More stories

  • in

    Microbes could help reduce the need for chemical fertilizers

    Production of chemical fertilizers accounts for about 1.5 percent of the world’s greenhouse gas emissions. MIT chemists hope to help reduce that carbon footprint by replacing some chemical fertilizer with a more sustainable source — bacteria.

    Bacteria that can convert nitrogen gas to ammonia could not only provide nutrients that plants need, but also help regenerate soil and protect plants from pests. However, these bacteria are sensitive to heat and humidity, so it’s difficult to scale up their manufacture and ship them to farms.

    To overcome that obstacle, MIT chemical engineers have devised a metal-organic coating that protects bacterial cells from damage without impeding their growth or function. In a new study, they found that these coated bacteria improved the germination rate of a variety of seeds, including vegetables such as corn and bok choy.

    This coating could make it much easier for farmers to deploy microbes as fertilizers, says Ariel Furst, the Paul M. Cook Career Development Assistant Professor of Chemical Engineering at MIT and the senior author of the study.

    “We can protect them from the drying process, which would allow us to distribute them much more easily and with less cost because they’re a dried powder instead of in liquid,” she says. “They can also withstand heat up to 132 degrees Fahrenheit, which means that you wouldn’t have to use cold storage for these microbes.”

    Benjamin Burke ’23 and postdoc Gang Fan are the lead authors of the open-access paper, which appears in the Journal of the American Chemical Society Au. MIT undergraduate Pris Wasuwanich and Evan Moore ’23 are also authors of the study.

    Protecting microbes

    Chemical fertilizers are manufactured using an energy-intensive process known as Haber-Bosch, which uses extremely high pressures to combine nitrogen from the air with hydrogen to make ammonia.

    In addition to the significant carbon footprint of this process, another drawback to chemical fertilizers is that long-term use eventually depletes the nutrients in the soil. To help restore soil, some farmers have turned to “regenerative agriculture,” which uses a variety of strategies, including crop rotation and composting, to keep soil healthy. Nitrogen-fixing bacteria, which convert nitrogen gas to ammonia, can aid in this approach.

    Some farmers have already begun deploying these “microbial fertilizers,” growing them in large onsite fermenters before applying them to the soil. However, this is cost-prohibitive for many farmers.

    Shipping these bacteria to rural areas is not currently a viable option, because they are susceptible to heat damage. The microbes are also too delicate to survive the freeze-drying process that would make them easier to transport.

    To protect the microbes from both heat and freeze-drying, Furst decided to apply a coating called a metal-phenol network (MPN), which she has previously developed to encapsulate microbes for other uses, such as protecting therapeutic bacteria delivered to the digestive tract.

    The coatings contain two components — a metal and an organic compound called a polyphenol — that can self-assemble into a protective shell. The metals used for the coatings, including iron, manganese, aluminum, and zinc, are considered safe as food additives. Polyphenols, which are often found in plants, include molecules such as tannins and other antioxidants. The FDA classifies many of these polyphenols as GRAS (generally regarded as safe).

    “We are using these natural food-grade compounds that are known to have benefits on their own, and then they form these little suits of armor that protect the microbes,” Furst says.

    For this study, the researchers created 12 different MPNs and used them to encapsulate Pseudomonas chlororaphis, a nitrogen-fixing bacterium that also protects plants against harmful fungi and other pests. They found that all of the coatings protected the bacteria from temperatures up to 50 degrees Celsius (122 degrees Fahrenheit), and also from relative humidity up to 48 percent. The coatings also kept the microbes alive during the freeze-drying process.

    A boost for seeds

    Using microbes coated with the most effective MPN — a combination of manganese and a polyphenol called epigallocatechin gallate (EGCG) — the researchers tested their ability to help seeds germinate in a lab dish. They heated the coated microbes to 50 C before placing them in the dish, and compared them to fresh uncoated microbes and freeze-dried uncoated microbes.

    The researchers found that the coated microbes improved the seeds’ germination rate by 150 percent, compared to seeds treated with fresh, uncoated microbes. This result was consistent across several different types of seeds, including dill, corn, radishes, and bok choy.

    Furst has started a company called Seia Bio to commercialize the coated bacteria for large-scale use in regenerative agriculture. She hopes that the low cost of the manufacturing process will help make microbial fertilizers accessible to small-scale farmers who don’t have the fermenters needed to grow such microbes.

    “When we think about developing technology, we need to intentionally design it to be inexpensive and accessible, and that’s what this technology is. It would help democratize regenerative agriculture,” she says.

    The research was funded by the Army Research Office, a National Institutes of Health New Innovator Award, a National Institute for Environmental Health Sciences Core Center Grant, the CIFAR Azrieli Global Scholars Program, the MIT J-WAFS Program, the MIT Climate and Sustainability Consortium, and the MIT Deshpande Center. More

  • in

    Tiny magnetic beads produce an optical signal that could be used to quickly detect pathogens

    Getting results from a blood test can take anywhere from one day to a week, depending on what a test is targeting. The same goes for tests of water pollution and food contamination. And in most cases, the wait time has to do with time-consuming steps in sample processing and analysis.

    Now, MIT engineers have identified a new optical signature in a widely used class of magnetic beads, which could be used to quickly detect contaminants in a variety of diagnostic tests. For example, the team showed the signature could be used to detect signs of the food contaminant Salmonella.

    The so-called Dynabeads are microscopic magnetic beads that can be coated with antibodies that bind to target molecules, such as a specific pathogen. Dynabeads are typically used in experiments in which they are mixed into solutions to capture molecules of interest. But from there, scientists have to take additional, time-consuming steps to confirm that the molecules are indeed present and bound to the beads.

