More stories

  • in

    Q&A: Climate Grand Challenges finalists on accelerating reductions in global greenhouse gas emissions

    This is the second article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalists, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    Last month, the Intergovernmental Panel on Climate Change (IPCC), an expert body of the United Nations representing 195 governments, released its latest scientific report on the growing threats posed by climate change, and called for drastic reductions in greenhouse gas emissions to avert the most catastrophic outcomes for humanity and natural ecosystems.

    Bringing the global economy to net-zero carbon dioxide emissions by midcentury is complex and demands new ideas and novel approaches. The first-ever MIT Climate Grand Challenges competition focuses on four problem areas including removing greenhouse gases from the atmosphere and identifying effective, economic solutions for managing and storing these gases. The other Climate Grand Challenges research themes address using data and science to forecast climate-related risk, decarbonizing complex industries and processes, and building equity and fairness into climate solutions.

    In the following conversations prepared for MIT News, faculty from three of the teams working to solve “Removing, managing, and storing greenhouse gases” explain how they are drawing upon geological, biological, chemical, and oceanic processes to develop game-changing techniques for carbon removal, management, and storage. Their responses have been edited for length and clarity.

    Directed evolution of biological carbon fixation

    Agricultural demand is estimated to increase by 50 percent in the coming decades, while climate change is simultaneously projected to drastically reduce crop yield and predictability, requiring a dramatic acceleration of land clearing. Without immediate intervention, this will have dire impacts on wild habitat, rob the livelihoods of hundreds of millions of subsistence farmers, and create hundreds of gigatons of new emissions. Matthew Shoulders, associate professor in the Department of Chemistry, talks about the working group he is leading in partnership with Ed Boyden, the Y. Eva Tan professor of neurotechnology and Howard Hughes Medical Institute investigator at the McGovern Institute for Brain Research, that aims to massively reduce carbon emissions from agriculture by relieving core biochemical bottlenecks in the photosynthetic process using the most sophisticated synthetic biology available to science.

    Q: Describe the two pathways you have identified for improving agricultural productivity and climate resiliency.

    A: First, cyanobacteria grow millions of times faster than plants and dozens of times faster than microalgae. Engineering these cyanobacteria as a source of key food products using synthetic biology will enable food production using less land, in a fundamentally more climate-resilient manner. Second, carbon fixation, or the process by which carbon dioxide is incorporated into organic compounds, is the rate-limiting step of photosynthesis and becomes even less efficient under rising temperatures. Enhancements to Rubisco, the enzyme mediating this central process, will both improve crop yields and provide climate resilience to crops needed by 2050. Our team, led by Robbie Wilson and Max Schubert, has created new directed evolution methods tailored for both strategies, and we have already uncovered promising early results. Applying directed evolution to photosynthesis, carbon fixation, and food production has the potential to usher in a second green revolution.

    Q: What partners will you need to accelerate the development of your solutions?

    A: We have already partnered with leading agriculture institutes with deep experience in plant transformation and field trial capacity, enabling the integration of our improved carbon-dioxide-fixing enzymes into a wide range of crop plants. At the deployment stage, we will be positioned to partner with multiple industry groups to achieve improved agriculture at scale. Partnerships with major seed companies around the world will be key to leverage distribution channels in manufacturing supply chains and networks of farmers, agronomists, and licensed retailers. Support from local governments will also be critical where subsidies for seeds are necessary for farmers to earn a living, such as smallholder and subsistence farming communities. Additionally, our research provides an accessible platform that is capable of enabling and enhancing carbon dioxide sequestration in diverse organisms, extending our sphere of partnership to a wide range of companies interested in industrial microbial applications, including algal and cyanobacterial, and in carbon capture and storage.

