More stories

  • in

    Cutting urban carbon emissions by retrofitting buildings

    To support the worldwide struggle to reduce carbon emissions, many cities have made public pledges to cut their carbon emissions in half by 2030, and some have promised to be carbon neutral by 2050. Buildings can be responsible for more than half a municipality’s carbon emissions. Today, new buildings are typically designed in ways that minimize energy use and carbon emissions. So attention focuses on cleaning up existing buildings.

    A decade ago, leaders in some cities took the first step in that process: They quantified their problem. Based on data from their utilities on natural gas and electricity consumption and standard pollutant-emission rates, they calculated how much carbon came from their buildings. They then adopted policies to encourage retrofits, such as adding insulation, switching to double-glazed windows, or installing rooftop solar panels. But will those steps be enough to meet their pledges?

    “In nearly all cases, cities have no clear plan for how they’re going to reach their goal,” says Christoph Reinhart, a professor in the Department of Architecture and director of the Building Technology Program. “That’s where our work comes in. We aim to help them perform analyses so they can say, ‘If we, as a community, do A, B, and C to buildings of a certain type within our jurisdiction, then we are going to get there.’”

    To support those analyses, Reinhart and a team in the MIT Sustainable Design Lab (SDL) — PhD candidate Zachary M. Berzolla SM ’21; former doctoral student Yu Qian Ang PhD ’22, now a research collaborator at the SDL; and former postdoc Samuel Letellier-Duchesne, now a senior building performance analyst at the international building engineering and consulting firm Introba — launched a publicly accessible website providing a series of simulation tools and a process for using them to determine the impacts of planned steps on a specific building stock. Says Reinhart: “The takeaway can be a clear technology pathway — a combination of building upgrades, renewable energy deployments, and other measures that will enable a community to reach its carbon-reduction goals for their built environment.”

    Analyses performed in collaboration with policymakers from selected cities around the world yielded insights demonstrating that reaching current goals will require more effort than city representatives and — in a few cases — even the research team had anticipated.

    Exploring carbon-reduction pathways

    The researchers’ approach builds on a physics-based “building energy model,” or BEM, akin to those that architects use to design high-performance green buildings. In 2013, Reinhart and his team developed a method of extending that concept to analyze a cluster of buildings. Based on publicly available geographic information system (GIS) data, including each building’s type, footprint, and year of construction, the method defines the neighborhood — including trees, parks, and so on — and then, using meteorological data, how the buildings will interact, the airflows among them, and their energy use. The result is an “urban building energy model,” or UBEM, for a neighborhood or a whole city.

    The website developed by the MIT team enables neighborhoods and cities to develop their own UBEM and to use it to calculate their current building energy use and resulting carbon emissions, and then how those outcomes would change assuming different retrofit programs or other measures being implemented or considered. “The website — UBEM.io — provides step-by-step instructions and all the simulation tools that a team will need to perform an analysis,” says Reinhart.

    The website starts by describing three roles required to perform an analysis: a local sustainability champion who is familiar with the municipality’s carbon-reduction efforts; a GIS manager who has access to the municipality’s urban datasets and maintains a digital model of the built environment; and an energy modeler — typically a hired consultant — who has a background in green building consulting and individual building energy modeling.

    The team begins by defining “shallow” and “deep” building retrofit scenarios. To explain, Reinhart offers some examples: “‘Shallow’ refers to things that just happen, like when you replace your old, failing appliances with new, energy-efficient ones, or you install LED light bulbs and weatherstripping everywhere,” he says. “‘Deep’ adds to that list things you might do only every 20 years, such as ripping out walls and putting in insulation or replacing your gas furnace with an electric heat pump.”

    Once those scenarios are defined, the GIS manager uploads to UBEM.io a dataset of information about the city’s buildings, including their locations and attributes such as geometry, height, age, and use (e.g., commercial, retail, residential). The energy modeler then builds a UBEM to calculate the energy use and carbon emissions of the existing building stock. Once that baseline is established, the energy modeler can calculate how specific retrofit measures will change the outcomes.

    Workshop to test-drive the method

    Two years ago, the MIT team set up a three-day workshop to test the website with sample users. Participants included policymakers from eight cities and municipalities around the world: namely, Braga (Portugal), Cairo (Egypt), Dublin (Ireland), Florianopolis (Brazil), Kiel (Germany), Middlebury (Vermont, United States), Montreal (Canada), and Singapore. Taken together, the cities represent a wide range of climates, socioeconomic demographics, cultures, governing structures, and sizes.

    Working with the MIT team, the participants presented their goals, defined shallow- and deep-retrofit scenarios for their city, and selected a limited but representative area for analysis — an approach that would speed up analyses of different options while also generating results valid for the city as a whole.

    They then performed analyses to quantify the impacts of their retrofit scenarios. Finally, they learned how best to present their findings — a critical part of the exercise. “When you do this analysis and bring it back to the people, you can say, ‘This is our homework over the next 30 years. If we do this, we’re going to get there,’” says Reinhart. “That makes you part of the community, so it’s a joint goal.”

    Sample results

    After the close of the workshop, Reinhart and his team confirmed their findings for each city and then added one more factor to the analyses: the state of the city’s electric grid. Several cities in the study had pledged to make their grid carbon-neutral by 2050. Including the grid in the analysis was therefore critical: If a building becomes all-electric and purchases its electricity from a carbon-free grid, then that building will be carbon neutral — even with no on-site energy-saving retrofits.

    The final analysis for each city therefore calculated the total kilograms of carbon dioxide equivalent emitted per square meter of floor space assuming the following scenarios: the baseline; shallow retrofit only; shallow retrofit plus a clean electricity grid; deep retrofit only; deep retrofit plus rooftop photovoltaic solar panels; and deep retrofit plus a clean electricity grid. (Note that “clean electricity grid” is based on the area’s most ambitious decarbonization target for their power grid.)

    The following paragraphs provide highlights of the analyses for three of the eight cities. Included are the city’s setting, emission-reduction goals, current and proposed measures, and calculations of how implementation of those measures would affect their energy use and carbon emissions.

    Singapore

    Singapore is generally hot and humid, and its building energy use is largely in the form of electricity for cooling. The city is dominated by high-rise buildings, so there’s not much space for rooftop solar installations to generate the needed electricity. Therefore, plans for decarbonizing the current building stock must involve retrofits. The shallow-retrofit scenario focuses on installing energy-efficient lighting and appliances. To those steps, the deep-retrofit scenario adds adopting a district cooling system. Singapore’s stated goals are to cut the baseline carbon emissions by about a third by 2030 and to cut it in half by 2050.

    The analysis shows that, with just the shallow retrofits, Singapore won’t achieve its 2030 goal. But with the deep retrofits, it should come close. Notably, decarbonizing the electric grid would enable Singapore to meet and substantially exceed its 2050 target assuming either retrofit scenario.

    Dublin

    Dublin has a mild climate with relatively comfortable summers but cold, humid winters. As a result, the city’s energy use is dominated by fossil fuels, in particular, natural gas for space heating and domestic hot water. The city presented just one target — a 40 percent reduction by 2030.

    Dublin has many neighborhoods made up of Georgian row houses, and, at the time of the workshop, the city already had a program in place encouraging groups of owners to insulate their walls. The shallow-retrofit scenario therefore focuses on weatherization upgrades (adding weatherstripping to windows and doors, insulating crawlspaces, and so on). To that list, the deep-retrofit scenario adds insulating walls and installing upgraded windows. The participants didn’t include electric heat pumps, as the city was then assessing the feasibility of expanding the existing district heating system.

