More stories

  • in

    Forging climate connections across the Institute

    Climate change is the ultimate cross-cutting issue: Not limited to any one discipline, it ranges across science, technology, policy, culture, human behavior, and well beyond. The response to it likewise requires an all-of-MIT effort.

    Now, to strengthen such an effort, a new grant program spearheaded by the Climate Nucleus, the faculty committee charged with the oversight and implementation of Fast Forward: MIT’s Climate Action Plan for the Decade, aims to build up MIT’s climate leadership capacity while also supporting innovative scholarship on diverse climate-related topics and forging new connections across the Institute.

    Called the Fast Forward Faculty Fund (F^4 for short), the program has named its first cohort of six faculty members after issuing its inaugural call for proposals in April 2023. The cohort will come together throughout the year for climate leadership development programming and networking. The program provides financial support for graduate students who will work with the faculty members on the projects — the students will also participate in leadership-building activities — as well as $50,000 in flexible, discretionary funding to be used to support related activities. 

    “Climate change is a crisis that truly touches every single person on the planet,” says Noelle Selin, co-chair of the nucleus and interim director of the Institute for Data, Systems, and Society. “It’s therefore essential that we build capacity for every member of the MIT community to make sense of the problem and help address it. Through the Fast Forward Faculty Fund, our aim is to have a cohort of climate ambassadors who can embed climate everywhere at the Institute.”

    F^4 supports both faculty who would like to begin doing climate-related work, as well as faculty members who are interested in deepening their work on climate. The program has the core goal of developing cohorts of F^4 faculty and graduate students who, in addition to conducting their own research, will become climate leaders at MIT, proactively looking for ways to forge new climate connections across schools, departments, and disciplines.

    One of the projects, “Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies,” led by Professor Siqi Zheng of the MIT Center for Real Estate in collaboration with colleagues from the MIT Sloan School of Management, focuses on the roughly 40 percent of carbon dioxide emissions that come from the buildings and real estate sector. Zheng notes that this sector has been slow to respond to climate change, but says that is starting to change, thanks in part to the rising awareness of climate risks and new local regulations aimed at reducing emissions from buildings.

    Using a data-driven approach, the project seeks to understand the efficient and equitable market incentives, technology solutions, and public policies that are most effective at transforming the real estate industry. Johnattan Ontiveros, a graduate student in the Technology and Policy Program, is working with Zheng on the project.

    “We were thrilled at the incredible response we received from the MIT faculty to our call for proposals, which speaks volumes about the depth and breadth of interest in climate at MIT,” says Anne White, nucleus co-chair and vice provost and associate vice president for research. “This program makes good on key commitments of the Fast Forward plan, supporting cutting-edge new work by faculty and graduate students while helping to deepen the bench of climate leaders at MIT.”

    During the 2023-24 academic year, the F^4 faculty and graduate student cohorts will come together to discuss their projects, explore opportunities for collaboration, participate in climate leadership development, and think proactively about how to deepen interdisciplinary connections among MIT community members interested in climate change.

    The six inaugural F^4 awardees are:

    Professor Tristan Brown, History Section: Humanistic Approaches to the Climate Crisis  

    With this project, Brown aims to create a new community of practice around narrative-centric approaches to environmental and climate issues. Part of a broader humanities initiative at MIT, it brings together a global working group of interdisciplinary scholars, including Serguei Saavedra (Department of Civil and Environmental Engineering) and Or Porath (Tel Aviv University; Religion), collectively focused on examining the historical and present links between sacred places and biodiversity for the purposes of helping governments and nongovernmental organizations formulate better sustainability goals. Boyd Ruamcharoen, a PhD student in the History, Anthropology, and Science, Technology, and Society (HASTS) program, will work with Brown on this project.

    Professor Kerri Cahoy, departments of Aeronautics and Astronautics and Earth, Atmospheric, and Planetary Sciences (AeroAstro): Onboard Autonomous AI-driven Satellite Sensor Fusion for Coastal Region Monitoring

    The motivation for this project is the need for much better data collection from satellites, where technology can be “20 years behind,” says Cahoy. As part of this project, Cahoy will pursue research in the area of autonomous artificial intelligence-enabled rapid sensor fusion (which combines data from different sensors, such as radar and cameras) onboard satellites to improve understanding of the impacts of climate change, specifically sea-level rise and hurricanes and flooding in coastal regions. Graduate students Madeline Anderson, a PhD student in electrical engineering and computer science (EECS), and Mary Dahl, a PhD student in AeroAstro, will work with Cahoy on this project.

    Professor Priya Donti, Department of Electrical Engineering and Computer Science: Robust Reinforcement Learning for High-Renewables Power Grids 

    With renewables like wind and solar making up a growing share of electricity generation on power grids, Donti’s project focuses on improving control methods for these distributed sources of electricity. The research will aim to create a realistic representation of the characteristics of power grid operations, and eventually inform scalable operational improvements in power systems. It will “give power systems operators faith that, OK, this conceptually is good, but it also actually works on this grid,” says Donti. PhD candidate Ana Rivera from EECS is the F^4 graduate student on the project.

    Professor Jason Jackson, Department of Urban Studies and Planning (DUSP): Political Economy of the Climate Crisis: Institutions, Power and Global Governance

    This project takes a political economy approach to the climate crisis, offering a distinct lens to examine, first, the political governance challenge of mobilizing climate action and designing new institutional mechanisms to address the global and intergenerational distributional aspects of climate change; second, the economic challenge of devising new institutional approaches to equitably finance climate action; and third, the cultural challenge — and opportunity — of empowering an adaptive socio-cultural ecology through traditional knowledge and local-level social networks to achieve environmental resilience. Graduate students Chen Chu and Mrinalini Penumaka, both PhD students in DUSP, are working with Jackson on the project.

    Professor Haruko Wainwright, departments of Nuclear Science and Engineering (NSE) and Civil and Environmental Engineering: Low-cost Environmental Monitoring Network Technologies in Rural Communities for Addressing Climate Justice 

    This project will establish a community-based climate and environmental monitoring network in addition to a data visualization and analysis infrastructure in rural marginalized communities to better understand and address climate justice issues. The project team plans to work with rural communities in Alaska to install low-cost air and water quality, weather, and soil sensors. Graduate students Kay Whiteaker, an MS candidate in NSE, and Amandeep Singh, and MS candidate in System Design and Management at Sloan, are working with Wainwright on the project, as is David McGee, professor in earth, atmospheric, and planetary sciences.

    Professor Siqi Zheng, MIT Center for Real Estate and DUSP: Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies 

    See the text above for the details on this project. More

  • in

    Improving US air quality, equitably

    Decarbonization of national economies will be key to achieving global net-zero emissions by 2050, a major stepping stone to the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius (and ideally 1.5 C), and thereby averting the worst consequences of climate change. Toward that end, the United States has pledged to reduce its greenhouse gas emissions by 50-52 percent from 2005 levels by 2030, backed by its implementation of the 2022 Inflation Reduction Act. This strategy is consistent with a 50-percent reduction in carbon dioxide (CO2) by the end of the decade.