    Strategies to reduce atmospheric methane

    One of the most potent greenhouse gases, methane is emitted by a range of human activities and natural processes that include agriculture and waste management, fossil fuel production, and changing land use practices — with no single dominant source. Together with a diverse group of faculty and researchers from the schools of Humanities, Arts, and Social Sciences; Architecture and Planning; Engineering; and Science; plus the MIT Schwarzman College of Computing, Desiree Plata, associate professor in the Department of Civil and Environmental Engineering, is spearheading the MIT Methane Network, an integrated approach to formulating scalable new technologies, business models, and policy solutions for driving down levels of atmospheric methane.

    Q: What is the problem you are trying to solve and why is it a “grand challenge”?

    A: Removing methane from the atmosphere, or stopping it from getting there in the first place, could change the rates of global warming in our lifetimes, saving as much as half a degree of warming by 2050. Methane sources are distributed in space and time and tend to be very dilute, making the removal of methane a challenge that pushes the boundaries of contemporary science and engineering capabilities. Because the primary sources of atmospheric methane are linked to our economy and culture — from clearing wetlands for cultivation to natural gas extraction and dairy and meat production — the social and economic implications of a fundamentally changed methane management system are far-reaching. Nevertheless, these problems are tractable and could significantly reduce the effects of climate change in the near term.

    Q: What is known about the rapid rise in atmospheric methane and what questions remain unanswered?

    A: Tracking atmospheric methane is a challenge in and of itself, but it has become clear that emissions are large, accelerated by human activity, and cause damage right away. While some progress has been made in satellite-based measurements of methane emissions, there is a need to translate that data into actionable solutions. Several key questions remain around improving sensor accuracy and sensor network design to optimize placement, improve response time, and stop leaks with autonomous controls on the ground. Additional questions involve deploying low-level methane oxidation systems and novel catalytic materials at coal mines, dairy barns, and other enriched sources; evaluating the policy strategies and the socioeconomic impacts of new technologies with an eye toward decarbonization pathways; and scaling technology with viable business models that stimulate the economy while reducing greenhouse gas emissions.

    Deploying versatile carbon capture technologies and storage at scale

    There is growing consensus that simply capturing current carbon dioxide emissions is no longer sufficient — it is equally important to target distributed sources such as the oceans and air where carbon dioxide has accumulated from past emissions. Betar Gallant, the American Bureau of Shipping Career Development Associate Professor of Mechanical Engineering, discusses her work with Bradford Hager, the Cecil and Ida Green Professor of Earth Sciences in the Department of Earth, Atmospheric and Planetary Sciences, and T. Alan Hatton, the Ralph Landau Professor of Chemical Engineering and director of the School of Chemical Engineering Practice, to dramatically advance the portfolio of technologies available for carbon capture and permanent storage at scale. (A team led by Assistant Professor Matěj Peč of EAPS is also addressing carbon capture and storage.)

    Q: Carbon capture and storage processes have been around for several decades. What advances are you seeking to make through this project?

    A: Today’s capture paradigms are costly, inefficient, and complex. We seek to address this challenge by developing a new generation of capture technologies that operate using renewable energy inputs, are sufficiently versatile to accommodate emerging industrial demands, are adaptive and responsive to varied societal needs, and can be readily deployed to a wider landscape.

    New approaches will require the redesign of the entire capture process, necessitating basic science and engineering efforts that are broadly interdisciplinary in nature. At the same time, incumbent technologies have been optimized largely for integration with coal- or natural gas-burning power plants. Future applications must shift away from legacy emitters in the power sector towards hard-to-mitigate sectors such as cement, iron and steel, chemical, and hydrogen production. It will become equally important to develop and optimize systems targeted for much lower concentrations of carbon dioxide, such as in oceans or air. Our effort will expand basic science studies as well as human impacts of storage, including how public engagement and education can alter attitudes toward greater acceptance of carbon dioxide geologic storage.

    Q: What are the expected impacts of your proposed solution, both positive and negative?