    Results of the analyses show that implementing the shallow-retrofit scenario won’t enable Dublin to meet its 2030 target. But the deep-retrofit scenario will. However, like Singapore, Dublin could make major gains by decarbonizing its electric grid. The analysis shows that a decarbonized grid — with or without the addition of rooftop solar panels where possible — could more than halve the carbon emissions that remain in the deep-retrofit scenario. Indeed, a decarbonized grid plus electrification of the heating system by incorporating heat pumps could enable Dublin to meet a future net-zero target.

    Middlebury

    Middlebury, Vermont, has warm, wet summers and frigid winters. Like Dublin, its energy demand is dominated by natural gas for heating. But unlike Dublin, it already has a largely decarbonized electric grid with a high penetration of renewables.

    For the analysis, the Middlebury team chose to focus on an aging residential neighborhood similar to many that surround the city core. The shallow-retrofit scenario calls for installing heat pumps for space heating, and the deep-retrofit scenario adds improvements in building envelopes (the façade, roof, and windows). The town’s targets are a 40 percent reduction from the baseline by 2030 and net-zero carbon by 2050.

    Results of the analyses showed that implementing the shallow-retrofit scenario won’t achieve the 2030 target. The deep-retrofit scenario would get the city to the 2030 target but not to the 2050 target. Indeed, even with the deep retrofits, fossil fuel use remains high. The explanation? While both retrofit scenarios call for installing heat pumps for space heating, the city would continue to use natural gas to heat its hot water.

    Lessons learned

    For several policymakers, seeing the results of their analyses was a wake-up call. They learned that the strategies they had planned might not be sufficient to meet their stated goals — an outcome that could prove publicly embarrassing for them in the future.

    Like the policymakers, the researchers learned from the experience. Reinhart notes three main takeaways.

    First, he and his team were surprised to find how much of a building’s energy use and carbon emissions can be traced to domestic hot water. With Middlebury, for example, even switching from natural gas to heat pumps for space heating didn’t yield the expected effect: On the bar graphs generated by their analyses, the gray bars indicating carbon from fossil fuel use remained. As Reinhart recalls, “I kept saying, ‘What’s all this gray?’” While the policymakers talked about using heat pumps, they were still going to use natural gas to heat their hot water. “It’s just stunning that hot water is such a big-ticket item. It’s huge,” says Reinhart.

    Second, the results demonstrate the importance of including the state of the local electric grid in this type of analysis. “Looking at the results, it’s clear that if we want to have a successful energy transition, the building sector and the electric grid sector both have to do their homework,” notes Reinhart. Moreover, in many cases, reaching carbon neutrality by 2050 would require not only a carbon-free grid but also all-electric buildings.

    Third, Reinhart was struck by how different the bar graphs presenting results for the eight cities look. “This really celebrates the uniqueness of different parts of the world,” he says. “The physics used in the analysis is the same everywhere, but differences in the climate, the building stock, construction practices, electric grids, and other factors make the consequences of making the same change vary widely.”

    In addition, says Reinhart, “there are sometimes deeply ingrained conflicts of interest and cultural norms, which is why you cannot just say everybody should do this and do this.” For instance, in one case, the city owned both the utility and the natural gas it burned. As a result, the policymakers didn’t consider putting in heat pumps because “the natural gas was a significant source of municipal income, and they didn’t want to give that up,” explains Reinhart.

    Finally, the analyses quantified two other important measures: energy use and “peak load,” which is the maximum electricity demanded from the grid over a specific time period. Reinhart says that energy use “is probably mostly a plausibility check. Does this make sense?” And peak load is important because the utilities need to keep a stable grid.

    Middlebury’s analysis provides an interesting look at how certain measures could influence peak electricity demand. There, the introduction of electric heat pumps for space heating more than doubles the peak demand from buildings, suggesting that substantial additional capacity would have to be added to the grid in that region. But when heat pumps are combined with other retrofitting measures, the peak demand drops to levels lower than the starting baseline.

    The aftermath: An update

    Reinhart stresses that the specific results from the workshop provide just a snapshot in time; that is, where the cities were at the time of the workshop. “This is not the fate of the city,” he says. “If we were to do the same exercise today, we’d no doubt see a change in thinking, and the outcomes would be different.”

    For example, heat pumps are now familiar technology and have demonstrated their ability to handle even bitterly cold climates. And in some regions, they’ve become economically attractive, as the war in Ukraine has made natural gas both scarce and expensive. Also, there’s now awareness of the need to deal with hot water production.

    Reinhart notes that performing the analyses at the workshop did have the intended impact: It brought about change. Two years after the project had ended, most of the cities reported that they had implemented new policy measures or had expanded their analysis across their entire building stock. “That’s exactly what we want,” comments Reinhart. “This is not an academic exercise. It’s meant to change what people focus on and what they do.”

    Designing policies with socioeconomics in mind

    Reinhart notes a key limitation of the UBEM.io approach: It looks only at technical feasibility. But will the building owners be willing and able to make the energy-saving retrofits? Data show that — even with today’s incentive programs and subsidies — current adoption rates are only about 1 percent. “That’s way too low to enable a city to achieve its emission-reduction goals in 30 years,” says Reinhart. “We need to take into account the socioeconomic realities of the residents to design policies that are both effective and equitable.”

    To that end, the MIT team extended their UBEM.io approach to create a socio-techno-economic analysis framework that can predict the rate of retrofit adoption throughout a city. Based on census data, the framework creates a UBEM that includes demographics for the specific types of buildings in a city. Accounting for the cost of making a specific retrofit plus financial benefits from policy incentives and future energy savings, the model determines the economic viability of the retrofit package for representative households.

    Sample analyses for two Boston neighborhoods suggest that high-income households are largely ineligible for need-based incentives or the incentives are insufficient to prompt action. Lower-income households are eligible and could benefit financially over time, but they don’t act, perhaps due to limited access to information, a lack of time or capital, or a variety of other reasons.

    Reinhart notes that their work thus far “is mainly looking at technical feasibility. Next steps are to better understand occupants’ willingness to pay, and then to determine what set of federal and local incentive programs will trigger households across the demographic spectrum to retrofit their apartments and houses, helping the worldwide effort to reduce carbon emissions.”

    This work was supported by Shell through the MIT Energy Initiative. Zachary Berzolla was supported by the U.S. National Science Foundation Graduate Research Fellowship. Samuel Letellier-Duchesne was supported by the postdoctoral fellowship of the Natural Sciences and Engineering Research Council of Canada.

    This article appears in the Spring 2023 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Panel addresses technologies needed for a net-zero future

    Five speakers at a recent public panel discussion hosted by the MIT Energy Initiative (MITEI) and introduced by Deputy Director for Science and Technology Robert Stoner tackled one of the thorniest, yet most critical, questions facing the world today: How can we achieve the ambitious goals set by governments around the globe, including the United States, to reach net zero emissions of greenhouse gases by mid-century?

    While the challenges are great, the panelists agreed, there is reason for optimism that these technological challenges can be solved. More uncertain, some suggested, are the social, economic, and political hurdles to bringing about the needed innovations.