    The MIT team found a faster way to confirm the presence of Dynabead-bound pathogens, using optics, specifically, Raman spectroscopy. This optical technique identifies specific molecules based on their “Raman signature,” or the unique way in which a molecule scatters light.

    The researchers found that Dynabeads have an unusually strong Raman signature that can be easily detected, much like a fluorescent tag. This signature, they found, can act as a “reporter.” If detected, the signal can serve as a quick confirmation, within less than one second, that a target pathogen is indeed present in a given sample. The team is currently working to develop a portable device for quickly detecting a range of bacterial pathogens, and their results will appear in an Emerging Investigators special issue of the Journal of Raman Spectroscopy.

    “This technique would be useful in a situation where a doctor is trying to narrow down the source of an infection in order to better inform antibiotic prescription, as well as for the detection of known pathogens in food and water,” says study co-author Marissa McDonald, a graduate student in the Harvard-MIT Program in Health Sciences and Technology. “Additionally, we hope this approach will eventually lead to expanded access to advanced diagnostics in resource-limited environments.”

    Study co-authors at MIT include Postdoctoral Associate Jongwan Lee; Visiting Scholar Nikiwe Mhlanga; Research Scientist Jeon Woong Kang; Tata Professor Rohit Karnik, who is also the associate director of the Abdul Latif Jameel Water and Food Systems Lab; and Assistant Professor Loza Tadesse of the Department of Mechanical Engineering.

    Oil and water

    Looking for diseased cells and pathogens in fluid samples is an exercise in patience.

    “It’s kind of a needle-in-a-haystack problem,” Tadesse says.

    The numbers present are so small that they must be grown in controlled environments to sufficient numbers, and their cultures stained, then studied under a microscope. The entire process can take several days to a week to yield a confident positive or negative result.

    Both Karnik and Tadesse’s labs have independently been developing techniques to speed up various parts of the pathogen testing process and make the process portable, using Dynabeads.

    Dynabeads are commercially available microscopic beads made from a magnetic iron core and a polymer shell that can be coated with antibodies. The surface antibodies act as hooks to bind specific target molecules. When mixed with a fluid, such as a vial of blood or water, any molecules present will glom onto the Dynabeads. Using a magnet, scientists can gently coax the beads to the bottom of a vial and filter them out of a solution. Karnik’s lab is investigating ways to then further separate the beads into those that are bound to a target molecule, and those that are not. “Still, the challenge is, how do we know that we have what we’re looking for?” Tadesse says.

    The beads themselves are not visible by eye. That’s where Tadesse’s work comes in. Her lab uses Raman spectroscopy as a way to “fingerprint” pathogens. She has found that different cell types scatter light in unique ways that can be used as a signature to identify them.

    In the team’s new work, she and her colleagues found that Dynabeads also have a unique and strong Raman signature that can act as a surprisingly clear beacon.

    “We were initially seeking to identify the signatures of bacteria, but the signature of the Dynabeads was actually very strong,” Tadesse says. “We realized this signal could be a means of reporting to you whether you have that bacteria or not.”

    Testing beacon

    As a practical demonstration, the researchers mixed Dynabeads into vials of water contaminated with Salmonella. They then magnetically isolated these beads onto microscope slides and measured the way light scattered through the fluid when exposed to laser light. Within half a second, they quickly detected the Dynabeads’ Raman signature — a confirmation that bound Dynabeads, and by inference, Salmonella, were present in the fluid.

    “This is something that can be used to rapidly give a positive or negative answer: Is there a contaminant or not?” Tadesse says. “Because even a handful of pathogens can cause clinical symptoms.”

    The team’s new technique is significantly faster than conventional methods and uses elements that could be adapted into smaller, more portable forms — a goal that the researchers are currently working toward. The approach is also highly versatile.

    “Salmonella is the proof of concept,” Tadesse says. “You could purchase Dynabeads with E.coli antibodies, and the same thing would happen: It would bind to the bacteria, and we’d be able to detect the Dynabead signature because the signal is super strong.”

    The team is particularly keen to apply the test to conditions such as sepsis, where time is of the essence, and where pathogens that trigger the condition are not rapidly detected using conventional lab tests.

    “There are a lot cases, like in sepsis, where pathogenic cells cannot always be grown on a plate,” says Lee, a member of Karnik’s lab. “In that case, our technique could rapidly detect these pathogens.”

    This research was supported, in part, by the MIT Laser Biomedical Research Center, the National Cancer Institute, and the Abdul Latif Jameel Water and Food Systems Lab at MIT. More

  • in

    Harnessing synthetic biology to make sustainable alternatives to petroleum products

    Reducing our reliance on fossil fuels is going to require a transformation in the way we make things. That’s because the hydrocarbons found in fuels like crude oil, natural gas, and coal are also in everyday items like plastics, clothing, and cosmetics.

    Now Visolis, founded by Deepak Dugar SM ’11, MBA ’13, PhD ’13, is combining synthetic biology with chemical catalysis to reinvent the way the world makes things — and reducing gigatons of greenhouse gas emissions in the process.

    The company — which uses a microbe to ferment biomass waste like wood chips and create a molecular building block called mevalonic acid — is more sustainably producing everything from car tires and cosmetics to aviation fuels by tweaking the chemical processes involved to make different byproducts.

    “We started with [the rubber component] isoprene as the main molecule we produce [from mevalonic acid], but we’ve expanded our platform with this unique combination of chemistry and biology that allows us to decarbonize multiple supply chains very rapidly and efficiently,” Dugar explains. “Imagine carbon-negative yoga pants. We can make that happen. Tires can be carbon-negative, personal care can lower its footprint — and we’re already selling into personal care. So in everything from personal care to apparel to industrial goods, our platform is enabling decarbonization of manufacturing.”