    If U.S. federal carbon policy is successful, the nation’s overall air quality will also improve. Cutting CO2 emissions reduces atmospheric concentrations of air pollutants that lead to the formation of fine particulate matter (PM2.5), which causes more than 200,000 premature deaths in the United States each year. But an average nationwide improvement in air quality will not be felt equally; air pollution exposure disproportionately harms people of color and lower-income populations.

    How effective are current federal decarbonization policies in reducing U.S. racial and economic disparities in PM2.5 exposure, and what changes will be needed to improve their performance? To answer that question, researchers at MIT and Stanford University recently evaluated a range of policies which, like current U.S. federal carbon policies, reduce economy-wide CO2 emissions by 40-60 percent from 2005 levels by 2030. Their findings appear in an open-access article in the journal Nature Communications.

    First, they show that a carbon-pricing policy, while effective in reducing PM2.5 exposure for all racial/ethnic groups, does not significantly mitigate relative disparities in exposure. On average, the white population undergoes far less exposure than Black, Hispanic, and Asian populations. This policy does little to reduce exposure disparities because the CO2 emissions reductions that it achieves primarily occur in the coal-fired electricity sector. Other sectors, such as industry and heavy-duty diesel transportation, contribute far more PM2.5-related emissions.

    The researchers then examine thousands of different reduction options through an optimization approach to identify whether any possible combination of carbon dioxide reductions in the range of 40-60 percent can mitigate disparities. They find that that no policy scenario aligned with current U.S. carbon dioxide emissions targets is likely to significantly reduce current PM2.5 exposure disparities.

    “Policies that address only about 50 percent of CO2 emissions leave many polluting sources in place, and those that prioritize reductions for minorities tend to benefit the entire population,” says Noelle Selin, supervising author of the study and a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences. “This means that a large range of policies that reduce CO2 can improve air quality overall, but can’t address long-standing inequities in air pollution exposure.”

    So if climate policy alone cannot adequately achieve equitable air quality results, what viable options remain? The researchers suggest that more ambitious carbon policies could narrow racial and economic PM2.5 exposure disparities in the long term, but not within the next decade. To make a near-term difference, they recommend interventions designed to reduce PM2.5 emissions resulting from non-CO2 sources, ideally at the economic sector or community level.

    “Achieving improved PM2.5 exposure for populations that are disproportionately exposed across the United States will require thinking that goes beyond current CO2 policy strategies, most likely involving large-scale structural changes,” says Selin. “This could involve changes in local and regional transportation and housing planning, together with accelerated efforts towards decarbonization.” More

  • in

    AI pilot programs look to reduce energy use and emissions on MIT campus

    Smart thermostats have changed the way many people heat and cool their homes by using machine learning to respond to occupancy patterns and preferences, resulting in a lower energy draw. This technology — which can collect and synthesize data — generally focuses on single-dwelling use, but what if this type of artificial intelligence could dynamically manage the heating and cooling of an entire campus? That’s the idea behind a cross-departmental effort working to reduce campus energy use through AI building controls that respond in real-time to internal and external factors. 

    Understanding the challenge

    Heating and cooling can be an energy challenge for campuses like MIT, where existing building management systems (BMS) can’t respond quickly to internal factors like occupancy fluctuations or external factors such as forecast weather or the carbon intensity of the grid. This results in using more energy than needed to heat and cool spaces, often to sub-optimal levels. By engaging AI, researchers have begun to establish a framework to understand and predict optimal temperature set points (the temperature at which a thermostat has been set to maintain) at the individual room level and take into consideration a host of factors, allowing the existing systems to heat and cool more efficiently, all without manual intervention. 

    “It’s not that different from what folks are doing in houses,” explains Les Norford, a professor of architecture at MIT, whose work in energy studies, controls, and ventilation connected him with the effort. “Except we have to think about things like how long a classroom may be used in a day, weather predictions, time needed to heat and cool a room, the effect of the heat from the sun coming in the window, and how the classroom next door might impact all of this.” These factors are at the crux of the research and pilots that Norford and a team are focused on. That team includes Jeremy Gregory, executive director of the MIT Climate and Sustainability Consortium; Audun Botterud, principal research scientist for the Laboratory for Information and Decision Systems; Steve Lanou, project manager in the MIT Office of Sustainability (MITOS); Fran Selvaggio, Department of Facilities Senior Building Management Systems engineer; and Daisy Green and You Lin, both postdocs.

    The group is organized around the call to action to “explore possibilities to employ artificial intelligence to reduce on-campus energy consumption” outlined in Fast Forward: MIT’s Climate Action Plan for the Decade, but efforts extend back to 2019. “As we work to decarbonize our campus, we’re exploring all avenues,” says Vice President for Campus Services and Stewardship Joe Higgins, who originally pitched the idea to students at the 2019 MIT Energy Hack. “To me, it was a great opportunity to utilize MIT expertise and see how we can apply it to our campus and share what we learn with the building industry.” Research into the concept kicked off at the event and continued with undergraduate and graduate student researchers running differential equations and managing pilots to test the bounds of the idea. Soon, Gregory, who is also a MITOS faculty fellow, joined the project and helped identify other individuals to join the team. “My role as a faculty fellow is to find opportunities to connect the research community at MIT with challenges MIT itself is facing — so this was a perfect fit for that,” Gregory says. 

    Early pilots of the project focused on testing thermostat set points in NW23, home to the Department of Facilities and Office of Campus Planning, but Norford quickly realized that classrooms provide many more variables to test, and the pilot was expanded to Building 66, a mixed-use building that is home to classrooms, offices, and lab spaces. “We shifted our attention to study classrooms in part because of their complexity, but also the sheer scale — there are hundreds of them on campus, so [they offer] more opportunities to gather data and determine parameters of what we are testing,” says Norford. 

    Developing the technology

    The work to develop smarter building controls starts with a physics-based model using differential equations to understand how objects can heat up or cool down, store heat, and how the heat may flow across a building façade. External data like weather, carbon intensity of the power grid, and classroom schedules are also inputs, with the AI responding to these conditions to deliver an optimal thermostat set point each hour — one that provides the best trade-off between the two objectives of thermal comfort of occupants and energy use. That set point then tells the existing BMS how much to heat up or cool down a space. Real-life testing follows, surveying building occupants about their comfort. Botterud, whose research focuses on the interactions between engineering, economics, and policy in electricity markets, works to ensure that the AI algorithms can then translate this learning into energy and carbon emission savings. 