    A: Renewable energy cannot be deployed rapidly enough everywhere, nor can it supplant all emissions sources, nor can it account for past emissions. Carbon capture and storage (CCS) provides a demonstrated method to address emissions that will undoubtedly occur before the transition to low-carbon energy is completed. CCS can succeed even if other strategies fail. It also allows for developing nations, which may need to adopt renewables over longer timescales, to see equitable economic development while avoiding the most harmful climate impacts. And, CCS enables the future viability of many core industries and transportation modes, many of which do not have clear alternatives before 2050, let alone 2040 or 2030.

    The perceived risks of potential leakage and earthquakes associated with geologic storage can be minimized by choosing suitable geologic formations for storage. Despite CCS providing a well-understood pathway for removing enough of the carbon dioxide already emitted into the atmosphere, some environmentalists vigorously oppose it, fearing that CCS rewards oil companies and disincentivizes the transition away from fossil fuels. We believe that it is more important to keep in mind the necessity of meeting key climate targets for the sake of the planet, and welcome those who can help. More

  • in

    Q&A: Climate Grand Challenges finalists on building equity and fairness into climate solutions

    Note: This is the first in a four-part interview series that will highlight the work of the Climate Grand Challenges finalists, ahead of the April announcement of several multiyear, flagship projects.

    The finalists in MIT’s first-ever Climate Grand Challenges competition each received $100,000 to develop bold, interdisciplinary research and innovation plans designed to attack some of the world’s most difficult and unresolved climate problems. The 27 teams are addressing four Grand Challenge problem areas: building equity and fairness into climate solutions; decarbonizing complex industries and processes; removing, managing, and storing greenhouse gases; and using data and science for improved climate risk forecasting.  

    In a conversation prepared for MIT News, faculty from three of the teams in the competition’s “Building equity and fairness into climate solutions” category share their thoughts on the need for inclusive solutions that prioritize disadvantaged and vulnerable populations, and discuss how they are working to accelerate their research to achieve the greatest impact. The following responses have been edited for length and clarity.

    The Equitable Resilience Framework

    Any effort to solve the most complex global climate problems must recognize the unequal burdens borne by different groups, communities, and societies — and should be equitable as well as effective. Janelle Knox-Hayes, associate professor in the Department of Urban Studies and Planning, leads a team that is developing processes and practices for equitable resilience, starting with a local pilot project in Boston over the next five years and extending to other cities and regions of the country. The Equitable Resilience Framework (ERF) is designed to create long-term economic, social, and environmental transformations by increasing the capacity of interconnected systems and communities to respond to a broad range of climate-related events. 

    Q: What is the problem you are trying to solve?

    A: Inequity is one of the severe impacts of climate change and resonates in both mitigation and adaptation efforts. It is important for climate strategies to address challenges of inequity and, if possible, to design strategies that enhance justice, equity, and inclusion, while also enhancing the efficacy of mitigation and adaptation efforts. Our framework offers a blueprint for how communities, cities, and regions can begin to undertake this work.

    Q: What are the most significant barriers that have impacted progress to date?

    A: There is considerable inertia in policymaking. Climate change requires a rethinking, not only of directives but pathways and techniques of policymaking. This is an obstacle and part of the reason our project was designed to scale up from local pilot projects. Another consideration is that the private sector can be more adaptive and nimble in its adoption of creative techniques. Working with the MIT Climate and Sustainability Consortium there may be ways in which we could modify the ERF to help companies address similar internal adaptation and resilience challenges.

    Protecting and enhancing natural carbon sinks

    Deforestation and forest degradation of strategic ecosystems in the Amazon, Central Africa, and Southeast Asia continue to reduce capacity to capture and store carbon through natural systems and threaten even the most aggressive decarbonization plans. John Fernandez, professor in the Department of Architecture and director of the Environmental Solutions Initiative, reflects on his work with Daniela Rus, professor of electrical engineering and computer science and director of the Computer Science and Artificial Intelligence Laboratory, and Joann de Zegher, assistant professor of Operations Management at MIT Sloan, to protect tropical forests by deploying a three-part solution that integrates targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities. 

    Q: Why is the problem you seek to address a “grand challenge”?