    The speakers addressed areas where new or improved technologies or systems are needed if these ambitious goals are to be achieved. Anne White, aassociate provost and associate vice president for research administration and a professor of nuclear science and engineering at MIT, moderated the panel discussion. She said that achieving the ambitious net-zero goal “has to be accomplished by filling some gaps, and going after some opportunities.” In addressing some of these needs, she said the five topics chosen for the panel discussion were “places where MIT has significant expertise, and progress is already ongoing.”

    First of these was the heating and cooling of buildings. Christoph Reinhart, a professor of architecture and director of the Building Technology Program, said that currently about 1 percent of existing buildings are being retrofitted each year for energy efficiency and conversion from fossil-fuel heating systems to efficient electric ones — but that is not nearly enough to meet the 2050 net-zero target. “It’s an enormous task,” he said. To meet the goals, he said, would require increasing the retrofitting rate to 5 percent per year, and to require all new construction to be carbon neutral as well.

    Reinhart then showed a series of examples of how such conversions could take place using existing solar and heat pump technology, and depending on the configuration, how they could provide a payback to the homeowner within 10 years or less. However, without strong policy incentives the initial cost outlay for such a system, on the order of $50,000, is likely to put conversions out of reach of many people. Still, a recent survey found that 30 percent of homeowners polled said they would accept installation at current costs. While there is government money available for incentives for others, “we have to be very clever on how we spend all this money … and make sure that everybody is basically benefiting.”

    William Green, a professor of chemical engineering, spoke about the daunting challenge of bringing aviation to net zero. “More and more people like to travel,” he said, but that travel comes with carbon emissions that affect the climate, as well as air pollution that affects human health. The economic costs associated with these emissions, he said, are estimated at $860 per ton of jet fuel used — which is very close to the cost of the fuel itself. So the price paid by the airlines, and ultimately by the passengers, “is only about half of the true cost to society, and the other half is being borne by all of us, by the fact that it’s affecting the climate and it’s causing medical problems for people.”

    Eliminating those emissions is a major challenge, he said. Virtually all jet fuel today is fossil fuel, but airlines are starting to incorporate some biomass-based fuel, derived mostly from food waste. But even these fuels are not carbon-neutral, he said. “They actually have pretty significant carbon intensity.”

    But there are possible alternatives, he said, mostly based on using hydrogen produced by clean electricity, and making fuels out of that hydrogen by reacting it, for example, with carbon dioxide. This could indeed produce a carbon-neutral fuel that existing aircraft could use, but the process is costly, requiring a great deal of hydrogen, and ways of concentrating carbon dioxide. Other viable options also exist, but all would add significant expense, at least with present technology. “It’s going to cost a lot more for the passengers on the plane,” Green said, “But the society will benefit from that.”

    Increased electrification of heating and transportation in order to avoid the use of fossil fuels will place major demands on the existing electric grid systems, which have to perform a constant delicate balancing of production with demand. Anuradha Annaswamy, a senior research scientist in MIT’s mechanical engineering department, said “the electric grid is an engineering marvel.” In the United States it consists of 300,000 miles of transmission lines capable of carrying 470,000 megawatts of power.

    But with a projected doubling of energy from renewable sources entering the grid by 2030, and with a push to electrify everything possible — from transportation to buildings to industry — the load is not only increasing, but the patterns of both energy use and production are changing. Annaswamy said that “with all these new assets and decision-makers entering the picture, the question is how you can use a more sophisticated information layer that coordinates how all these assets are either consuming or producing or storing energy, and have that information layer coexist with the physical layer to make and deliver electricity in all these ways. It’s really not a simple problem.”

    But there are ways of addressing these complexities. “Certainly, emerging technologies in power electronics and control and communication can be leveraged,” she said. But she added that “This is not just a technology problem, really, it is something that requires technologists, economists, and policymakers to all come together.”

    As for industrial processes, Bilge Yildiz, a professor of nuclear science and engineering and materials science and engineering, said that “the synthesis of industrial chemicals and materials constitutes about 33 percent of global CO2 emissions at present, and so our goal is to decarbonize this difficult sector.” About half of all these industrial emissions come from the production of just four materials: steel, cement, ammonia, and ethylene, so there is a major focus of research on ways to reduce their emissions.

    Most of the processes to make these materials have changed little for more than a century, she said, and they are mostly heat-based processes that involve burning a lot of fossil fuel. But the heat can instead be provided from renewable electricity, which can also be used to drive electrochemical reactions in some cases as a substitute for the thermal reactions. Already, there are processes for making cement and steel that produce only about half the present carbon dioxide (CO2) emissions.

    The production of ammonia, which is widely used in fertilizer and other bulk chemicals, accounts for more greenhouse gas emissions than any other industrial source. The present thermochemical process could be replaced by an electrochemical process, she said. Similarly, the production of ethylene, as a feedstock for plastics and other materials, is the second-highest emissions producer, with three tons of carbon dioxide released for every ton of ethylene produced. Again, an electrochemical alternative method exists, but needs to be improved to be cost competitive.

    As the world moves toward electrification of industrial processes to eliminate fossil fuels, the need for emissions-free sources of electricity will continue to increase. One very promising potential addition to the range of carbon-free generation sources is fusion, a field in which MIT is a leader in developing a particularly promising technology that takes advantage of the unique properties of high-temperature superconducting (HTS) materials.

    Dennis Whyte, the director of MIT’s Plasma Science and Fusion Center, pointed out that despite global efforts to reduce CO2 emissions, “we use exactly the same percentage of carbon-based products to generate energy as 10 years ago, or 20 years ago.” To make a real difference in global emissions, “we need to make really massive amounts of carbon-free energy.”

    Fusion, the process that powers the sun, is a particularly promising pathway, because the fuel, derived from water, is virtually inexhaustible. By using recently developed HTS material to generate the powerful magnetic fields needed to produce a sustained fusion reaction, the MIT-led project, which led to a spinoff company called Commonwealth Fusion Systems, was able to radically reduce the required size of a fusion reactor, Whyte explained. Using this approach, the company, in collaboration with MIT, expects to have a fusion system that produces net energy by the middle of this decade, and be ready to build a commercial plant to produce power for the grid early in the next. Meanwhile, at least 25 other private companies are also attempting to commercialize fusion technology. “I think we can take some credit for helping to spawn what is essentially now a new industry in the United States,” Whyte said.

    Fusion offers the potential, along with existing solar and wind technologies, to provide the emissions-free power the world needs, Whyte says, but that’s only half the problem, the other part being how to get that power to where it’s needed, when it’s needed. “How do we adapt these new energy sources to be as compatible as possible with everything that we have already in terms of energy delivery?”

    Part of the way to find answers to that, he suggested, is more collaborative work on these issues that cut across disciplines, as well as more of the kinds of cross-cutting conversations and interactions that took place in this panel discussion. More

  • in

    Six ways MIT is taking action on climate

    From reuse and recycling to new carbon markets, events during Earth Month at MIT spanned an astonishing range of ideas and approaches to tackling the climate crisis. The MIT Climate Nucleus offered funding to departments and student organizations to develop programming that would showcase the countless initiatives underway to make a better world.

    Here are six — just six of many — ways the MIT community is making a difference on climate right now.

    1. Exchanging knowledge with policymakers to meet local, regional, and global challenges

    Creating solutions begins with understanding the problem.

    Speaking during the annual Earth Day Colloquium of the MIT Energy Initiative (MITEI) about the practical challenges of implementing wind-power projects, for instance, Massachusetts State Senator Michael J. Barrett offered a sobering assessment.