    Currently the pilots are focused on six classrooms within Building 66, with the intent to move onto lab spaces before expanding to the entire building. “The goal here is energy savings, but that’s not something we can fully assess until we complete a whole building,” explains Norford. “We have to work classroom by classroom to gather the data, but are looking at a much bigger picture.” The research team used its data-driven simulations to estimate significant energy savings while maintaining thermal comfort in the six classrooms over two days, but further work is needed to implement the controls and measure savings across an entire year. 

    With significant savings estimated across individual classrooms, the energy savings derived from an entire building could be substantial, and AI can help meet that goal, explains Botterud: “This whole concept of scalability is really at the heart of what we are doing. We’re spending a lot of time in Building 66 to figure out how it works and hoping that these algorithms can be scaled up with much less effort to other rooms and buildings so solutions we are developing can make a big impact at MIT,” he says.

    Part of that big impact involves operational staff, like Selvaggio, who are essential in connecting the research to current operations and putting them into practice across campus. “Much of the BMS team’s work is done in the pilot stage for a project like this,” he says. “We were able to get these AI systems up and running with our existing BMS within a matter of weeks, allowing the pilots to get off the ground quickly.” Selvaggio says in preparation for the completion of the pilots, the BMS team has identified an additional 50 buildings on campus where the technology can easily be installed in the future to start energy savings. The BMS team also collaborates with the building automation company, Schneider Electric, that has implemented the new control algorithms in Building 66 classrooms and is ready to expand to new pilot locations. 

    Expanding impact

    The successful completion of these programs will also open the possibility for even greater energy savings — bringing MIT closer to its decarbonization goals. “Beyond just energy savings, we can eventually turn our campus buildings into a virtual energy network, where thousands of thermostats are aggregated and coordinated to function as a unified virtual entity,” explains Higgins. These types of energy networks can accelerate power sector decarbonization by decreasing the need for carbon-intensive power plants at peak times and allowing for more efficient power grid energy use.

    As pilots continue, they fulfill another call to action in Fast Forward — for campus to be a “test bed for change.” Says Gregory: “This project is a great example of using our campus as a test bed — it brings in cutting-edge research to apply to decarbonizing our own campus. It’s a great project for its specific focus, but also for serving as a model for how to utilize the campus as a living lab.” More

  • in

    Devices offers long-distance, low-power underwater communication

    MIT researchers have demonstrated the first system for ultra-low-power underwater networking and communication, which can transmit signals across kilometer-scale distances.

    This technique, which the researchers began developing several years ago, uses about one-millionth the power that existing underwater communication methods use. By expanding their battery-free system’s communication range, the researchers have made the technology more feasible for applications such as aquaculture, coastal hurricane prediction, and climate change modeling.

    “What started as a very exciting intellectual idea a few years ago — underwater communication with a million times lower power — is now practical and realistic. There are still a few interesting technical challenges to address, but there is a clear path from where we are now to deployment,” says Fadel Adib, associate professor in the Department of Electrical Engineering and Computer Science and director of the Signal Kinetics group in the MIT Media Lab.

    Underwater backscatter enables low-power communication by encoding data in sound waves that it reflects, or scatters, back toward a receiver. These innovations enable reflected signals to be more precisely directed at their source.

    Due to this “retrodirectivity,” less signal scatters in the wrong directions, allowing for more efficient and longer-range communication.

    When tested in a river and an ocean, the retrodirective device exhibited a communication range that was more than 15 times farther than previous devices. However, the experiments were limited by the length of the docks available to the researchers.

    To better understand the limits of underwater backscatter, the team also developed an analytical model to predict the technology’s maximum range. The model, which they validated using experimental data, showed that their retrodirective system could communicate across kilometer-scale distances.

    The researchers shared these findings in two papers which will be presented at this year’s ACM SIGCOMM and MobiCom conferences. Adib, senior author on both papers, is joined on the SIGCOMM paper by co-lead authors Aline Eid, a former postdoc who is now an assistant professor at the University of Michigan, and Jack Rademacher, a research assistant; as well as research assistants Waleed Akbar and Purui Wang, and postdoc Ahmed Allam. The MobiCom paper is also written by co-lead authors Akbar and Allam.

    Communicating with sound waves

    Underwater backscatter communication devices utilize an array of nodes made from “piezoelectric” materials to receive and reflect sound waves. These materials produce an electric signal when mechanical force is applied to them.

    When sound waves strike the nodes, they vibrate and convert the mechanical energy to an electric charge. The nodes use that charge to scatter some of the acoustic energy back to the source, transmitting data that a receiver decodes based on the sequence of reflections.

    But because the backscattered signal travels in all directions, only a small fraction reaches the source, reducing the signal strength and limiting the communication range.

    To overcome this challenge, the researchers leveraged a 70-year-old radio device called a Van Atta array, in which symmetric pairs of antennas are connected in such a way that the array reflects energy back in the direction it came from.

    But connecting piezoelectric nodes to make a Van Atta array reduces their efficiency. The researchers avoided this problem by placing a transformer between pairs of connected nodes. The transformer, which transfers electric energy from one circuit to another, allows the nodes to reflect the maximum amount of energy back to the source.

    “Both nodes are receiving and both nodes are reflecting, so it is a very interesting system. As you increase the number of elements in that system, you build an array that allows you to achieve much longer communication ranges,” Eid explains.

    In addition, they used a technique called cross-polarity switching to encode binary data in the reflected signal. Each node has a positive and a negative terminal (like a car battery), so when the positive terminals of two nodes are connected and the negative terminals of two nodes are connected, that reflected signal is a “bit one.”

    But if the researchers switch the polarity, and the negative and positive terminals are connected to each other instead, then the reflection is a “bit zero.”

    “Just connecting the piezoelectric nodes together is not enough. By alternating the polarities between the two nodes, we are able to transmit data back to the remote receiver,” Rademacher explains.

    When building the Van Atta array, the researchers found that if the connected nodes were too close, they would block each other’s signals. They devised a new design with staggered nodes that enables signals to reach the array from any direction. With this scalable design, the more nodes an array has, the greater its communication range.

    They tested the array in more than 1,500 experimental trials in the Charles River in Cambridge, Massachusetts, and in the Atlantic Ocean, off the coast of Falmouth, Massachusetts, in collaboration with the Woods Hole Oceanographic Institution. The device achieved communication ranges of 300 meters, more than 15 times longer than they previously demonstrated.

    However, they had to cut the experiments short because they ran out of space on the dock.

    Modeling the maximum

    That inspired the researchers to build an analytical model to determine the theoretical and practical communication limits of this new underwater backscatter technology.

    Building off their group’s work on RFIDs, the team carefully crafted a model that captured the impact of system parameters, like the size of the piezoelectric nodes and the input power of the signal, on the underwater operation range of the device.