    “Carbon-negative” is a term Dugar uses a lot. Visolis has already partnered with some of the world’s largest consumers of isoprene, a precursor to rubber, and now Dugar wants to prove out the company’s process in other emissions-intensive industries.

    “Our process is carbon-negative because plants are taking CO2 from the air, and we take that plant matter and process it into something structural, like synthetic rubber, which is used for things like roofing, tires, and other applications,” Dugar explains. “Generally speaking, most of that material at the end of its life gets recycled, for example to tarmac or road, or, worst-case scenario, it ends up in a landfill, so the CO2 that was captured by the plant matter stays captured in the materials. That means our production can be carbon-negative depending on the emissions of the production process. That allows us to not only reduce climate change but start reversing it. That was an insight I had about 10 years ago at MIT.”

    Finding a path

    For his PhD, Dugar explored the economics of using microbes to make high-octane gas additives. He also took classes at the MIT Sloan School of Management on sustainability and entrepreneurship, including the particularly influential course 15.366 (Climate and Energy Ventures). The experience inspired him to start a company.

    “I wanted to work on something that could have the largest climate impact, and that was replacing petroleum,” Dugar says. “It was about replacing petroleum not just as a fuel but as a material as well. Everything from the clothes we wear to the furniture we sit on is often made using petroleum.”

    By analyzing recent advances in synthetic biology and making some calculations from first principles, Dugar decided that a microbial approach to cleaning up the production of rubber was viable. He participated in the MIT Clean Energy Prize and worked with others at MIT to prove out the idea. But it was still just an idea. After graduation, he took a consulting job at a large company, spending his nights and weekends renting lab space to continue trying to make his sustainable rubber a reality.

    After 18 months, by applying engineering concepts like design-for-scale to synthetic biology, Dugar was able to develop a microbe that met 80 percent of his criteria for making an intermediate molecule called mevalonic acid. From there, he developed a chemical catalysis process that converted mevalonic acid to isoprene, the main component of natural rubber. Visolis has since patented other chemical conversion processes that turn mevalonic acid to aviation fuel, polymers, and fabrics.

    Dugar left his consulting job in 2014 and was awarded a fellowship to work on Visolis full-time at the Lawrence Berkeley National Lab via Activate, an incubator empowering scientists to reinvent the world.

    From rubber to jet fuels

    Today, in addition to isoprene, Visolis is selling skin care products through the brand Ameva Bio, which produces mevalonic acid-based creams by recycling plant byproducts created in other processes. The company offers refillable bottles and even offsets emissions from the shipping of its products.

    “We are working throughout the supply chain,” Dugar says. “It made sense to clean up the isoprene part of the rubber supply chain rather than the entire supply chain. But we’re also producing molecules for skin that are better for you, so you can put something much more sustainable and healthier on your body instead of petrochemicals. We launched Ameva to demonstrate that brands can leverage synthetic biology to turn carbon-negative ingredients into high-performing products.”

    Visolis is also starting the process of gaining regulatory approval for its sustainable aviation fuel, which Dugar believes could have the biggest climate impact of any of the company’s products by cleaning up the production of fuels for commercial flight.

    “We’re working with leading companies to help them decarbonize aviation” Dugar says. “If you look at the lifecycle of fuel, the current petroleum-based approach is we dig out hydrocarbons from the ground and burn it, emitting CO2 into the air. In our process, we take plant matter, which affixes to CO2 and captures renewable energy in those bonds, and then we transfer that into aviation fuel plus things like synthetic rubber, yoga pants, and other things that continue to hold the carbon. So, our factories can still operate at net zero carbon emissions.”

    Visolis is already generating millions of dollars in revenue, and Dugar says his goal is to scale the company rapidly now that its platform molecule has been validated.

    “We have been scaling our technology by 10 times every two to three years and are now looking to increase deployment of our technology at the same pace, which is very exciting.” Dugar says. “If you extrapolate that, very quickly you get to massive impact. That’s our goal.” More

  • in

    A clean alternative to one of the world’s most common ingredients

    Never underestimate the power of a time crunch.

    In 2016, MIT classmates David Heller ’18, Shara Ticku, and Harry McNamara PhD ’19 were less than two weeks away from the deadline to present a final business plan as part of their class MAS.883 (Revolutionary Ventures: How to Invent and Deploy Transformative Technologies). The students had connected over a shared passion for using biology to solve climate challenges, but their first few ideas didn’t pan out, so they went back to the drawing board.

    In a brainstorming session, Ticku began to reminisce about a trip to Singapore she’d taken where the burning of forests had cast a dark haze over the city. The story sparked a memory from halfway across the world in Costa Rica, where McNamara had traveled and noticed endless rows of palm plantations, which are used to harvest palm oil.

    “Besides Shara’s experience in Singapore and Harry’s in Costa Rica, palm was a material none of us had seriously thought about,” Heller recalls. “That conversation made us realize it was a big, big industry, and there’s major issues to the way that palm is produced.”

    The classmates decided to try using synthetic biology to create a sustainable alternative to palm oil. The idea was the beginning of C16 Biosciences. Today C16 is fulfilling that mission at scale with a palm oil alternative it harvests from oil-producing yeast, which ferment sugars in a process similar to brewing beer.

    The company’s product, which it sells to personal care brands and directly to consumers, holds enormous potential to improve the sustainability of the personal care and food industries because, as it turns out, the classmates had stumbled onto a massive problem.