    The senate chair of the Joint Committee on Telecommunications, Utilities, and Energy, Barrett reported that while the coast of Massachusetts provides a conducive site for offshore wind, economic forces have knocked a major offshore wind installation project off track. The combination of the pandemic and global geopolitical instability has led to such great supply chain disruptions and rising commodity costs that a project considered necessary for the state to meet its near-term climate goals now faces delays, he said.

    Like others at MIT, MITEI researchers keep their work grounded in the real-world constraints and possibilities for decarbonization, engaging with policymakers and industry to understand the on-the-ground challenges to technological and policy-based solutions and highlight the opportunities for greatest impact.

    2. Developing new ways to prevent, mitigate, and adapt to the effects of climate change

    An estimated 20 percent of MIT faculty work on some aspect of the climate crisis, an enormous research effort distributed throughout the departments, labs, centers, and institutes.

    About a dozen such projects were on display at a poster session coordinated by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), Environmental Solutions Initiative (ESI), and MITEI.

    Students and postdocs presented innovations including:

    Graduate student Alexa Reese Canaan describes her research on household energy consumption to Massachusetts State Senator Michael J. Barrett, chair of the Joint Committee on Telecommunications, Utilities, and Energy.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    3. Preparing students to meet the challenges of a climate-changed world

    Faculty and staff from more than 30 institutions of higher education convened at the MIT Symposium on Advancing Climate Education to exchange best practices and innovations in teaching and learning. Speakers and participants considered paths to structural change in higher education, the imperative to place equity and justice at the center of new educational approaches, and what it means to “educate the whole student” so that graduates are prepared to live and thrive in a world marked by global environmental and economic disruption.

    Later in April, MIT faculty voted to approve the creation of a new joint degree program in climate system science and engineering.

    4. Offering climate curricula to K-12 teachers

    At a daylong conference on climate education for K-12 schools, the attendees were not just science teachers. Close to 50 teachers of arts, literature, history, math, mental health, English language, world languages, and even carpentry were all hungry for materials and approaches to integrate into their curricula. They were joined by another 50 high school students, ready to test out the workshops and content developed by MIT Climate Action Through Education (CATE), which are already being piloted in at least a dozen schools.

    The CATE initiative is led by Christopher Knittel, the George P. Shultz Professor of Energy Economics at the MIT Sloan School of Management, deputy director for policy at MITEI, and faculty director of the MIT Center for Energy and Environmental Policy Research. The K-12 Climate Action and Education Conference was hosted as a collaboration with the Massachusetts Teachers Association Climate Action Network and Earth Day Boston.

    “We will be honest about the threats posed by climate change, but also give students a sense of agency that they can do something about this,” Knittel told MITEI Energy Futures earlier this spring. “And for the many teachers — especially non-science teachers — starved for knowledge and background material, CATE offers resources to give them confidence to implement our curriculum.”

    High school students and K-12 teachers participated in a workshop on “Exploring a Green City,” part of the Climate Action and Education Conference on April 1.

    Photo: Tony Rinaldo

    Previous item
    Next item

    5. Guiding our communities in making sense of the coming changes

    The arts and humanities, vital in their own right, are also central to the sharing of scientific knowledge and its integration into culture, behavior, and decision-making. A message well-delivered can reach new audiences and prompt reflection and reckoning on ethics and values, identity, and optimism.

    The Climate Machine, part of ESI’s Arts and Climate program, produced an evening art installation on campus featuring dynamic, large-scale projections onto the façade of MIT’s new music building and a musical performance by electronic duo Warung. Passers-by were invited to take a Climate Identity Quiz, with the responses reflected in the visuals. Another exhibit displayed the results of a workshop in which attendees had used an artificial intelligence art tool to imagine the future of their hometowns, while another highlighted native Massachusetts wildlife.

    The Climate Machine is an MIT research project undertaken in collaboration with record label Anjunabeats. The collaborative team imagines interactive experiences centered on sustainability that could be deployed at musical events and festivals to inspire climate action.

    Dillon Ames (left) and Aaron Hopkins, known as the duo Warung, perform a live set during the Climate Machine art installation.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    6. Empowering students to seize this unique policy moment

    ESI’s TILclimate Podcast, which breaks down important climate topics for general listeners, held a live taping at the MIT Museum and offered an explainer on three recent, major pieces of federal legislation: the Inflation Reduction Act of 2022, the Bipartisan Infrastructure Bill of 2021, and the CHIPS and Science Act of 2022.

    The combination of funding and financial incentives for energy- and climate-related projects, along with reinvestment in industrial infrastructure, create “a real moment and an opportunity,” said special guest Elisabeth Reynolds, speaking with host Laur Hesse Fisher. Reynolds was a member of the National Economic Council from 2021 to 2022, serving as special assistant to the president for manufacturing and economic development; after leaving the White House, Reynolds returned to MIT, where she is a lecturer in MIT’s Department of Urban Studies and Planning.

    For students, the opportunities to engage have never been better, Reynolds urged: “There is so much need. … Find a way to contribute, and find a way to help us make this transformation.”

    “What we’re embarking on now, you just can’t overstate the significance of it,” she said.

    For more information on how MIT is advancing climate action across education; research and innovation; policy; economic, social, and environmental justice; public and global engagement; sustainable campus operations; and more, visit Fast Forward: MIT’s Climate Action Plan for the Decade. The actions described in the plan aim to accelerate the global transition to net-zero carbon emissions, and to “educate and empower the next generation.” More

  • in

    Mike Barrett: Climate goals may take longer, but we’ll get there

    The Covid-19 pandemic, inflation, and the war in Ukraine have combined to cause unavoidable delays in implementation of Massachusetts’s ambitious goals to tackle climate change, state Senator Mike Barrett said during his April 19 presentation at the MIT Energy Initiative (MITEI) Earth Day Colloquium. But, he added, he remains optimistic that the goals will be reached, with a lag of perhaps two years.

    Barrett, who is senate chair of the state’s Joint Committee on Telecommunications, Utilities, and Energy, spoke on the topic of “Decarbonizing Massachusetts” at MIT’s Wong Auditorium as part of the Institute’s celebration of Earth Week. The event was accompanied by a poster session highlighting some the work of MIT students and faculty aimed at tackling aspects of the climate issue.

    Martha Broad, MITEI’s executive director, introduced Barrett by pointing out that he was largely responsible for the passage of two major climate-related bills by the Massachusetts legislature: the Roadmap Act in 2021 and the Drive Act in 2022, which together helped to place the state as one of the nation’s leaders in the implementation of measures to ratchet down greenhouse gas emissions.

    The two key pieces of legislation, Barrett said, were complicated bills that included many components, but a major feature of the Roadmap Act was to reduce the time between reassessments of the state’s climate plans from 10 years to five, and to divide the targets for emissions reductions into six separate categories instead of just a single overall number.

    The six sectors the bill delineated are transportation; commercial, industrial, and institutional buildings; residential buildings; industrial processes; natural gas infrastructure; and electricity generation. Each of these faces different challenges, and needs to be evaluated separately, he said.

    The second bill, the Drive Act, set specific targets for implementation of carbon-free electricity generation. “We prioritize offshore wind,” he pointed out, because that’s one resource where Massachusetts has a real edge over other states and regions. Because of especially shallow offshore waters and strong, steady offshore winds that tend to be strongest during the peak demand hours of late afternoon and evening, the state’s coastal waters are an especially promising site for offshore wind farms, he said.