    A: We are trying to bring the latest technology to monitoring, assessing, and protecting tropical forests, as well as other carbon-rich and highly biodiverse ecosystems. This is a grand challenge because natural sinks around the world are threatening to release enormous quantities of stored carbon that could lead to runaway global warming. When combined with deep community engagement, particularly with indigenous and afro-descendant communities, this integrated approach promises to deliver substantially enhanced efficacy in conservation coupled to robust and sustainable local development.

    Q: What is known about this problem and what questions remain unanswered?

    A: Satellites, drones, and other technologies are acquiring more data about natural carbon sinks than ever before. The problem is well-described in certain locations such as the eastern Amazon, which has shifted from a net carbon sink to now a net positive carbon emitter. It is also well-known that indigenous peoples are the most effective stewards of the ecosystems that store the greatest amounts of carbon. One of the key questions that remains to be answered is determining the bioeconomy opportunities inherent within the natural wealth of tropical forests and other important ecosystems that are important to sustained protection and conservation.

    Reducing group-based disparities in climate adaptation

    Race, ethnicity, caste, religion, and nationality are often linked to vulnerability to the adverse effects of climate change, and if left unchecked, threaten to exacerbate long standing inequities. A team led by Evan Lieberman, professor of political science and director of the MIT Global Diversity Lab and MIT International Science and Technology Initiatives, Danielle Wood, assistant professor in the Program in Media Arts and Sciences and the Department of Aeronautics and Astronautics, and Siqi Zheng, professor of urban and real estate sustainability in the Center for Real Estate and the Department of Urban Studies and Planning, is seeking to  reduce ethnic and racial group-based disparities in the capacity of urban communities to adapt to the changing climate. Working with partners in nine coastal cities, they will measure the distribution of climate-related burdens and resiliency through satellites, a custom mobile app, and natural language processing of social media, to help design and test communication campaigns that provide accurate information about risks and remediation to impacted groups. 

    Q: How has this problem evolved?

    A: Group-based disparities continue to intensify within and across countries, owing in part to some randomness in the location of adverse climate events, as well as deep legacies of unequal human development. In turn, economically and politically privileged groups routinely hoard resources for adaptation. In a few cases — notably the United States, Brazil, and with respect to climate-related migrancy, in South Asia — there has been a great deal of research documenting the extent of such disparities. However, we lack common metrics, and for the most part, such disparities are only understood where key actors have politicized the underlying problems. In much of the world, relatively vulnerable and excluded groups may not even be fully aware of the nature of the challenges they face or the resources they require.

    Q: Who will benefit most from your research? 

    A: The greatest beneficiaries will be members of those vulnerable groups who lack the resources and infrastructure to withstand adverse climate shocks. We believe that it will be important to develop solutions such that relatively privileged groups do not perceive them as punitive or zero-sum, but rather as long-term solutions for collective benefit that are both sound and just. More

  • in

    Preparing global online learners for the clean energy transition

    After a career devoted to making the electric power system more efficient and resilient, Marija Ilic came to MIT in 2018 eager not just to extend her research in new directions, but to prepare a new generation for the challenges of the clean-energy transition.

    To that end, Ilic, a senior research scientist in MIT’s Laboratory for Information and Decisions Systems (LIDS) and a senior staff member at Lincoln Laboratory in the Energy Systems Group, designed an edX course that captures her methods and vision: Principles of Modeling, Simulation, and Control for Electric Energy Systems.

    EdX is a provider of massive open online courses produced in partnership with MIT, Harvard University, and other leading universities. Ilic’s class made its online debut in June 2021, running for 12 weeks, and it is one of an expanding set of online courses funded by the MIT Energy Initiative (MITEI) to provide global learners with a view of the shifting energy landscape.

    Ilic first taught a version of the class while a professor at Carnegie Mellon University, rolled out a second iteration at MIT just as the pandemic struck, and then revamped the class for its current online presentation. But no matter the course location, Ilic focuses on a central theme: “With the need for decarbonization, which will mean accommodating new energy sources such as solar and wind, we must rethink how we operate power systems,” she says. “This class is about how to pose and solve the kinds of problems we will face during this transformation.”