    Palm oil is the most popular vegetable oil in the world. It’s used in everything from soaps and cosmetics to sauces, rolls, and crackers. But palm oil can only be harvested from palm trees near the equator, so producers often burn down tropical rainforests and swamps in those regions to make way for plantations, decimating wildlife habitats and producing a staggering amount of greenhouse gas emissions. One recent study found palm expansion in Southeast Asia could account for 0.75 percent of the world’s total greenhouse gas emissions. That’s not even including the palm expansion happening across west Africa and South America. Among familiar creatures threatened by palm oil deforestation are orangutans, all three species of which are now listed as “critically endangered” — the most urgent status on the IUCN Red List of Threatened Species, a global endangered species list.

    “To respond to increasing demand over the last few decades, large palm producers usually inappropriately seize land,” Heller explains. “They’ll literally slash and burn tropical rainforests to the ground, drive out indigenous people, they’ll kill or drive out local wildlife, and they’ll replace everything with hectares and hectares of palm oil plantations. That land conversion process has been emitting something like a gigaton of CO2 per year, just for the expansion of palm oil.”

    From milliliters to metric tons

    Heller took Revolutionary Ventures his junior year as one of the few undergraduates in the Media Lab-based class, which is also open to students from nearby colleges. On one of the first days, students were asked to stand in front of the class and explain their passions, or “what makes them tick,” as Heller recalls. He focused on climate tech.

    McNamara, who was a PhD candidate in the Harvard-MIT Program in Health Sciences and Technology at the time, talked about his interest in applying new technology to global challenges in biotech and biophysics. Ticku, who was attending Harvard Business School, discussed her experience working in fertility health and her passion for global health initiatives. The three decided to team up.

    “The core group is very, very passionate about using biology to solve major climate problems,” says Heller, who majored in biological engineering while at MIT.

    After a successful final presentation in the class, the founders received a small amount of funding by participating in the MIT $100K Pitch Competition and from the MIT Sandbox Innovation Fund.

    “MIT Sandbox was one of our first bits of financial support,” Heller says. “We also received great mentorship. We learned from other startups at MIT and made connections with professors whom we learned a lot from.”

    By the time Heller graduated in 2018, the team had experimented with different yeast strains and produced a few milliliters of oil. The process has gradually been optimized and scaled up from there. Today C16 is producing metric tons of oil in 50,000-liter tanks and has launched a consumer cosmetic brand called Palmless.

    Heller says C16 started its own brand as a way to spread the word about the harms associated with palm oil and to show larger companies it was ready to be a partner.

    “The oil palm tree is amazing in terms of the yields it generates, but the location needed for the crop is in conflict with what’s essential in our ecosystem: tropical rainforests,” Heller says. “There’s a lot of excitement when it comes to microbial palm alternatives. A lot of brands have been under pressure from consumers and even governments who are feeling the urgency around climate and are feeling the urgency from consumers to make changes to get away from an oil ingredient that is incredibly destructive.”

    Scaling with biology

    C16’s first offering, which it calls Torula Oil, is a premium product compared to traditional palm oil, but Heller notes the cost of palm oil today is deflated because companies don’t factor in its costs to the planet and society. He also notes that C16 has a number of advantages in its quest to upend the $60 billion palm oil industry: It’s far easier to improve the productivity of C16’s precision fermentation process than it is to improve agricultural processes. C16 also expects its costs to plummet as it continues to grow.

    “What’s exciting for us is we have these economies of scale,” Heller says. “We have the opportunity to expand vertically, in large stainless steel tanks, as opposed to horizontally on land, so we can drive down our cost curve by increasing the size of the infrastructure and improving the optimization of our strain. The timelines for improvement in a precision fermentation process are a fraction of the time it takes in an agricultural context.”

    Heller says C16 is currently focused on partnering with large personal care brands and expects to announce some important deals in coming months. Further down the line, C16 also hopes to use its product to replace the palm oil in food products, although additional regulations mean that dream is still a few years away.

    With all of its efforts, C16 tries to shine a light on the problems associated with the palm industry, which the company feels are underappreciated despite palm oil’s ubiquitous presence in our society.

    “We need to find a way to reduce our reliance on deforestation products,” Heller says. “We do a lot of work to help educate people on the palm oil industry. Just because something has palm oil in it doesn’t mean you should stop using it, but you should understand what that means for the world.” More

  • in

    MIT engineers devise technology to prevent fouling in photobioreactors for CO2 capture

    Algae grown in transparent tanks or tubes supplied with carbon dioxide can convert the greenhouse gas into other compounds, such as food supplements or fuels. But the process leads to a buildup of algae on the surfaces that clouds them and reduces efficiency, requiring laborious cleanout procedures every couple of weeks.

    MIT researchers have come up with a simple and inexpensive technology that could substantially limit this fouling, potentially allowing for a much more efficient and economical way of converting the unwanted greenhouse gas into useful products.

    The key is to coat the transparent containers with a material that can hold an electrostatic charge, and then applying a very small voltage to that layer. The system has worked well in lab-scale tests, and with further development might be applied to commercial production within a few years.

    The findings are being reported in the journal Advanced Functional Materials, in a paper by recent MIT graduate Victor Leon PhD ’23, professor of mechanical engineering Kripa Varanasi, former postdoc Baptiste Blanc, and undergraduate student Sophia Sonnert.

    No matter how successful efforts to reduce or eliminate carbon emissions may be, there will still be excess greenhouse gases that will remain in the atmosphere for centuries to come, continuing to affect global climate, Varanasi points out. “There’s already a lot of carbon dioxide there, so we have to look at negative emissions technologies as well,” he says, referring to ways of removing the greenhouse gas from the air or oceans, or from their sources before they get released into the air in the first place.

    When people think of biological approaches to carbon dioxide reduction, the first thought is usually of planting or protecting trees, which are indeed a crucial “sink” for atmospheric carbon. But there are others. “Marine algae account for about 50 percent of global carbon dioxide absorbed today on Earth,” Varanasi says. These algae grow anywhere from 10 to 50 times more quickly than land-based plants, and they can be grown in ponds or tanks that take up only a tenth of the land footprint of terrestrial plants.