    Whereas the majority of offshore wind installations around the world are in deep water, which precludes fixed foundations and adds significantly to construction costs, Massachusetts’s shallow waters can allow relatively inexpensive construction. “So you can see why offshore wind became a linchpin, not only to our cleaning up the grid, but to feeding it into the building system, and for that matter into transportation, through our electric vehicles,” he said.

    Massachusetts’s needs in addressing climate change are quite different from global averages, or even U.S. averages, he pointed out. Worldwide, agriculture accounts for some 22 percent of greenhouse gas emissions, and 11 percent nationally. In Massachusetts the figure is less than one-half of 1 percent. The industrial sector is also much smaller than the national average. Meanwhile, buildings account for only about 6 percent of U.S. emissions, but 13 percent in the state. That means that overall, “buildings, transportation, and power generation become the whole ballgame” for this state, “requiring a real focus in terms of our thinking,” he said.

    Because of that, in those climate bills “we really insisted on reducing emissions in the energy generation sector, and our primary way to get there … lies with wind, and most of that is offshore.” The law calls for emissions from power generation to be cut by 53 percent by 2025, and 70 percent by 2030. Meeting that goal depends heavily on offshore wind. “Clean power is critical because the transmission and transportation and buildings depend on clean power, and offshore wind is critical to that clean power strategy,” he said.

    At the time the bills passed, plans for new offshore wind farm installations showed that the state was well on target to meet these goals, Barrett said. “There was plenty of reason for Massachusetts to feel very optimistic about offshore wind … Everyone was bullish.” While Massachusetts is a small state — 44th out of 50 — because of its unusually favorable offshore conditions, “we are second in the United States in terms of plans to deploy offshore wind,” after New York, he said.

    But then the real world got in the way.

    As Europe and the U.K. quickly tried to pivot away from natural gas and oil in the wake of Russia’s invasion of Ukraine, the picture changed quickly. “Offshore wind suddenly had a lot of competition for the expertise, the equipment, and the materials,” he said.

    As just one example, he said, the ships needed for installation became unavailable. “Suddenly worldwide, there weren’t enough installation vessels to hold these very heavy components that have to be brought out to sea,” he said. About 20 to 40 such vessels are needed to install a single wind farm. “There are a limited number of these vessels capable of carrying these huge pieces of infrastructure in the world. And in the wake of stepped-up demand from Europe, and other places, including China, there was an enormous shortage of appropriate vessels.”

    That wasn’t the only obstacle. Prices of some key commodities also shot up, partly due to supply chain issues associated with the pandemic, and the resulting worldwide inflation. “The ramifications of these kinds of disruptions obviously have been felt worldwide,“ he said. For example, the Hornsea Project off the coast of the United Kingdom is the largest proposed offshore wind farm in the world, and one the U.K. was strongly dependent on to meet climate targets. But the developer of the project, Ørsted, said it could no longer proceed without a major government bailout. At this point, the project remains in limbo.

    In Massachusetts, the company Avangrid had a contract to build 60 offshore wind turbines to deliver 1,200 megawatts of power. But last month, in a highly unusual move for a major company, “they informed Massachusetts that they were terminating a contract they had signed.” That contract was a big part of the state’s overall clean energy strategy, he said. A second developer, that had also signed a contract for a 1,200-MW offshore farm, signaled that it too could not meet its contract.

    “We technically haven’t failed yet” in meeting the goals that were set for emissions reduction, Barrett said. “In theory, we have two years to recover from the setbacks that I’m describing.” Realistically, though, he said “it is quite likely that we’re not going to hit our 2025 and 2030 benchmarks.”

    But despite all this, Barrett ended his remarks on an essentially optimistic note. “I hate to see us fall off-pace in any way,” he said. But, he added, “the truth is that a short delay — and I think we’re looking at just a couple of years delay — is a speed bump, it’s not a roadblock. It is not the end of climate policy.”

    Worldwide demand for offshore wind power remains “extraordinary,” said Barrett, mainly as a result of the need to get off of Russian fossil fuel. As a result, “eventually supply will come into balance with this demand … The balance will be restored.”

    To monitor the process, Barrett said he has submitted legislation to create a new independent Climate Policy Commission, to examine in detail the data on performance in meeting the state’s climate goals and to make recommendations. The measure would provide open access to information for the public, allowing everyone to see the progress being made from an unbiased source.

    “Setbacks are going to happen,” he said. “This is a tough, tough job. While the real world is going to surprise us, persistence is critical.”

    He concluded that “I think we’re going to wind up building every windmill that we need for our emissions reduction policy. Just not on the timeline that we had hoped for.”

    The poster session was co-hosted by the MIT Abdul Latif Jameel Water and Food Systems Lab and MIT Environmental Solutions Initiative. The full event was sponsored by the MIT Climate Nucleus. More

  • in

    The answer may be blowing in the wind

    Capturing energy from the winds gusting off the coasts of the United States could more than double the nation’s electricity generation. It’s no wonder the Biden administration views this immense, clean-energy resource as central to its ambitious climate goals of 100 percent carbon-emissions-free electricity by 2035 and a net-zero emissions economy by 2050. The White House is aiming for 30 gigawatts of offshore wind by 2030 — enough to power 10 million homes.

    At the MIT Energy Initiative’s Spring Symposium, academic experts, energy analysts, wind developers, government officials, and utility representatives explored the immense opportunities and formidable challenges of tapping this titanic resource, both in the United States and elsewhere in the world.

    “There’s a lot of work to do to figure out how to use this resource economically — and sooner rather than later,” said Robert C. Armstrong, MITEI director and the Chevron Professor of Chemical Engineering, in his introduction to the event. 

    In sessions devoted to technology, deployment and integration, policy, and regulation, participants framed the issues critical to the development of offshore wind, described threats to its rapid rollout, and offered potential paths for breaking through gridlock.

    R&D advances

    Moderating a panel on MIT research that is moving the industry forward, Robert Stoner, MITEI’s deputy director for science and technology, provided context for the audience about the industry.

    “We have a high degree of geographic coincidence between where that wind capacity is and where most of us are, and it’s complementary to solar,” he said. Turbines sited in deeper, offshore waters gain the advantage of higher-velocity winds. “You can make these machines huge, creating substantial economies of scale,” said Stoner. An onshore turbine generates approximately 3 megawatts; offshore structures can each produce 15 to 17 megawatts, with blades the length of a football field and heights greater than the Washington Monument.

    To harness the power of wind farms spread over hundreds of nautical miles in deep water, Stoner said, researchers must first address some serious issues, including building and maintaining these massive rigs in harsh environments, laying out wind farms to optimize generation, and creating reliable and socially acceptable connections to the onshore grid. MIT scientists described how they are tackling a number of these problems.

    “When you design a floating structure, you have to prepare for the worst possible conditions,” said Paul Sclavounos, a professor of mechanical engineering and naval architecture who is developing turbines that can withstand severe storms that batter turbine blades and towers with thousands of tons of wind force. Sclavounos described systems used in the oil industry for tethering giant, buoyant rigs to the ocean floor that could be adapted for wind platforms. Relatively inexpensive components such as polyester mooring lines and composite materials “can mitigate the impact of high waves and big, big wind loads.”