    Hot global topic

    The edX class has been designed to welcome a broad mix of students. In summer 2021, more than 2,000 signed up from 109 countries, ranging from high school students to retirees. In surveys, some said they were drawn to the class by the opportunity to advance their knowledge of modeling. Many others hoped to learn about the move to decarbonize energy systems.

    “The energy transition is a hot topic everywhere in the world, not just in the U.S.,” says teaching assistant Miroslav Kosanic. “In the class, there were veterans of the oil industry and others working in investment and finance jobs related to energy who wanted to understand the potential impacts of changes in energy systems, as well as students from different fields and professors seeking to update their curricula — all gathered into a community.”

    Kosanic, who is currently a PhD student at MIT in electrical engineering and computer science, had taken this class remotely in the spring semester of 2021, while he was still in college in Serbia. “I knew I was interested in power systems, but this course was eye-opening for me, showing how to apply control theory and to model different components of these systems,” he says. “I finished the course and thought, this is just the beginning, and I’d like to learn a lot more.” Kosanic performed so well online that Ilic recruited him to MIT, as a LIDS researcher and edX course teaching assistant, where he grades homework assignments and moderates a lively learner community forum.

    A platform for problem-solving

    The course starts with fundamental concepts in electric power systems operations and management, and it steadily adds layers of complexity, posing real-world problems along the way. Ilic explains how voltage travels from point to point across transmission lines and how grid managers modulate systems to ensure that enough, but not too much, electricity flows. “To deliver power from one location to the next one, operators must constantly make adjustments to ensure that the receiving end can handle the voltage transmitted, optimizing voltage to avoid overheating the wires,” she says.

    In her early lectures, Ilic notes the fundamental constraints of current grid operations, organized around a hierarchy of regional managers dealing with a handful of very large oil, gas, coal, and nuclear power plants, and occupied primarily with the steady delivery of megawatt-hours to far-flung customers. But historically, this top-down structure doesn’t do a good job of preventing loss of energy due to sub-optimal transmission conditions or due to outages related to extreme weather events.

    These issues promise to grow for grid operators as distributed resources such as solar and wind enter the picture, Ilic tells students. In the United States, under new rules dictated by the Federal Energy Regulatory Commission, utilities must begin to integrate the distributed, intermittent electricity produced by wind farms, solar complexes, and even by homes and cars, which flows at voltages much lower than electricity produced by large power plants.

    Finding ways to optimize existing energy systems and to accommodate low- and zero-carbon energy sources requires powerful new modes of analysis and problem-solving. This is where Ilic’s toolbox comes in: a mathematical modeling strategy and companion software that simplifies the input and output of electrical systems, no matter how large or how small. “In the last part of the course, we take up modeling different solutions to electric service in a way that is technology-agnostic, where it only matters how much a black-box energy source produces, and the rates of production and consumption,” says Ilic.

    This black-box modeling approach, which Ilic pioneered in her research, enables students to see, for instance, “what is happening with their own household consumption, and how it affects the larger system,” says Rupamathi Jaddivada PhD ’20, a co-instructor of the edX class and a postdoc in electrical engineering and computer science. “Without getting lost in details of current or voltage, or how different components work, we think about electric energy systems as dynamical components interacting with each other, at different spatial scales.” This means that with just a basic knowledge of physical laws, high school and undergraduate students can take advantage of the course “and get excited about cleaner and more reliable energy,” adds Ilic.

    What Jaddivada and Ilic describe as “zoom in, zoom out” systems thinking leverages the ubiquity of digital communications and the so-called “internet of things.” Energy devices of all scales can link directly to other devices in a network instead of just to a central operations hub, allowing for real-time adjustments in voltage, for instance, vastly improving the potential for optimizing energy flows.