    “It is not a traditional communication technology, so you need to understand how you can quantify the reflection. What are the roles of the different components in that process?” Akbar says.

    For instance, the researchers needed to derive a function that captures the amount of signal reflected out of an underwater piezoelectric node with a specific size, which was among the biggest challenges of developing the model, he adds.

    They used these insights to create a plug-and-play model into a which a user could enter information like input power and piezoelectric node dimensions and receive an output that shows the expected range of the system.

    They evaluated the model on data from their experimental trials and found that it could accurately predict the range of retrodirected acoustic signals with an average error of less than one decibel.

    Using this model, they showed that an underwater backscatter array can potentially achieve kilometer-long communication ranges.

    “We are creating a new ocean technology and propelling it into the realm of the things we have been doing for 6G cellular networks. For us, it is very rewarding because we are starting to see this now very close to reality,” Adib says.

    The researchers plan to continue studying underwater backscatter Van Atta arrays, perhaps using boats so they could evaluate longer communication ranges. Along the way, they intend to release tools and datasets so other researchers can build on their work. At the same time, they are beginning to move toward commercialization of this technology.

    “Limited range has been an open problem in underwater backscatter networks, preventing them from being used in real-world applications. This paper takes a significant step forward in the future of underwater communication, by enabling them to operate on minimum energy while achieving long range,” says Omid Abari, assistant professor of computer science at the University of California at Los Angeles, who was not involved with this work. “The paper is the first to bring Van Atta Reflector array technique into underwater backscatter settings and demonstrate its benefits in improving the communication range by orders of magnitude. This can take battery-free underwater communication one step closer to reality, enabling applications such as underwater climate change monitoring and coastal monitoring.”

    This research was funded, in part, by the Office of Naval Research, the Sloan Research Fellowship, the National Science Foundation, the MIT Media Lab, and the Doherty Chair in Ocean Utilization. More

  • in

    Putting public service into practice

    Salomé Otero ’23 doesn’t mince words about the social impact internship she had in 2022. “It was transformational for me,” she says.

    Otero, who majored in management with a concentration in education, always felt that education would play some role in her career path after MIT, but she wasn’t sure how. That all changed her junior year, when she got an email from the Priscilla King Gray Public Service Center (PKG Center) about an internship at The Last Mile, a San Francisco-based nonprofit that provides education and technology training for justice-impacted individuals.

    Otero applied and was selected as a web curriculum and re-entry intern at The Last Mile the summer between her junior and senior year — an eye-opening experience that cemented her post-graduation plans. “You hear some amazing stories, like this person was incarcerated before the iPhone had come out. Now he’s a software developer,” she explains. “And for me, the idea of using computer science education for good appealed to me on many fronts. But even if I hadn’t gotten the opportunity to work at The Last Mile, the fact that I saw a job description for this role and learned that companies have the resources to make a difference … I didn’t know that there were people and organizations dedicating their time and energy into this.”

    She was so inspired that, when she returned for her senior year, Otero found work at two education labs at MIT, completed another social impact internship over Independent Activities Period (IAP) at G{Code}, an education nonprofit that provides computer science education to women and nonbinary people of color, and decided to apply to graduate school. “I can tell you with 100 percent certainty that I would not be pursuing a PhD in education policy right now if it weren’t for the PKG Center,” she says. She will begin her doctorate this fall.

    Otero’s experience doesn’t surprise Jill Bassett, associate dean and director of the PKG Center. “MIT students are deeply concerned about the world’s most challenging problems,” she says. “And social impact internships are an incredible way for them to leverage their unique talents and skills to help create meaningful change while broadening their perspectives and discovering potential career paths.”

    “There’s a lot more out there”

    Founded 35 years ago, the PKG Center offers a robust portfolio of experiential learning programs broadly focused on four themes: climate change, health equity, racial justice, and tech for social good. The Center’s Social Impact Internship Program provides funded internships to students interested in working with government agencies, nonprofits, and social ventures. Students reap rich rewards from these experiences, including learning ways to make social change, informing their academic journey and career path, and gaining valuable professional skills.

    “It was a really good learning opportunity,” says Juliet Liao ’23, a graduate of MIT’s Naval ROTC program who commissioned as a submarine officer in June. She completed a social impact internship with the World Wildlife Fund, where she researched greenhouse gas emissions related to the salmon industry. “I haven’t had much exposure to what work outside of the Navy looks like and what I’m interested in working on. And I really liked the science-based approach to mitigating greenhouse gas emissions.”

    Amina Abdalla, a rising junior in biological engineering, arrived at MIT with a strong interest in health care and determined to go to medical school. But her internship at MassHealth, the Medicaid and Children’s Health Insurance Program provider for the state of Massachusetts, broadened her understanding of the complexity of the health care system and introduced her to many career options that she didn’t know existed.

    “They did coffee chats between interns and various people who work in MassHealth, such as doctors, lawyers, policy advocates, and consultants. There’s a lot more out there that one can do with the degree that they get and the knowledge they gain. It just depends on your interests, and I came away from that really excited,” she says. The experience inspired her to take a class in health policy before she graduates. “I know I want to be a doctor and I have a lot of interest in science in general, but if I could do some kind of public sector impact with that knowledge, I would definitely be interested in doing that.”

    Social impact internships also provide an opportunity for students to hone their analytical, technical, and people skills. Selma Sharaf ’22 worked on developing a first-ever climate action plan for Bennett College in Greensboro, North Carolina, one of two all-women’s historically Black colleges and universities in the United States. She conducted research and stakeholder interviews with nonprofits; sustainability directors at similar colleges; local utility companies; and faculty, staff, and students at Bennett.

    “Our external outreach efforts with certain organizations allowed me to practice having conversations about energy justice and climate issues with people who aren’t already in this space. I learned how useful it can be to not only discuss the overall issues of climate change and carbon emissions, but to also zoom in on more relatable personal-level impacts,” she says. Sharaf is currently working in clean energy consulting and plans to pursue a master’s degree at Stanford University’s Atmosphere/Energy Program this fall.

    Working with “all stars”

    Organizations that partner with the PKG Center are often constrained by limited technical and financial resources. Since the program is funded by the PKG Center, these internships help expand their organizational capacity and broaden their impact; MIT students can take on projects that might not otherwise get done, and they also bring fresh skills and ideas to the organization — and the zeal to pursue those ideas.

    Emily Moberg ’11, PhD ’16 got involved with the social impact internship programs in 2020. Moberg, who is the director of Scope 3 Carbon Measurement and Mitigation at the World Wildlife Fund, has worked with 20 MIT students since then, including Liao. The body of work that Liao and several other interns completed has been published in the form of 10 briefs onmitigating greenhouse gas emissions from key commodities, such as soy, beef, coffee, and palm oil.

