching. A lower density means a much more energy-efficient material. “The new design has one of the lowest current densities in van der Waals magnetic materials,” Kajale says. “This new design has an order of magnitude lower in terms of the switching current required in bulk materials. This translates to something like two orders of magnitude improvement in energy efficiency.”

    The research team is now looking at similar low-symmetry van der Waals materials to see if they can reduce current density even further. They are also hoping to collaborate with other researchers to find ways to manufacture the 2D magnetic switch devices at commercial scale. 

    This work was carried out, in part, using the facilities at MIT.nano. It was funded by the Media Lab, the U.S. National Science Foundation, and the U.S. Department of Energy. More