    What’s more, the algae themselves can then be a useful product. “These algae are rich in proteins, vitamins and other nutrients,” Varanasi says, noting they could produce far more nutritional output per unit of land used than some traditional agricultural crops.

    If attached to the flue gas output of a coal or gas power plant, algae could not only thrive on the carbon dioxide as a nutrient source, but some of the microalgae species could also consume the associated nitrogen and sulfur oxides present in these emissions. “For every two or three kilograms of CO2, a kilogram of algae could be produced, and these could be used as biofuels, or for Omega-3, or food,” Varanasi says.

    Omega-3 fatty acids are a widely used food supplement, as they are an essential part of cell membranes and other tissues but cannot be made by the body and must be obtained from food. “Omega 3 is particularly attractive because it’s also a much higher-value product,” Varanasi says.

    Most algae grown commercially are cultivated in shallow ponds, while others are grown in transparent tubes called photobioreactors. The tubes can produce seven to 10 times greater yields than ponds for a given amount of land, but they face a major problem: The algae tend to build up on the transparent surfaces, requiring frequent shutdowns of the whole production system for cleaning, which can take as long as the productive part of the cycle, thus cutting overall output in half and adding to operational costs.

    The fouling also limits the design of the system. The tubes can’t be too small because the fouling would begin to block the flow of water through the bioreactor and require higher pumping rates.

    Varanasi and his team decided to try to use a natural characteristic of the algae cells to defend against fouling. Because the cells naturally carry a small negative electric charge on their membrane surface, the team figured that electrostatic repulsion could be used to push them away.

    The idea was to create a negative charge on the vessel walls, such that the electric field forces the algae cells away from the walls. To create such an electric field requires a high-performance dielectric material, which is an electrical insulator with a high “permittivity” that can produce a large change in surface charge with a smaller voltage.

    “What people have done before with applying voltage [to bioreactors] has been with conductive surfaces,” Leon explains, “but what we’re doing here is specifically with nonconductive surfaces.”

    He adds: “If it’s conductive, then you pass current and you’re kind of shocking the cells. What we’re trying to do is pure electrostatic repulsion, so the surface would be negative and the cell is negative so you get repulsion. Another way to describe it is like a force field, whereas before the cells were touching the surface and getting shocked.”

    The team worked with two different dielectric materials, silicon dioxide — essentially glass — and hafnia (hafnium oxide), both of which turned out to be far more efficient at minimizing fouling than conventional plastics used to make photobioreactors. The material can be applied in a coating that is vanishingly thin, just 10 to 20 nanometers (billionths of a meter) thick, so very little would be needed to coat a full photobioreactor system.

    “What we are excited about here is that we are able to show that purely from electrostatic interactions, we are able to control cell adhesion,” Varanasi says. “It’s almost like an on-off switch, to be able to do this.”

    Additionally, Leon says, “Since we’re using this electrostatic force, we don’t really expect it to be cell-specific, and we think there’s potential for applying it with other cells than just algae. In future work, we’d like to try using it with mammalian cells, bacteria, yeast, and so on.” It could also be used with other valuable types of algae, such as spirulina, that are widely used as food supplements.

    The same system could be used to either repel or attract cells by just reversing the voltage, depending on the particular application. Instead of algae, a similar setup might be used with human cells to produce artificial organs by producing a scaffold that could be charged to attract the cells into the right configuration, Varanasi suggests.

    “Our study basically solves this major problem of biofouling, which has been a bottleneck for photobioreactors,” he says. “With this technology, we can now really achieve the full potential” of such systems, although further development will be needed to scale up to practical, commercial systems.

    As for how soon this could be ready for widespread deployment, he says, “I don’t see why not in three years’ timeframe, if we get the right resources to be able to take this work forward.”

    The study was supported by energy company Eni S.p.A., through the MIT Energy Initiative. More

  • in

    Ocean microbes get their diet through a surprising mix of sources, study finds

    One of the smallest and mightiest organisms on the planet is a plant-like bacterium known to marine biologists as Prochlorococcus. The green-tinted microbe measures less than a micron across, and its populations suffuse through the upper layers of the ocean, where a single teaspoon of seawater can hold millions of the tiny organisms.

    Prochlorococcus grows through photosynthesis, using sunlight to convert the atmosphere’s carbon dioxide into organic carbon molecules. The microbe is responsible for 5 percent of the world’s photosynthesizing activity, and scientists have assumed that photosynthesis is the microbe’s go-to strategy for acquiring the carbon it needs to grow.

    But a new MIT study in Nature Microbiology today has found that Prochlorococcus relies on another carbon-feeding strategy, more than previously thought.

    Organisms that use a mix of strategies to provide carbon are known as mixotrophs. Most marine plankton are mixotrophs. And while Prochlorococcus is known to occasionally dabble in mixotrophy, scientists have assumed the microbe primarily lives a phototrophic lifestyle.

    The new MIT study shows that in fact, Prochlorococcus may be more of a mixotroph than it lets on. The microbe may get as much as one-third of its carbon through a second strategy: consuming the dissolved remains of other dead microbes.

    The new estimate may have implications for climate models, as the microbe is a significant force in capturing and “fixing” carbon in the Earth’s atmosphere and ocean.

    “If we wish to predict what will happen to carbon fixation in a different climate, or predict where Prochlorococcus will or will not live in the future, we probably won’t get it right if we’re missing a process that accounts for one-third of the population’s carbon supply,” says Mick Follows, a professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS), and its Department of Civil and Environmental Engineering.