    “In the course, we discuss how information exchange will be key to integrating new end-to-end energy resources and, because of this interactivity, how we can model better ways of controlling entire energy networks,” says Ilic. “It’s a big lesson of the course to show the value of information and software in enabling us to decarbonize the system and build resilience, rather than just building hardware.”

    By the end of the course, students are invited to pursue independent research projects. Some might model the impact of a new energy source on a local grid or investigate different options for reducing energy loss in transmission lines.

    “It would be nice if they see that we don’t have to rely on hardware or large-scale solutions to bring about improved electric service and a clean and resilient grid, but instead on information technologies such as smart components exchanging data in real time, or microgrids in neighborhoods that sustain themselves even when they lose power,” says Ilic. “I hope students walk away convinced that it does make sense to rethink how we operate our basic power systems and that with systematic, physics-based modeling and IT methods we can enable better, more flexible operation in the future.”

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative More

  • in

    MIT in the media: 2021 in review

    From Institute-wide efforts to address the climate crisis to responding to Covid-19, members of the MIT community made headlines this year for their innovative work in a variety of areas. Faculty, students, and staff were on the front lines of addressing many pressing issues this year, raising their voices and sharing their findings. Below are highlights of news stories that spotlight the many efforts underway at MIT to help make a better world.

    Fireside chat: Tackling global challenges with a culture of innovationPresident L. Rafael Reif and Linda Henry, CEO of Boston Globe Media Partners, took part in a wide-ranging fireside chat during the inaugural Globe Summit, touching upon everything from the urgent need to address the climate crisis to MIT’s response to Covid-19, the Institute’s approach to artificial intelligence education and the greater Boston innovation ecosystem.Full discussion via Globe Summit

    A real-world revolution in economicsProfessor Joshua Angrist, one of the winners of the 2021 Nobel Prize in economic sciences, spoke with The Economist’s Money Talks podcast about the evolution of his research and how his work has helped bring the field of economics closer to real life. “I like to tell graduate students that a good scholar is like a good hitter in baseball,” says Angrist of his advice for economics students. “You get on base about a third of the time you’re doing pretty well, which means you strike out most of the time.”Full story via The Economist

    Paula Hammond guest edits C&EN’s 2021 Trailblazers issueC&EN’s 2021 Trailblazers issue, curated by guest editor Paula Hammond, celebrated Black chemists and chemical engineers. “As we learn from several of the personal stories highlighted in this issue,” writes Hammond, “that first connection to science and research is critical to engage and inspire the next generation.” Helping propel the issue’s message about the importance of mentorship was a one-on-one with Professor Kristala Prather about her career path and a wide-ranging interview with Hammond herself on building a home at MIT.Full issue via C&EN

    Can fusion put the brakes on climate change? MIT’s new Climate Action Plan for the Decade calls for going as far as we can, as fast as we can, with the tools and methods we have now — but also asserts that ultimate success depends on breakthroughs. Commercial fusion energy is potentially one such game-changer, and a unique collaboration between MIT and Commonwealth Fusion Systems (CFS) is pursuing it. As Joy Dunn ’08, head of manufacturing at CFS, explains to the New Yorker’s Rivka Galchen: “When people ask me, ‘Why fusion? Why not other renewables,’ my thinking is: This is a solution at the scale of the problem.”Full story via New Yorker

    The genius next door: Taylor Perron discusses landscape evolutionProfessor and geomorphologist Taylor Perron, a recipient this year’s MacArthur Fellowships, joined Callie Crossley of GBH’s Under the Radar to discuss his work studying the mechanisms that shape landscapes on Earth and other planets. “We try to figure out how we can look at landscapes and read them, and try to figure out what happened in the past and also anticipate what might happen in the future,” says Perron.Full story via GBH

    How the pandemic “re-imagined how we can exhibit” Hashim Sarkis, dean of the School of Architecture and Planning and curator of this year’s Venice Architecture Biennale, spoke with Cajsa Carlson of Dezeen about how the field of architecture is transforming due to climate change, the Covid-19 pandemic, and efforts to increase diversity and representation. “Talent and imagination are not restricted to advanced development economically,” says Sarkis. “I hope this message comes across in this biennale.”Full story via Dezeen