    To extract the maximum power from individual turbines, developers must take into account the aerodynamics among turbines in a single wind farm and between adjacent wind farms, according to Michael Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering. Howland’s work modeling turbulence in the atmosphere and wind speeds has demonstrated that angling turbines by just a small amount relative to each other can increase power production significantly for offshore installations, dramatically improving their efficiencies. Howland hopes his research will promote “changing the design of wind farms from the beginning of the process.”

    There’s a staggering complexity to integrating electricity from offshore wind into regional grids such as the one operated by ISO New England, whether converting voltages or monitoring utility load. Steven B. Leeb, a professor of electrical engineering and computer science and of mechanical engineering, is developing sensors that can indicate electronic failures in a micro grid connected to a wind farm. And Marija Ilić, a joint adjunct professor in the Department of Electrical Engineering and Computer Science and a senior research scientist at the Laboratory for Information and Decision Systems, is developing software that would enable real-time scheduling of controllable equipment to compensate for the variable power generated by wind and other variable renewable resources. She is also working on adaptive distributed automation of this equipment to ensure a stable electric power grid.

    “How do we get from here to there?”

    Symposium speakers provided snapshots of the emerging offshore industry, sharing their sense of urgency as well as some frustrations.

    Climate poses “an existential crisis” that calls for “a massive war-footing undertaking,” said Melissa Hoffer, who occupies the newly created cabinet position of climate chief for the Commonwealth of Massachusetts. She views wind power “as the backbone of electric sector decarbonization.” With the Vineyard Wind project, the state will be one of the first in the nation to add offshore wind to the grid. “We are actually going to see the first 400 megawatts … likely interconnected and coming online by the end of this year, which is a fantastic milestone for us,” said Hoffer.

    The journey to completing Vineyard Wind involved a plethora of painstaking environmental reviews, lawsuits over lease siting, negotiations over the price of the electricity it will produce, buy-in from towns where its underground cable comes ashore, and travels to an Eversource substation. It’s a familiar story to Alla Weinstein, founder and CEO of Trident Winds, Inc. On the West Coast, where deep waters (greater than 60 meters) begin closer to shore, Weinstein is trying to launch floating offshore wind projects. “I’ve been in marine renewables for 20 years, and when people ask why I do what I do, I tell them it’s because it matters,” she said. “Because if we don’t do it, we may not have a planet that’s suitable for humans.”

    Weinstein’s “picture of reality” describes a multiyear process during which Trident Winds must address the concerns of such stakeholders as tribal communities and the fishing industry and ensure compliance with, among other regulations, the Marine Mammal Protection Act and the Migratory Bird Species Act. Construction of these massive floating platforms, when it finally happens, will require as-yet unbuilt specialized port infrastructure and boats, and a large skilled labor force for assembly and transmission. “This is a once-in-a-lifetime opportunity to create a new industry,” she said, but “how do we get from here to there?”

    Danielle Jensen, technical manager for Shell’s Offshore Wind Americas, is working on a project off of Rhode Island. The blueprint calls for high-voltage, direct-current cable snaking to landfall in Massachusetts, where direct-current lines switch to alternating current to connect to the grid. “None of this exists, so we have to find a space, the lands, and the right types of cables, tie into the interconnection point, and work with interconnection operators to do that safely and reliably,” she said.

    Utilities are partnering with developers to begin clearing some of these obstacles. Julia Bovey, director of offshore wind for Eversource, described her firm’s redevelopment or improvement of five ports, and new transport vessels for offshore assembly of wind farm components in Atlantic waters. The utility is also digging under roads to lay cables for new power lines. Bovey notes that snags in supply chains and inflation have been driving up costs. This makes determining future electricity rates more complex, especially since utility contracts and markets work differently in each state.

    Just seven up

    Other nations hold a commanding lead in offshore wind: To date, the United States claims just seven operating turbines, while Denmark boasts 6,200 and the U.K. 2,600. Europe’s combined offshore power capacity stands at 30 gigawatts — which, as MITEI Research Scientist Tim Schittekatte notes, is the U.S. goal for 2030.

    The European Union wants 400 gigawatts of offshore wind by 2050, a target made all the more urgent by threats to Europe’s energy security from the war in Ukraine. “The idea is to connect all those windmills, creating a mesh offshore grid,” Schittekatte said, aided by E.U. regulations that establish “a harmonized process to build cross-border infrastructure.”

    Morten Pindstrup, the international chief engineer at Energinet, Denmark’s state-owned energy enterprise, described one component of this pan-European plan: a hybrid Danish-German offshore wind network. Energinet is also constructing energy islands in the North Sea and the Baltic to pool power from offshore wind farms and feed power to different countries.

    The European wind industry benefits from centralized planning, regulation, and markets, said Johannes P. Pfeifenberger, a principal of The Brattle Group. “The grid planning process in the U.S. is not suitable today to find cost-effective solutions to get us to a clean energy grid in time,” he said. Pfeifenberger recommended that the United States immediately pursue a series of moves including a multistate agreement for cooperating on offshore wind and establishment by grid operators of compatible transmission technologies.

    Symposium speakers expressed sharp concerns that complicated and prolonged approvals, as well as partisan politics, could hobble the nation’s nascent offshore industry. “You can develop whatever you want and agree on what you’re doing, and then the people in charge change, and everything falls apart,” said Weinstein. “We can’t slow down, and we actually need to accelerate.”

    Larry Susskind, the Ford Professor of Urban and Environmental Planning, had ideas for breaking through permitting and political gridlock. A negotiations expert, he suggested convening confidential meetings for stakeholders with competing interests for collaborative problem-solving sessions. He announced the creation of a Renewable Energy Facility Siting Clinic at MIT. “We get people to agree that there is a problem, and to accept that without a solution, the system won’t work in the future, and we have to start fixing it now.”

    Other symposium participants were more sanguine about the success of offshore wind. “Trust me, floating wind is not a pie-in-the-sky, exotic technology that is difficult to implement,” said Sclavounos. “There will be companies investing in this technology because it produces huge amounts of energy, and even though the process may not be streamlined, the economics will work itself out.” More

  • in

    Envisioning education in a climate-changed world

    What must colleges and universities do differently to help students develop the skills, capacities, and perspectives they’ll need to live, lead, and thrive in a world being remade by the accelerating climate crisis?

    That question was at the heart of a recent convening on MIT’s campus that brought together faculty and staff from more than 30 institutions of higher education. Over two days, attendees delved into the need for higher education to align structurally and philosophically with the changing demands of the coming decades.

    “We all know that there is more to do to educate and to empower today’s students, the young people who rightly feel the threat of climate change most acutely,” said MIT Chancellor Melissa Nobles. “They are our future leaders, the generation that will inherit the full weight of the problem and the responsibility for trying to solve it.”

    The MIT Symposium for Advancing Climate Education, held on April 6 and 7, was hosted by MIT’s Climate Education Working Group, one of three working groups established under the Institute’s ambitious Fast Forward climate action plan. The Climate Education Working Group is tasked with finding ways to strengthen climate- and sustainability-related education at the Institute, from curricular offerings to experiential learning opportunities and beyond.

    “We began working as a group about a year ago, and we quickly realized it would be important to expand the conversation across MIT and to colleagues at other institutions who … are thinking broadly,” says Professor David McGee, co-chair of the Climate Education Working Group.