    The study’s co-authors include first author and MIT postdoc Zhen Wu, along with collaborators from the University of Haifa, the Leibniz-Institute for Baltic Sea Research, the Leibniz-Institute of Freshwater Ecology and Inland Fisheries, and Potsdam University.

    Persistent plankton

    Since Prochlorococcus was first discovered in the Sargasso Sea in 1986, by MIT Institute Professor Sallie “Penny” Chisholm and others, the microbe has been observed throughout the world’s oceans, inhabiting the upper sunlit layers ranging from the surface down to about 160 meters. Within this range, light levels vary, and the microbe has evolved a number of ways to photosynthesize carbon in even low-lit regions.

    The organism has also evolved ways to consume organic compounds including glucose and certain amino acids, which could help the microbe survive for limited periods of time in dark ocean regions. But surviving on organic compounds alone is a bit like only eating junk food, and there is evidence that Prochlorococcus will die after a week in regions where photosynthesis is not an option.

    And yet, researchers including Daniel Sher of the University of Haifa, who is a co-author of the new study, have observed healthy populations of Prochlorococcus that persist deep in the sunlit zone, where the light intensity should be too low to maintain a population. This suggests that the microbes must be switching to a non-photosynthesizing, mixotrophic lifestyle in order to consume other organic sources of carbon.

    “It seems that at least some Prochlorococcus are using existing organic carbon in a mixotrophic way,” Follows says. “That stimulated the question: How much?”

    What light cannot explain

    In their new paper, Follows, Wu, Sher, and their colleagues looked to quantify the amount of carbon that Prochlorococcus is consuming through processes other than photosynthesis.

    The team looked first to measurements taken by Sher’s team, which previously took ocean samples at various depths in the Mediterranean Sea and measured the concentration of phytoplankton, including Prochlorococcus, along with the associated intensity of light and the concentration of nitrogen — an essential nutrient that is richly available in deeper layers of the ocean and that plankton can assimilate to make proteins.

    Wu and Follows used this data, and similar information from the Pacific Ocean, along with previous work from Chisholm’s lab, which established the rate of photosynthesis that Prochlorococcus could carry out in a given intensity of light.

    “We converted that light intensity profile into a potential growth rate — how fast the population of Prochlorococcus could grow if it was acquiring all it’s carbon by photosynthesis, and light is the limiting factor,” Follows explains.

    The team then compared this calculated rate to growth rates that were previously observed in the Pacific Ocean by several other research teams.

    “This data showed that, below a certain depth, there’s a lot of growth happening that photosynthesis simply cannot explain,” Follows says. “Some other process must be at work to make up the difference in carbon supply.”

    The researchers inferred that, in deeper, darker regions of the ocean, Prochlorococcus populations are able to survive and thrive by resorting to mixotrophy, including consuming organic carbon from detritus. Specifically, the microbe may be carrying out osmotrophy — a process by which an organism passively absorbs organic carbon molecules via osmosis.

    Judging by how fast the microbe is estimated to be growing below the sunlit zone, the team calculates that Prochlorococcus obtains up to one-third of its carbon diet through mixotrophic strategies.

    “It’s kind of like going from a specialist to a generalist lifestyle,” Follows says. “If I only eat pizza, then if I’m 20 miles from a pizza place, I’m in trouble, whereas if I eat burgers as well, I could go to the nearby McDonald’s. People had thought of Prochlorococcus as a specialist, where they do this one thing (photosynthesis) really well. But it turns out they may have more of a generalist lifestyle than we previously thought.”

    Chisholm, who has both literally and figuratively written the book on Prochlorococcus, says the group’s findings “expand the range of conditions under which their populations can not only survive, but also thrive. This study changes the way we think about the role of Prochlorococcus in the microbial food web.”

    This research was supported, in part, by the Israel Science Foundation, the U.S. National Science Foundation, and the Simons Foundation. More

  • in

    Small eddies play a big role in feeding ocean microbes

    Subtropical gyres are enormous rotating ocean currents that generate sustained circulations in the Earth’s subtropical regions just to the north and south of the equator. These gyres are slow-moving whirlpools that circulate within massive basins around the world, gathering up nutrients, organisms, and sometimes trash, as the currents rotate from coast to coast.

    For years, oceanographers have puzzled over conflicting observations within subtropical gyres. At the surface, these massive currents appear to host healthy populations of phytoplankton — microbes that feed the rest of the ocean food chain and are responsible for sucking up a significant portion of the atmosphere’s carbon dioxide.

    But judging from what scientists know about the dynamics of gyres, they estimated the currents themselves wouldn’t be able to maintain enough nutrients to sustain the phytoplankton they were seeing. How, then, were the microbes able to thrive?

    Now, MIT researchers have found that phytoplankton may receive deliveries of nutrients from outside the gyres, and that the delivery vehicle is in the form of eddies — much smaller currents that swirl at the edges of a gyre. These eddies pull nutrients in from high-nutrient equatorial regions and push them into the center of a gyre, where the nutrients are then taken up by other currents and pumped to the surface to feed phytoplankton.

    Ocean eddies, the team found, appear to be an important source of nutrients in subtropical gyres. Their replenishing effect, which the researchers call a “nutrient relay,” helps maintain populations of phytoplankton, which play a central role in the ocean’s ability to sequester carbon from the atmosphere. While climate models tend to project a decline in the ocean’s ability to sequester carbon over the coming decades, this “nutrient relay” could help sustain carbon storage over the subtropical oceans.

    “There’s a lot of uncertainty about how the carbon cycle of the ocean will evolve as climate continues to change, ” says Mukund Gupta, a postdoc at Caltech who led the study as a graduate student at MIT. “As our paper shows, getting the carbon distribution right is not straightforward, and depends on understanding the role of eddies and other fine-scale motions in the ocean.”