    “Social impact interns bring technical skills, deep curiosity, and tenacity,” Moberg says. “I’ve worked with students across many majors, including computer and materials science; all of them bring a new, fresh perspective to our problems and often sophisticated quantitative ability. Their presence often helps us to investigate new ideas or expand a project. In some cases, interns have proposed new projects and ideas themselves. The support from the PKG Center for us to host these interns has been critical, especially for these new explorations.”

    Anne Carrington Hayes, associate professor and executive director of the Global Leadership and Interdisciplinary Studies program at Bennett College, calls the MIT interns she’s worked with since 2021 “all stars.” The work Sharaf and three other students performed has culminated in a draft climate action plan that will inform campus renovations and other measures that will be implemented at the college in the coming years.

    “They have been foundational in helping me to research, frame, collect data, and engage with our students and the community around issues of environmental justice and sustainability, particularly from the lens of what would be impactful and meaningful for women of color at Bennett College,” she says.

    Balancing supply and demand

    Bassett says that the social impact internship program has grown exponentially in the past few years. Before the pandemic, the program served five students from summer 2019 to spring 2020; it now serves about 125 students per year. Over that time, funding has become a significant limiting factor; demand for internships was three times the number of available internships in summer 2022, and five times the supply during IAP 2023.

    “MIT students have no shortage of opportunities available to them in the private sector, yet students are seeking social impact internships because they want to apply their skills to issues that they care about,” says Julie Uva, the PKG Center’s program administrator for social impact internships and employment. “We want to ensure every student who wants a social impact internship can access that experience.”

    MIT has taken note of this financial shortfall: the Task Force 2021 report recommended fundraising to alleviate the under-supply of social impact experiential learning opportunities (ELOs), and MIT’s Fast Forward Climate Action Plan called on the Institute to make a climate or clean-energy ELOs available to every undergraduate who wants one. As a result, the Office of Experiential Learning is working with Resource Development to raise new funding to support many more opportunities, which would be available to students not only through the PKG Center but also other offices and programs, such as MIT D-Lab, Undergraduate Research Opportunity Programs, MISTI, and the Environmental Solutions Initiative, among others.

    That’s welcome news to Salomé Otero. She’s familiar with the Institute’s fundraising efforts, having worked as one of the Alumni Association’s Tech Callers. Now, as an alumna herself and a former social impact intern, she has an appreciation for the power of philanthropy.

    “MIT is ahead of the game compared to so many universities, in so many ways,” she says. “But if they want to continue to do that in the most impactful way possible, I think investing in ideas and missions like the PKG Center is the way to go. So when that call comes, I’ll tell whoever is working that night shift, ‘Yeah, I’ll donate to the PKG Center.’” More

  • in

    Q&A: Three Tata Fellows on the program’s impact on themselves and the world

    The Tata Fellowship at MIT gives graduate students the opportunity to pursue interdisciplinary research and work with real-world applications in developing countries. Part of the MIT Tata Center for Technology and Design, this fellowship contributes to the center’s goal of designing appropriate, practical solutions for resource-constrained communities. Three Tata Fellows — Serena Patel, Rameen Hayat Malik, and Ethan Harrison — discuss the impact of this program on their research, perspectives, and time at MIT.

    Serena Patel

    Serena Patel graduated from the University of California at Berkeley with a degree in energy engineering and a minor in energy and resources. She is currently pursuing her SM in technology and policy at MIT and is a Tata Fellow focusing on decarbonization in India using techno-economic modeling. Her interest in the intersection of technology, policy, economics, and social justice led her to attend COP27, where she experienced decision-maker and activist interactions firsthand.

    Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

    A: The Tata Center appealed to my interest in searching for creative, sustainable energy technologies that center collaboration with local-leading organizations. It has also shaped my understanding of the role of technology in sustainable development planning. Our current energy system disproportionately impacts marginalized communities, and new energy systems have the potential to perpetuate and/or create inequities. I am broadly interested in how we can put people at the core of our technological solutions and support equitable energy transitions. I specifically work on techno-economic modeling to analyze the potential for an early retirement of India’s large coal fleet and conversion to long-duration thermal energy storage. This could mitigate job losses from rapid transitions, support India’s energy system decarbonization plan, and provide a cost-effective way to retire stranded assets.

    Q: Why is interdisciplinary study important to real-world solutions for global communities, and how has working at the intersection of technology and policy influenced your research?

    A: Technology and policy work together in mediating and regulating the world around us. Technological solutions can be disruptive in all the good ways, but they can also do a lot of harm and perpetuate existing inequities. Interdisciplinary studies are important to mitigate these interrelated issues so innovative ideas in the ivory towers of Western academia do not negatively impact marginalized communities. For real-world solutions to positively impact individuals, marginalized communities need to be centered within the research design process. I think the research community’s perspective on real-world, global solutions is shifting to achieve these goals, but much work remains for resources to reach the right communities.

    The energy space is especially fascinating because it impacts everyone’s quality of life in overt or nuanced ways. I’ve had the privilege of taking classes that sit at the intersection of energy technology and policy, involving land-use law, geographic representation, energy regulation, and technology policy. In general, working at the intersection of technology and policy has shaped my perspective on how regulation influences widespread technology adoption and the overall research directions and assumptions in our energy models.

    Q: How has your experience at COP27 influenced your approach to your research?

    A: Attending COP27 at Sharm El-Sheikh, Egypt, last November influenced my understanding of the role of science, research, and activism in climate negotiations and action. Science and research are often promoted as necessary for sharing knowledge at the higher levels, but they were also used as a delay tactic by negotiators. I heard how institutional bodies meant to support fair science and research often did not reach intended stakeholders. Lofty goals or financial commitments to ensure global climate stability and resilience still lacked implementation and coordination with deep technology transfer and support. On the face of it, these agreements have impact and influence, but I heard many frustrations over the lack of tangible, local support. This has driven my research to be as context-specific as possible, to provide actionable insights and leverage different disciplines.

    I also observed the role of activism in the negotiations. Decision-makers are accountable to their country, and activists are spreading awareness and bringing transparency to the COP process. As a U.S. citizen, I suddenly became more aware of how political engagement and awareness in the country could push the boundaries of international climate agreements if the government were more aligned on climate action.

    Rameen Hayat Malik

    Rameen Hayat Malik graduated from the University of Sydney with a bachelor’s degree in chemical and biomolecular engineering and a Bachelor of Laws. She is currently pursuing her SM in technology and policy and is a Tata Fellow researching the impacts of electric vehicle (EV) battery production in Indonesia. Originally from Australia, she first became interested in the geopolitical landscape of resources trade and its implications for the clean energy transition while working in her native country’s Department of Climate Change, Energy, the Environment and Water.

    Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

    A: I came across the Tata Fellowship while looking for research opportunities that aligned with my interest in understanding how a just energy transition will occur in a global context, with a particular focus on emerging economies. My research explores the techno-economic, social, and environmental impacts of nickel mining in Indonesia as it seeks to establish itself as a major producer of EV batteries. The fellowship’s focus on community-driven research has given me the freedom to guide the scope of my research. It has allowed me to integrate a community voice into my work that seeks to understand the impact of this mining on forest-dependent communities, Indigenous communities, and workforce development.

    Q: Battery technology and production are highly discussed in the energy sector. How does your research on Indonesia’s battery production contribute to the current discussion around batteries, and what drew you to this topic?

    A: Indonesia is one of the world’s largest exporters of coal, while also having one of the largest nickel reserves in the world — a key mineral for EV battery production. This presents an exciting opportunity for Indonesia to be a leader in the energy transition, as it both seeks to phase out coal production and establish itself as a key supplier of critical minerals. It is also an opportunity to actually apply principles of a just transition to the region, which seeks to repurpose and re-skill existing coal workforces, to bring Indigenous communities into the conversation around the future of their lands, and to explore whether it is actually possible to sustainably and ethically produce nickel for EV battery production.

    I’ve always seen battery technologies and EVs as products that, at least today, are accessible to a small, privileged customer base that can afford such technologies. I’m interested in understanding how we can make such products more widely affordable and provide our lowest-income communities with the opportunities to actively participate in the transition — especially since access to transportation is a key driver of social mobility. With nickel prices impacting EV prices in such a dramatic way, unlocking more nickel supply chains presents an opportunity to make EV batteries more accessible and affordable.

    Q: What advice would you give to new students who want to be a part of real-world solutions to the climate crisis?

    A: Bring your whole self with you when engaging these issues. Quite often we get caught up with the technology or modeling aspect of addressing the climate crisis and forget to bring people and their experiences into our work. Think about your positionality: Who is your community, what are the avenues you have to bring that community along, and what privileges do you hold to empower and amplify voices that need to be heard? Find a piece of this complex puzzle that excites you, and find opportunities to talk and listen to people who are directly impacted by the solutions you are looking to explore. It can get quite overwhelming working in this space, which carries a sense of urgency, politicization, and polarization with it. Stay optimistic, keep advocating, and remember to take care of yourself while doing this important work.

    Ethan Harrison

    After earning his degree in economics and applied science from the College of William and Mary, Ethan Harrison worked at the United Nations Development Program in its Crisis Bureau as a research officer focused on conflict prevention and predictive analysis. He is currently pursuing his SM in technology and policy at MIT. In his Tata Fellowship, he focuses on the impacts of the Ukraine-Russia conflict on global vulnerability and the global energy market.

    Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

    A: Coming to MIT, one of my chief interests was figuring out how we can leverage gains from technology to improve outcomes and build pro-poor solutions in developing and crisis contexts. The Tata Fellowship aligned with many of the conclusions I drew while working in crisis contexts and some of the outstanding questions that I was hoping to answer during my time at MIT, specifically: How can we leverage technology to build sustainable, participatory, and ethically grounded interventions in these contexts?

    My research currently examines the secondary impacts of the Ukraine-Russia conflict on low- and middle-income countries — especially fragile states — with a focus on shocks in the global energy market. This includes the development of a novel framework that systematically identifies factors of vulnerability — such as in energy, food systems, and trade dependence — and quantitatively ranks countries by their level of vulnerability. By identifying the specific mechanisms by which these countries are vulnerable, we can develop a map of global vulnerability and identify key policy solutions that can insulate countries from current and future shocks.

    Q: I understand that your research deals with the relationship between oil and gas price fluctuation and political stability. What has been the most surprising aspect of this relationship, and what are its implications for global decarbonization?

    A: One surprising aspect is the degree to which citizen grievances regarding price fluctuations can quickly expand to broader democratic demands and destabilization. In Sri Lanka last year and in Egypt during the Arab spring, initial protests around fuel prices and power outages eventually led to broader demands and the loss of power by heads of state. Another surprising aspect is the popularity of fuel subsidies despite the fact that they are economically regressive: They often comprise a large proportion of GDP in poor countries, disproportionately benefit higher-income populations, and leave countries vulnerable to fiscal stress during price spikes.

    Regarding implications for global decarbonization, one project we are pursuing examines the implications of directing financing from fuel subsidies toward investments in renewable energy. Countries that rely on fossil fuels for electricity have been hit especially hard 
by price spikes from the Ukraine-Russia conflict, especially since many were carrying costly fuel subsidies to keep the price of fuel and energy artificially low. Much of the international community is advocating for low-income countries to invest in renewables and reduce their fossil fuel burden, but it’s important to explore how global decarbonization can align with efforts to end energy poverty and other Sustainable Development Goals.

    Q: How does your research impact the Tata Center’s goal of transforming policy research into real-world solutions, and why is this important?

    A: The crisis in Ukraine has shifted the international community’s focus away from other countries in crisis, such as Yemen and Lebanon. By developing a global map of vulnerability, we’re building a large evidence base on which countries have been most impacted by this crisis. Most importantly, by identifying individual channels of vulnerability for each country, we can also identify the most effective policy solutions to insulate vulnerable populations from shocks. Whether that’s advocating for short-term social protection programs or identifying more medium-term policy solutions — like fuel banks or investment in renewables — we hope providing a detailed map of sources of vulnerability can help inform the global response to shocks imposed by the Russia-Ukraine conflict and post-Covid recovery. More

  • in

    To improve solar and other clean energy tech, look beyond hardware

    To continue reducing the costs of solar energy and other clean energy technologies, scientists and engineers will likely need to focus, at least in part, on improving technology features that are not based on hardware, according to MIT researchers. They describe this finding and the mechanisms behind it today in Nature Energy.

    While the cost of installing a solar energy system has dropped by more than 99 percent since 1980, this new analysis shows that “soft technology” features, such as the codified permitting practices, supply chain management techniques, and system design processes that go into deploying a solar energy plant, contributed only 10 to 15 percent of total cost declines. Improvements to hardware features were responsible for the lion’s share.

    But because soft technology is increasingly dominating the total costs of installing solar energy systems, this trend threatens to slow future cost savings and hamper the global transition to clean energy, says the study’s senior author, Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society (IDSS).

    Trancik’s co-authors include lead author Magdalena M. Klemun, a former IDSS graduate student and postdoc who is now an assistant professor at the Hong Kong University of Science and Technology; Goksin Kavlak, a former IDSS graduate student and postdoc who is now an associate at the Brattle Group; and James McNerney, a former IDSS postdoc and now senior research fellow at the Harvard Kennedy School.

    The team created a quantitative model to analyze the cost evolution of solar energy systems, which captures the contributions of both hardware technology features and soft technology features.