    Co-chair Professor David Hsu encouraged attendees to build lasting relationships, adding, “There is a true wealth of knowledge spread throughout the room. Every university has pieces of the puzzle, but I don’t think we can point to a single one that right now exemplifies all of what we want to achieve.”

    The symposium featured keynotes by Nobles; Kim Cobb, director of the Institute at Brown for Environment and Society; and Reverend Mariama White-Hammond, founder of the New Roots AME Church in Dorchester, who is also chief of environment, energy, and open space for the City of Boston.

    On the first morning of the event, participants engaged in roundtable discussions, exchanging ideas, successes, and pain points. They also identified and read out close to a dozen unsolved challenges, among them: “How do we meet the fear and anger that students are feeling, and the desire to ‘do’ that students are expressing?” “How do we support people who challenge the status quo?” “As we create these new educational experiences, how do we ensure that a diversity of students can participate in them?” “How do we align tenure and power structures to center communities in the development of this work?” and “How radical a change is MIT willing to make?”

    Kate Trimble, senior associate dean and director of the Office of Experiential Learning, remarked on the thorniness of those questions in closing, wryly adding, “We’ll answer every last one of them before we leave here tomorrow.”

    But in sharing best practices and lessons learned, the tone was overwhelmingly hopeful. Trimble, for example, led a series of discussions highlighting 10 climate education programs already developed at MIT, the University of California at Davis, the University of Michigan, Swarthmore College, Worcester Polytechnic Institute, and McGill University, among others. Each offered new models by which to weave climate justice, community partnerships, and cross-disciplinary teaching into classroom-based and experiential learning.

    Maria Zuber, MIT’s vice president for research, opened the symposium on the second day. Invoking the words of U.N. Secretary-General António Guterres upon publication of the IPCC’s sixth synthesis report last month, she said, “the global response needs to be ‘everything, everywhere, all at once.’”

    She pointed to a number of MIT research initiatives that are structured to address complex problems, among them the Climate Grand Challenges projects — the proposals for which came from researchers across 90 percent of MIT departments — as well as the MIT Climate and Sustainability Consortium and the MIT Energy Initiative’s Future Energy Systems Center.

    “These initiatives recognize that no sector, let alone any single institution, can be effective on its own — and so they seek to engage from the outset with other research institutions and with government, industry, and civil society,” Zuber said.

    Cobb, of Brown University, also spoke about the value of sustained action partnerships built on transdisciplinary research and collaborations with community leaders. She highlighted Brown’s participation in the Breathe Providence project and Georgia Tech’s involvement in the Smart Sea Level Sensors project in Savannah.

    Several speakers noted the importance of hands-on learning opportunities for students as a training ground for tackling complex challenges at scale. Students should learn how to build a respectfully collaborative team and how to connect with communities to understand the true nature and constraints of the problem, they said.

    Engineering professor Anne White, who is co-chair of the MIT Climate Nucleus, the faculty committee charged with implementing the Fast Forward plan, and MIT’s associate provost and associate vice president for research administration, moderated a career panel spanning nonprofit and corporate roles.

    The panelists’ experiences emphasized that in a world where no sector will be untouched by the impacts of climate change, every graduate in every field must be informed and ready to engage.

    “Education is training; it’s skills. We want the students to be smart. But what I’m hearing is that it’s not just that,” White reflected. “It’s these other qualities, right? It’s can they be brave … and can they be kind?”

    “Every job is a climate job in this era,” declared MIT graduate student Dyanna Jaye, co-founder of the Sunrise Movement.

    John Fernández, director of the Environmental Solutions Initiative at MIT, moderated a panel on structural change in higher education, speaking with Jim Stock, vice provost for climate and sustainability at Harvard University; Toddi Steelman, dean of the Nicholas School of the Environment at Duke University; and Stephen Porder, assistant provost for sustainability at Brown.

    Steelman (who is also a qualified wildland firefighter — a useful skill for a dean, she noted) described a popular course at Duke called “Let’s Talk About Climate Change” that is jointly taught by a biogeochemist and a theologian. The course enrolled around 150 students in the fall who met for contemplative breakout discussions. “Unless we talk about our hearts and our minds,” she said, “we’re not going to make progress.”

    White-Hammond highlighted one trait she believes today’s students already have in abundance.

    “They’re willing to say that the status quo is unacceptable, and that is an important part of being courageous in the face of this climate crisis,” she said. She urged institutions to take that cue.

    “If we have to remake the world, rebuild it on something radically different. Why would we bake in racial injustice again? Why would we say, let’s have an equally unequal economic system that just doesn’t burn as many fossil fuels? I think we have an opportunity to go big.”

    “That,” she added, “is the work I believe higher education should be taking on, and not from an ivory tower, but rooted in real communities.”

    The MIT Symposium for Advancing Climate Education was part of Earth Month at MIT, a series of climate and sustainability events on campus in April. More

  • in

    Robert Armstrong: A lifetime at the forefront of chemical engineering research and education

    Robert C. Armstrong, the Chevron Professor of Chemical Engineering who has been the director of the MIT Energy Initiative (MITEI) since 2013 and part of MITEI’s leadership team since its inception in 2007, has announced that he will retire effective June 30. At that time he will have completed 50 years on the MIT faculty.  

    Armstrong plans to continue to work at 10 percent capacity, focusing on research projects on which he serves as principal investigator and also advising a number of graduate students.

    “Working at MIT has been a great honor and privilege for me,” says Armstrong. “Nowhere else can I imagine having had the opportunity to work with such exceptional students and colleagues and to have a ‘job’ that makes me want to get up every day to see what I can do to help humanity with its great challenges.”

    Armstrong joined the founding MITEI leadership team with Ernest Moniz, now the Cecil and Ida Green Professor of Physics and Engineering Systems emeritus and special advisor to the MIT president. When Moniz left MIT in 2013 to become U.S. secretary of energy, Armstrong was named MITEI director.

    “MITEI has enabled us to leverage MIT’s great talent base to make significant advances in energy research, education, and outreach,” says Armstrong. “This is an incredibly important and exciting time in energy, and there is much to be done in envisioning and implementing an energy transition that mitigates the worst impacts of climate change, provides energy justly and equitably to those around the world without access or with inadequate access, and improves security of energy supply. I have been honored to do this work with amazing colleagues at MITEI and throughout MIT, and I will be cheering that team on, as it races to reach net-zero greenhouse gas emissions by 2050.”

    MIT Vice President for Research Maria Zuber will form a search committee to select the new MITEI director. Zuber has worked closely with Armstrong since she became vice president for research in 2012.

    “Anyone who knows Bob knows that he is soft-spoken, but a person of deep conviction,” says Zuber. “He is a master of complexity, an admired educator, a respected leader, and a terrific colleague. During his decade as director, Bob has focused the MIT Energy Initiative on the urgent, daunting challenge of transforming the global energy system to respond to the climate crisis. In the last couple of years, Bob led the creation of MITEI’s Future Energy Systems Center, reflecting his keen understanding that an effective climate response requires integrated analysis and a systems approach — there is no one-fix-all solution. I congratulate Bob on a remarkable career, and I thank him for his half-century of dedicated service to MIT.”

    Armstrong joined the MIT faculty in 1973 after earning his doctorate in chemical engineering from the University of Wisconsin at Madison. A native of Louisiana, he earned his undergraduate degree in chemical engineering from Georgia Tech. He served as chair of the MIT Department of Chemical Engineering from 1996 until joining MITEI in 2007. 