    10 years at the top of the QS World University RankingsProvost Martin Schmidt spoke with TopUniversities.com reporter Chloe Lane about how MIT has maintained its position as the top university in the world on the QS World University Rankings for 10 consecutive years. “The Institute is full of a diverse community of people from all corners of the globe dedicated to solving the world’s most difficult problems,” says Schmidt. “Their efforts have a demonstrable impact through ambitious high-impact activities.”  Full story via TopUniversities.com

    Tackling Covid-19 and the Impact of a Global PandemicIn 2021, MIT researchers turned their attention to addressing the widespread effects of a global pandemic, exploring everything from supply chain issues to K-12 education.Massachusetts Miracle: “There are a lot of potential Modernas”Boston Globe columnist Shirley Leung spotlighted how the development of the Moderna Covid-19 vaccine demonstrates the success of the Massachusetts life sciences sector. “For more than half a century, the Massachusetts Institute of Technology has been the epicenter of that curiosity, with a focus on molecular biology — initially to find a cure for cancer,” writes Leung.Full story via The Boston Globe

    Weak links in the supply chainProfessor Yossi Sheffi spoke with David Pogue of CBS Sunday Morning about what’s causing supply chain breakdowns. “The underlying cause of all of this is actually a huge increase in demand,” says Sheffi. “People did not spend during the pandemic. And then, all the government help came; trillions of dollars went to households. So, they order stuff. They order more and more stuff. And the global markets were not ready for this.”Full story via CBS News

    Recruiting students and teachers to rethink schoolsA report co-authored by Associate Professor Justin Reich proposed a new path forward for rethinking K-12 schools after Covid-19, reported Paul Darvasi for KQED. “The report recommends that educators build on the positive aspects of their pandemic learning experience in the years ahead,” notes Darvasi, “and supports increased student independence to cultivate a safe and healthy environment that is more conducive to learning.”Full story via KQED

    This staff member has been quietly curating a flower box at the Collier MemorialResearch Specialist Kathy Cormier’s dedication to tending a flower planter at the Collier Memorial throughout the pandemic captured the hearts of many in the MIT community. “Here’s something that’s empty that I can fill, and make myself feel better and make other people — hopefully — feel better,” she says.Full story via The Boston Globe

    Amazing Alumni MIT alumni made headlines for their efforts to change the world, both here on Earth and in outer space. NASA selects three new astronaut candidates with MIT rootsMarcos Berríos ’06, Christina Birch PhD ’15 and Christopher Williams PhD ’12 were selected among NASA’s 10-member 2021 astronaut candidate class, reported WBUR’s Bill Chappell. “Alone, each candidate has ‘the right stuff,’ but together they represent the creed of our country: E pluribus unum — out of many, one,” said NASA Administrator Bill Nelson.Full story via WBUR

    Ngozi Okonjo-Iweala named WTO director-generalNgozi Okonjo-Iweala MCP ’78, PhD ’81, a former Nigerian finance minister, was named director-general of the World Trade Organization, reported William Wallace for the Financial Times. “Okonjo-Iweala sees an opportunity for the organization to rediscover some of its original purpose of raising living standards across the board and to bring its outdated rule book up to date at a time of accelerating change,” notes Wallace.Full story via Financial Times

    She doesn’t think skateboarding’s a sport, but she competed for a medalAlexis Sablone MArch ’16 spoke with Washington Post reporter Les Carpenter about street skateboarding, competing at this year’s Olympic Games, and why she is uncomfortable with being defined. “To me, I’m just always like trying to be myself and do things that I love to do and not try to fit into these categories in ways that I don’t feel comfortable with,” says Sablone.Full story via The Washington Post

    Applauding the culture of aerospace engineeringTiera Fletcher ’17, a structural design engineer working on building NASA’s Space Launch System, and her husband Myron Fletcher spoke with the hosts of The Real about what inspired them to pursue careers in aerospace engineering and their organization Rocket with the Fletchers, which is aimed at introducing youth to the field of aerodynamics.Full story via The Real

    Addressing the Climate CrisisThe urgent need to take action on climate change became more apparent in 2021. MIT researchers across campus answered the call and are unleashing innovative ideas to help address the biggest threat of our time.