    The framework shows that soft technology hasn’t improved much over time — and that soft technology features contributed even less to overall cost declines than previously estimated.

    Their findings indicate that to reverse this trend and accelerate cost declines, engineers could look at making solar energy systems less reliant on soft technology to begin with, or they could tackle the problem directly by improving inefficient deployment processes.  

    “Really understanding where the efficiencies and inefficiencies are, and how to address those inefficiencies, is critical in supporting the clean energy transition. We are making huge investments of public dollars into this, and soft technology is going to be absolutely essential to making those funds count,” says Trancik.

    “However,” Klemun adds, “we haven’t been thinking about soft technology design as systematically as we have for hardware. That needs to change.”

    The hard truth about soft costs

    Researchers have observed that the so-called “soft costs” of building a solar power plant — the costs of designing and installing the plant — are becoming a much larger share of total costs. In fact, the share of soft costs now typically ranges from 35 to 64 percent.

    “We wanted to take a closer look at where these soft costs were coming from and why they weren’t coming down over time as quickly as the hardware costs,” Trancik says.

    In the past, scientists have modeled the change in solar energy costs by dividing total costs into additive components — hardware components and nonhardware components — and then tracking how these components changed over time.

    “But if you really want to understand where those rates of change are coming from, you need to go one level deeper to look at the technology features. Then things split out differently,” Trancik says.

    The researchers developed a quantitative approach that models the change in solar energy costs over time by assigning contributions to the individual technology features, including both hardware features and soft technology features.

    For instance, their framework would capture how much of the decline in system installation costs — a soft cost — is due to standardized practices of certified installers — a soft technology feature. It would also capture how that same soft cost is affected by increased photovoltaic module efficiency — a hardware technology feature.

    With this approach, the researchers saw that improvements in hardware had the greatest impacts on driving down soft costs in solar energy systems. For example, the efficiency of photovoltaic modules doubled between 1980 and 2017, reducing overall system costs by 17 percent. But about 40 percent of that overall decline could be attributed to reductions in soft costs tied to improved module efficiency.

    The framework shows that, while hardware technology features tend to improve many cost components, soft technology features affect only a few.

    “You can see this structural difference even before you collect data on how the technologies have changed over time. That’s why mapping out a technology’s network of cost dependencies is a useful first step to identify levers of change, for solar PV and for other technologies as well,” Klemun notes.  

    Static soft technology

    The researchers used their model to study several countries, since soft costs can vary widely around the world. For instance, solar energy soft costs in Germany are about 50 percent less than those in the U.S.

    The fact that hardware technology improvements are often shared globally led to dramatic declines in costs over the past few decades across locations, the analysis showed. Soft technology innovations typically aren’t shared across borders. Moreover, the team found that countries with better soft technology performance 20 years ago still have better performance today, while those with worse performance didn’t see much improvement.

    This country-by-country difference could be driven by regulation and permitting processes, cultural factors, or by market dynamics such as how firms interact with each other, Trancik says.

    “But not all soft technology variables are ones that you would want to change in a cost-reducing direction, like lower wages. So, there are other considerations, beyond just bringing the cost of the technology down, that we need to think about when interpreting these results,” she says.

    Their analysis points to two strategies for reducing soft costs. For one, scientists could focus on developing hardware improvements that make soft costs more dependent on hardware technology variables and less on soft technology variables, such as by creating simpler, more standardized equipment that could reduce on-site installation time.

    Or researchers could directly target soft technology features without changing hardware, perhaps by creating more efficient workflows for system installation or automated permitting platforms.

    “In practice, engineers will often pursue both approaches, but separating the two in a formal model makes it easier to target innovation efforts by leveraging specific relationships between technology characteristics and costs,” Klemun says.

    “Often, when we think about information processing, we are leaving out processes that still happen in a very low-tech way through people communicating with one another. But it is just as important to think about that as a technology as it is to design fancy software,” Trancik notes.

    In the future, she and her collaborators want to apply their quantitative model to study the soft costs related to other technologies, such as electrical vehicle charging and nuclear fission. They are also interested in better understanding the limits of soft technology improvement, and how one could design better soft technology from the outset.

    This research is funded by the U.S. Department of Energy Solar Energy Technologies Office. More

  • in

    MIT engineering students take on the heat of Miami

    Think back to the last time you had to wait for a bus. How miserable were you? If you were in Boston, your experience might have included punishing wind and icy sleet — or, more recently, a punch of pollen straight to the sinuses. But in Florida’s Miami-Dade County, where the effects of climate change are both drastic and intensifying, commuters have to contend with an entirely different set of challenges: blistering temperatures and scorching humidity, making long stints waiting in the sun nearly unbearable.

    One of Miami’s most urgent transportation needs is shared by car-clogged Boston: coaxing citizens to use the municipal bus network, rather than the emissions-heavy individual vehicles currently contributing to climate change. But buses can be a tough sell in a sunny city where humidity hovers between 60 and 80 percent year-round. 

    Enter MIT’s Department of Electrical Engineering and Computer Science (EECS) and the MIT Priscilla King Gray (PKG) Public Service Center. The result of close collaboration between the two organizations, class 6.900 (Engineering For Impact) challenges EECS students to apply their engineering savvy to real-world problems beyond the MIT campus.

    This spring semester, the real-world problem was heat. 

    Miami-Dade County Department of Transportation and Public Works Chief Innovation Officer Carlos Cruz-Casas explains: “We often talk about the city we want to live in, about how the proper mix of public transportation, on-demand transit, and other mobility solutions, such as e-bikes and e-scooters, could help our community live a car-light life. However, none of this will be achievable if the riders are not comfortable when doing so.” 

    “When people think of South Florida and climate change, they often think of sea level rise,” says Juan Felipe Visser, deputy director of equity and engagement within the Office of the Mayor in Miami-Dade. “But heat really is the silent killer. So the focus of this class, on heat at bus stops, is very apt.” With little tree cover to give relief at some of the hottest stops, Miami-Dade commuters cluster in tiny patches of shade behind bus stops, sometimes giving up when the heat becomes unbearable. 

    A more conventional electrical engineering course might use temperature monitoring as an abstract example, building sample monitors in isolation and grading them as a merely academic exercise. But Professor Joel Volman, EECS faculty head of electrical engineering, and Joe Steinmeyer, senior lecturer in EECS, had something more impactful in mind.

    “Miami-Dade has a large population of people who are living in poverty, undocumented, or who are otherwise marginalized,” says Voldman. “Waiting, sometimes for a very long time, in scorching heat for the bus is just one aspect of how a city population can be underserved, but by measuring patterns in how many people are waiting for a bus, how long they wait, and in what conditions, we can begin to see where services are not keeping up with demand.”