    “In his 50 years at MIT, Bob has been a truly dedicated educator, researcher, and leader in our department, the Institute, and the field of chemical engineering,” says Paula T. Hammond, Institute professor and the head of the MIT Department of Chemical Engineering — a successor to Armstrong in that role. “During his time as head, he expertly expanded the breadth and depth of the department’s research and academics while maintaining its high level of excellence. He has served as a thoughtful and proactive mentor to so many of our faculty members, as well as a dedicated teacher and advocate for modernizing chemical engineering curriculum. We are extremely fortunate to have profited from his scholarship and leadership over the past several decades and will continue to benefit thanks to his vision and work toward the future of chemical engineering and energy.”

    In 2008, Armstrong was elected a member of the National Academy of Engineering, based on his research into non-Newtonian fluid mechanics, his leadership in chemical engineering education, and his co-authoring of influential chemical engineering textbooks. He became a fellow of the American Academy of Arts and Sciences in 2020.

    He received the 2006 Bingham Medal from The Society of Rheology, which is devoted to the study of the science of deformation and flow of matter, as well as the Founders Award (2020), the Warren K. Lewis Award (2006), and the Professional Progress Award (1992), all from the American Institute of Chemical Engineers. More

  • in

    MIT Energy Conference grapples with geopolitics

    As Russia’s war in Ukraine rages on, this year’s MIT Energy Conference spotlighted the role of geopolitics in the world’s efforts to lower greenhouse gas emissions and mitigate the worst effects of climate change.

    Each year, the student-run conference, which its organizers say is the largest of its kind, brings together leaders from around the globe to discuss humanity’s most pressing energy and sustainability challenges.

    The event always involves perspectives from the investment, business, research, and startup communities. But this year, as more than 600 attendees gathered on April 11 and 12 for a whirlwind of keynote talks, fireside chats, and panel discussions, common themes also included the influence of Russia’s war, rising tensions between the U.S. and China, and international collaboration.

    As participants grappled with the evolving geopolitical landscape, some speakers encouraged moving past isolationist tendencies.

    “Some people push for self-sufficiency, others emphasize that we should not rely on trading partners that don’t share our values — I think both arguments are misguided,” said Juan Carlos Jobet, Chile’s former ministry of energy and mining. “No country has all that’s needed to create an energy system that’s affordable, clean, and secure. … A third of the world’s energy output is generated in nondemocratic countries. Can we really make our energy systems affordable and secure and curb climate change while excluding those countries from our collective effort? If we enter an area of protectionism and disintegration, we will all be worse off.”

    Another theme was optimism, such as that expressed by Volodymyr Kudrytskyi, CEO of Ukraine’s national power company, who spoke to the conference live from Kyiv. Kudrytskyi outlined Russia’s attacks on Ukraine’s power grids, which included more than 1,000 heavy missiles, making it the largest-ever campaign against a country’s power grid.

    Still, Kudrytskyi said he was confident he’d be able to attend the conference in person next year. As it happened, Kudrytskyi’s presentation marked the day Ukraine resumed its energy exports to other countries.

    “The good news is, after all of that, our system survived and continues operations,” he said.

    Energy security and the green transition

    Richard Duke, the U.S. Department of State’s deputy special envoy for climate, opened the conference with a keynote centered on the U.S.’ role in the global shift toward cleaner energy. Duke was among those advocating for a more integrated and diversified global energy system, noting that no country can address climate change on its own.

    “We need to do all of these things in parallel, in concert with other governments, and through the architecture of the Paris Climate agreement that wraps it together in ambitious net greenhouse gas abatement targets,” Duke said.

    Following his talk, Ditte Juul Jørgensen, the European Commission’s director general for energy, discussed the shift in the EU’s energy policies spurred by the Russian invasion of Ukraine.

    She admitted the EU had grown too dependent on Russian natural gas, but said the invasion forced European states to revise their energy strategy while keeping their long-term objective of net neutrality by 2050.

    “We see energy security and the green transition as interlinked. There is no energy security without the energy transition toward climate neutrality, and there’s no energy transition without energy security,” Jorgensen said.

    Jørgensen also outlined steps the EU has taken to improve its energy security over the last year, including rolling out additional renewable energy projects and replacing Russian fuel with fuel from the U.S., which has now become the continent’s main supplier of energy.

    “The fight against climate change is our shared ambition, it’s our shared responsibility, and I think we’ve shown over these last few years that we can turn that ambition into action and bring results,” she said.

    A challenge and an opportunity

    Optimism also shone through in the way speakers framed the green energy transition as a business opportunity. In keeping with the idea, the conference included a showcase of more than 30 startups focused on clean energy and sustainability.

    “We’re all battling a huge problem that needs a collective effort,” said Malav Sukhadia of Sol Clarity, a conference exhibitor that uses electricity to clean solar panels as a way to replace water cleaning. “This is one of the best energy conferences in the world. We felt if you’re in climate tech, you have to be here.”

    Technological development was a pillar of the conference, and a big topic in those discussions was green hydrogen, a clean fuel source that could replace natural gas in a number of applications and be produced using renewable energy. In one panel discussion on the technology, Sunita Satyapal of the Department of Energy noted the agency has been funding hydrogen development since the 1970s. Other panel members also stressed the maturity of the technology.

    “A lot of the technology needed to advance the ecosystem exists now,” said Laura Parkan, vice president of hydrogen energy at Air Liquide Americas. “The challenge is to get things to a large enough scale so that the costs come down to make it more affordable and really advance the hydrogen ecosystem.”

    Still, panel members acknowledged more technological development is needed to leverage the full potential of hydrogen, such as better mechanisms for storage and transportation.

    Other advanced technologies mentioned in panel discussions included advanced geothermal energy and small modular nuclear reactors that could be built and deployed more quickly than conventional reactors.

    “Exploring these different technologies may actually get us to the net zero — or even a zero carbon future — that we’re hoping for in electricity generation,” said Emma Wong of the OECD Nuclear Energy Agency, noting there are more than 80 advanced reactor designs that have been explored around the world. “There are various challenges and enabling conditions to be addressed, but places like China and Russia are already building these things, so there’s not a technological barrier.”

    “Glass half full”

    Despite the tall tasks that lie ahead, some speakers took a moment to celebrate accomplishments thus far.

    “It’s incredible to think about the progress we’ve made in the last 10 years,” said Neil Brown of the KKR investment firm, whose company is working to build a large offshore wind project. “Solar and wind and electric vehicles have gone from impossibly expensive and hard to imagine penetrating the market to being very close to, if not already at, cost parity. We’ve really come an awful long way.”

    Other speakers mixed their positivity with a confession of envy for the opportunity ahead of the young people in the audience, many of them students from MIT.

    “I have a mix of excitement from the speakers we’ve heard so far and a little bit of envy as well for the open road the young students and professionals here have in front of them,” said Jobert. “Coming back to this place has made me reconnect with the sense of opportunity and responsibility that I felt as a student.”

    Jobert offered lessons learned from his country’s struggles with an energy crisis, populist policies, and severe droughts. His talk finished with questions that struck at the heart of the conference.

    “The evidence is clear: The Earth will change. How much is still to be decided,” Jobert said. “The energy sector has been a central part of the problem. We now must work to become an essential pierce of the solution. Where should we focus our efforts? What can we learn from each other?” More