    Gupta and his colleagues report their findings this week in the Proceedings of the National Academy of Sciences. The study’s co-authors are Jonathan Lauderdale, Oliver Jahn, Christopher Hill, Stephanie Dutkiewicz, and Michael Follows at MIT, and Richard Williams at the University of Liverpool.

    A snowy puzzle

    A cross-section of an ocean gyre resembles a stack of nesting bowls that is stratified by density: Warmer, lighter layers lie at the surface, while colder, denser waters make up deeper layers. Phytoplankton live within the ocean’s top sunlit layers, where the microbes require sunlight, warm temperatures, and nutrients to grow.

    When phytoplankton die, they sink through the ocean’s layers as “marine snow.” Some of this snow releases nutrients back into the current, where they are pumped back up to feed new microbes. The rest of the snow sinks out of the gyre, down to the deepest layers of the ocean. The deeper the snow sinks, the more difficult it is for it to be pumped back to the surface. The snow is then trapped, or sequestered, along with any unreleased carbon and nutrients.

    Oceanographers thought that the main source of nutrients in subtropical gyres came from recirculating marine snow. But as a portion of this snow inevitably sinks to the bottom, there must be another source of nutrients to explain the healthy populations of phytoplankton at the surface. Exactly what that source is “has left the oceanography community a little puzzled for some time,” Gupta says.

    Swirls at the edge

    In their new study, the team sought to simulate a subtropical gyre to see what other dynamics may be at work. They focused on the North Pacific gyre, one of the Earth’s five major gyres, which circulates over most of the North Pacific Ocean, and spans more than 20 million square kilometers. 

    The team started with the MITgcm, a general circulation model that simulates the physical circulation patterns in the atmosphere and oceans. To reproduce the North Pacific gyre’s dynamics as realistically as possible, the team used an MITgcm algorithm, previously developed at NASA and MIT, which tunes the model to match actual observations of the ocean, such as ocean currents recorded by satellites, and temperature and salinity measurements taken by ships and drifters.  

    “We use a simulation of the physical ocean that is as realistic as we can get, given the machinery of the model and the available observations,” Lauderdale says.

    Play video

    An animation of the North Pacific Ocean shows phosphate nutrient concentrations at 500 meters below the ocean surface. The swirls represent small eddies transporting phosphate from the nutrient-rich equator (lighter colors), northward toward the nutrient-depleted subtropics (darker colors). This nutrient relay mechanism helps sustain biological activity and carbon sequestration in the subtropical ocean. Credit: Oliver Jahn

    The realistic model captured finer details, at a resolution of less than 20 kilometers per pixel, compared to other models that have a more limited resolution. The team combined the simulation of the ocean’s physical behavior with the Darwin model — a simulation of microbe communities such as phytoplankton, and how they grow and evolve with ocean conditions.

    The team ran the combined simulation of the North Pacific gyre over a decade, and created animations to visualize the pattern of currents and the nutrients they carried, in and around the gyre. What emerged were small eddies that ran along the edges of the enormous gyre and appeared to be rich in nutrients.

    “We were picking up on little eddy motions, basically like weather systems in the ocean,” Lauderdale says. “These eddies were carrying packets of high-nutrient waters, from the equator, north into the center of the gyre and downwards along the sides of the bowls. We wondered if these eddy transfers made an important delivery mechanism.”

    Surprisingly, the nutrients first move deeper, away from the sunlight, before being returned upwards where the phytoplankton live. The team found that ocean eddies could supply up to 50 percent of the nutrients in subtropical gyres.

    “That is very significant,” Gupta says. “The vertical process that recycles nutrients from marine snow is only half the story. The other half is the replenishing effect of these eddies. As subtropical gyres contribute a significant part of the world’s oceans, we think this nutrient relay is of global importance.”

    This research was supported, in part, by the Simons Foundation and NASA. More

  • in

    Assay determines the percentage of Omicron, other variants in Covid wastewater

    Wastewater monitoring emerged amid the Covid-19 pandemic as an effective and noninvasive way to track a viral outbreak, and advances in the technology have enabled researchers to not only identify but also quantify the presence of particular variants of concern (VOCs) in wastewater samples.

    Last year, researchers with the Singapore-MIT Alliance for Research and Technology (SMART) made the news for developing a quantitative assay for the Alpha variant of SARS-CoV-2 in wastewater, while also working on a similar assay for the Delta variant. Previously, conventional wastewater detection methods could only detect the presence of SARS-CoV-2 viral material in a sample, without identifying the variant of the virus.

    Now, a team at SMART has developed a quantitative RT-qPCR assay that can detect the Omicron variant of SARS-CoV-2. This type of assay enables wastewater surveillance to accurately trace variant dynamics in any given community or population, and support and inform the implementation of appropriate public health measures tailored according to the specific traits of a particular viral pathogen.

    The capacity to count and assess particular VOCs is unique to SMART’s open-source assay, and allows researchers to accurately determine displacement trends in a community. Hence, the new assay can reveal what proportion of SARS-CoV-2 virus circulating in a community belongs to a particular variant. This is particularly significant, as different SARS-CoV-2 VOCs — Alpha, Delta, Omicron, and their offshoots — have emerged at various points throughout the pandemic, each causing a new wave of infections to which the population was more susceptible.

    The team’s new allele-specific RT-qPCR assay is described in a paper, “Rapid displacement of SARS-CoV-2 variant Delta by Omicron revealed by allele-specific PCR in wastewater,” published this month in Water Research. Senior author on the work is Eric Alm, professor of biological engineering at MIT and a principal investigator in the Antimicrobial Resistance (AMR) interdisciplinary research group within SMART, MIT’s research enterprise in Singapore. Co-authors include researchers from Nanyang Technological University (NTU), Singapore National University (NUS), MIT, Singapore Centre for Environmental Life Sciences Engineering (SCELSE), and Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) in Italy.