    Only after that gap is quantified can the work of city and transportation planners begin, Cruz-Casas explains: “We needed to quantify the time riders are exposed to extreme heat and prioritize improvements, including on-time performance improvements, increasing service frequency, or looking to enhance the tree canopy near the bus stop.” 

    Quantifying that time — and the subjective experience of the wait — proved tricky, however. With over 7,500 bus stops along 101 bus routes, Miami-Dade’s transportation network presents a considerable data-collection challenge. A network of physical temperature monitors could be useful, but only if it were carefully calibrated to meet the budgetary, environmental, privacy, and implementation requirements of the city. But how do you work with city officials — not to mention all of bus-riding Miami — from over 2,000 miles away? 

    This is where the PKG Center comes in. “We are a hub and a connector and facilitator of best practices,” explains Jill Bassett, associate dean and director of the center, who worked with Voldman and Steinmeyer to find a municipal partner organization for the course. “We bring knowledge of current pedagogy around community-engaged learning, which includes: help with framing a partnership that centers community-identified concerns and is mutually beneficial; identifying and learning from a community partner; talking through ways to build in opportunities for student learners to reflect on power dynamics, reciprocity, systems thinking, long-term planning, continuity, ethics, all the types of things that come up with this kind of shared project.”

    Through a series of brainstorming conversations, Bassett helped Voldman and Steinmeyer structure a well-defined project plan, as Cruz-Casas weighed in on the county’s needed technical specifications (including affordability, privacy protection, and implementability).

    “This course brings together a lot of subject area experts,” says Voldman. “We brought in guest lecturers, including Abby Berenson from the Sloan Leadership Center, to talk about working in teams; engineers from BOSE to talk about product design, certification, and environmental resistance; the co-founder and head of engineering from MIT spinout Butlr to talk about their low-power occupancy sensor; Tony Hu from MIT IDM [Integrated Design and Management] to talk about industrial design; and Katrina LaCurts from EECS to talk about communications and networking.”

    With the support of two generous donations and a gift of software from Altium, 6.900 developed into a hands-on exercise in hardware/software product development with a tangible goal in sight: build a better bus monitor.

    The challenges involved in this undertaking became apparent as soon as the 6.900 students began designing their monitors. “The most challenging requirement to meet was that the monitor be able to count how many people were waiting — and for how long they’d been standing there — while still maintaining privacy,” says Fabian Velazquez ’23 a recent EECS graduate. The task was complicated by commuters’ natural tendency to stand where the shade goes — whether beneath a tree or awning or snaking against a nearby wall in a line — rather than directly next to the bus sign or inside the bus shelter. “Accurately measuring people count with a camera — the most straightforward choice — is already quite difficult since you have to incorporate machine learning to identify which objects in frame are people. Maintaining privacy added an extra layer of constraint … since there is no guarantee the collected data wouldn’t be vulnerable.”

    As the groups weighed various privacy-preserving options, including lidar, radar, and thermal imaging, the class realized that Wi-Fi “sniffers,” which count the number of Wi-Fi enabled signals in the immediate area, were their best option to count waiting passengers. “We were all excited and ready for this amazing, answer-to-all-our-problems radar sensor to count people,” says Velasquez. “That component was extremely complex, however, and the complexity would have ultimately made my team use a lot of time and resources to integrate with our system. We also had a short time-to-market for this system we developed. We made the trade-off of complexity for robustness.” 

    The weather also posed its own set of challenges. “Environmental conditions were big factors on the structure and design of our devices,” says Yong Yan (Crystal) Liang, a rising junior majoring in EECS. “We incorporated humidity and temperature sensors into our data to show the weather at individual stops. Additionally, we also considered how our enclosure may be affected by extreme heat or potential hurricanes.”

    The heat variable proved problematic in multiple ways. “People detection was especially difficult, for in the Miami heat, thermal cameras may not be able to distinguish human body temperature from the surrounding air temperature, and the glare of the sun off of other surfaces in the area makes most forms of imaging very buggy,” says Katherine Mohr ’23. “My team had considered using mmWave sensors to get around these constraints, but we found the processing to be too difficult, and (like the rest of the class), we decided to only move forward with Wi-Fi/BLE [Bluetooth Low Energy] sniffers.”

    The most valuable component of the new class may well have been the students’ exposure to real-world hardware/software engineering product development, where limitations on time and budget always exist, and where client requests must be carefully considered.  “Having an actual client to work with forced us to learn how to turn their wants into more specific technical specifications,” says Mohr. “We chose deliverables each week to complete by Friday, prioritizing tasks which would get us to a minimum viable product, as well as tasks that would require extra manufacturing time, like designing the printed-circuit board and enclosure.”

    Play video

    Joel Voldman, who co-designed 6.900 (Engineering For Impact) with Joe Steinmeyer and MIT’s Priscilla King Gray (PKG) Public Service Center, describes how the course allowed students help develop systems for the public good. Voldman is the winner of the 2023 Teaching with Digital Technology Award, which is co-sponsored by MIT Open Learning and the Office of the Vice Chancellor. Video: MIT Open Learning

    Crystal Liang counted her conversations with city representatives as among her most valuable 6.900 experiences. “We generated a lot of questions and were able to communicate with the community leaders of this project from Miami-Dade, who made time to answer all of them and gave us ideas from the goals they were trying to achieve,” she reports. “This project gave me a new perspective on problem-solving because it taught me to see things from the community members’ point of view.” Some of those community leaders, including Marta Viciedo, co-founder of Transit Alliance Miami, joined the class’s final session on May 16 to review the students’ proposed solutions. 

    The students’ thoughtful approach paid off when it was time to present the heat monitors to the class’s client. In a group conference call with Miami-Dade officials toward the end of the semester, the student teams shared their findings and the prototypes they’d created, along with videos of the devices at work. Juan Felipe Visser was among those in attendance. “This is a lot of work,” he told the students following their presentation. “So first of all, thank you for doing that, and for presenting to us. I love the concept. I took the bus this morning, as I do every morning, and was battered by the sun and the heat. So I personally appreciated the focus.” 

    Cruz-Casas agreed: “I am pleasantly surprised by the diverse approach the students are taking. We presented a challenge, and they have responded to it and managed to think beyond the problem at hand. I’m very optimistic about how the outcomes of this project will have a long-lasting impact for our community. At a minimum, I’m thinking that the more awareness we raise about this topic, the more opportunities we have to have the brightest minds seeking for a solution.”

    The creators of 6.900 agree, and hope that their class helps more MIT engineers to broaden their perspective on the meaning and application of their work. 

    “We are really excited about students applying their skills within a real-world, complex environment that will impact real people,” says Bassett. “We are excited that they are learning that it’s not just the design of technology that matters, but that climate; environment and built environment; and issues around socioeconomics, race, and equity, all come into play. There are layers and layers to the creation and deployment of technology in a demographically diverse multilingual community that is at the epicenter of climate change.” More