    Omicron overtakes delta within three weeks in Italy study

    In their study, SMART researchers found that the increase in booster vaccine population coverage in Italy concurred with the complete displacement of the Delta variant by the Omicron variant in wastewater samples obtained from the Torbole Casaglia wastewater treatment plant, with a catchment size of 62,722 people. Taking less than three weeks, the rapid pace of this displacement can be attributed to Omicron’s infection advantage over the previously dominant Delta in vaccinated individuals, which may stem from Omicron’s more efficient evasion of vaccination-induced immunity.

    “In a world where Covid-19 is endemic, the monitoring of VOCs through wastewater surveillance will be an effective tool for the tracking of variants circulating in the community and will play an increasingly important role in guiding public health response,” says paper co-author Federica Armas, a senior postdoc at SMART AMR. “This work has demonstrated that wastewater surveillance can be used to quickly and quantitatively trace VOCs present in a community.”

    Wastewater surveillance vital for future pandemic responses

    As the global population becomes increasingly vaccinated and exposed to prior infections, nations have begun transitioning toward the classification of SARS-CoV-2 as an endemic disease, rolling back active clinical surveillance toward decentralized antigen rapid tests, and consequently reducing sequencing of patient samples. However, SARS-CoV-2 has been shown to produce novel VOCs that can swiftly emerge and spread rapidly across populations, displacing previously dominant variants of the virus. This was observed when Delta displaced Alpha across the globe after the former’s emergence in India in December 2020, and again when Omicron displaced Delta at an even faster rate following its discovery in South Africa in November 2021. The continuing emergence of novel VOCs therefore necessitates continued vigilance on the monitoring of circulating SARS-CoV-2 variants in communities.

    In a separate review paper on wastewater surveillance titled “Making Waves: Wastewater Surveillance of SARS-CoV-2 in an Endemic Future,” published in the journal Water Research, SMART researchers and collaborators found that the utility of wastewater surveillance in the near future could include 1) monitoring the trend of viral loads in wastewater for quantified viral estimates circulating in a community; 2) sampling of wastewater at the source — e.g., taking samples from particular neighborhoods or buildings — for pinpointing infections in neighborhoods and at the building level; 3) integrating wastewater and clinical surveillance for cost-efficient population surveillance; and 4) genome sequencing wastewater samples to track circulating and emerging variants in the population.

    “Our experience with SARS-CoV-2 has shown that clinical testing can often only paint a limited picture of the true extent of an outbreak or pandemic. With Covid-19 becoming prevalent and with the anticipated emergence of further variants of concern, qualitative and quantitative data from wastewater surveillance will be an integral component of a cost- and resource-efficient public health surveillance program, empowering authorities to make more informed policy decisions,” adds corresponding author Janelle Thompson, associate professor at SCELSE and NTU. “Our review provides a roadmap for the wider deployment of wastewater surveillance, with opportunities and challenges that, if addressed, will enable us to not only better manage Covid-19, but also future-proof societies for other viral pathogens and future pandemics.”

    In addition, the review suggests that future wastewater research should comply with a set of standardized wastewater processing methods to reduce inconsistencies in wastewater data toward improving epidemiological inference. Methods developed in the context of SARS-CoV-2 and its analyses could be of invaluable benefit for future wastewater monitoring work on discovering emerging zoonotic pathogens — pathogens that can be transmitted from animals to humans — and for early detection of future pandemics.

    Furthermore, far from being confined to SARS-CoV-2, wastewater surveillance has already been adapted for use in combating other viral pathogens. Another paper from September 2021 described an advance in the development of effective wastewater surveillance for dengue, Zika, and yellow fever viruses, with SMART researchers successfully measuring decay rates of these medically significant arboviruses in wastewater. This was followed by another review paper by SMART published in July 2022 that explored current progress and future challenges and opportunities in wastewater surveillance for arboviruses. These developments represent an important first step toward establishing arbovirus wastewater surveillance, which would help policymakers in Singapore and beyond make better informed and more targeted public health measures in controlling arbovirus outbreaks such as dengue, which is a significant public health concern in Singapore.

    “Our learnings from using wastewater surveillance as a key tool over the course of Covid-19 will be crucial in helping researchers develop similar methods to monitor and tackle other viral pathogens and future pandemics,” says Lee Wei Lin, first author of the latest SMART paper and research scientist at SMART AMR. “Wastewater surveillance has already shown promising utility in helping to fight other viral pathogens, including some of the world’s most prevalent mosquito-borne diseases, and there is significant potential for the technology to be adapted for use against other infectious viral diseases.”

    The research is carried out by SMART and its collaborators at SCELSE, NTU, and NUS, co-led by Professor Eric Alm (SMART and MIT) and Associate Professor Janelle Thompson (SCELSE and NTU), and is supported by Singapore’sNational Research Foundation (NRF) under its Campus for Research Excellence And Technological Enterprise (CREATE) program. The research is part of an initiative funded by the NRF to develop sewage-based surveillance for rapid outbreak detection and intervention in Singapore.

    SMART was established by MIT in partnership with the NRF in 2007. SMART is the first entity in CREATE developed by NRF and serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Centre and five interdisciplinary research groups: AMR, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive & Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.

    The AMR IRG is a translational research and entrepreneurship program that tackles the growing threat of antimicrobial resistance. By leveraging talent and convergent technologies across Singapore and MIT, they tackle AMR head-on by developing multiple innovative and disruptive approaches to identify, respond to, and treat drug-resistant microbial infections. Through strong scientific and clinical collaborations, our goal is to provide transformative, holistic solutions for Singapore and the world. More