    Why closing California’s last nuclear power plant would be a mistake The Washington Post Editorial Board highlighted a report co-authored by MIT researchers that found keeping the Diablo Canyon nuclear power plant in California open would help the state reach its climate goals.Full story via The Washington Post

    What will the U.S. do to reach emission reduction targets?Sergey Paltsev, deputy director of the MIT Joint Program on the Science and Policy of Global Change, spoke with Brian Cheung of Yahoo Finance about climate change, the path to net-zero emissions, and COP26. Paltsev was a lead author of the Fifth Assessment Report Intergovernmental Panel on Climate Change or IPCC. Full story via Yahoo News

    Lithium battery costs have fallen by 98% in three decadesA study by Professor Jessika Trancik and postdoc Micah Ziegler examining the plunge in lithium-ion battery costs finds “every time output doubles, as it did five times between 2006 and 2016, battery prices fall by about a quarter,” reports The Economist, which highlighted the work in its popular “Daily chart” feature. (Trancik’s research detailing carbon impacts of different cars was also cited by The Washington Post as a climate-change innovation helping respond to calls for action.)Full story via The Economist

    MIT students display a “climate clock” outside the Green BuildingBoston Globe reporter Matt Berg spotlights how a team from the MIT D-Lab created a climate clock, which was projected on the exterior of the Green Building at MIT in an effort to showcase key data about climate change. “The display highlights goals of the fight against climate change, such as limiting the annual temperature increases to no more than 2.7 degrees Fahrenheit,” writes Berg.Full story via The Boston Globe

    Social Impact

    MIT community members increasingly sought to address social issues around the world, from the spread of misinformation to ensuring marginalized communities could share their experiences. At MIT, arts, humanities and STEM fields forge an essential partnershipWriting for Times Higher Ed, Agustín Rayo, interim dean of MIT’s School of Humanities, Arts and Social Sciences, and Hashim Sarkis, dean of the School of Architecture and Planning, underscore the importance of the arts, humanities, and design fields as “an essential part of an MIT education, critical to the Institute’s capacity for innovation and vital to its mission to make a better world.” They add that “the MIT mission is to serve humankind, and the arts and humanities are essential resources for knowledge and understanding of the human condition.”Full story via Times Higher Ed

    Helping Bostonians feel heard with MIT’s “Real Talk” portalAn MIT initiative called “Real Talk for Change” launched a new online portal of more than 200 audio stories collected from Boston residents as part of an effort to “help prompt future community dialogues about the lived experiences of everyday Bostonians, particularly those in marginalized communities,” reported Meghan E. Irons for The Boston Globe.Full story via Boston Globe

    Why nations fail, America editionProfessor Daron Acemoglu spoke with Greg Rosalsky of NPR’s Planet Money about his book, “Why Nations Fail,” and whether the attack on the U.S. Capitol signals difficulties for U.S. institutions, and how politicians can create more shared prosperity through a “good jobs” agenda. “We are still at a point where we can reverse things,” Acemoglu says. “But I think if we paper over these issues, we will most likely see a huge deterioration in institutions. And it can happen very rapidly.”Full story via Planet Money

    Why confronting disinformation spreaders online only makes it worseA study by MIT researchers found that correcting people who were spreading misinformation on Twitter led to people retweeting and sharing even more misinformation, reported Matthew Gault for Motherboard. Professor David Rand explains that the research is aimed at identifying “what kinds of interventions increase versus decrease the quality of news people share. There is no question that social media has changed the way people interact. But understanding how exactly it’s changed things is really difficult.” Full story via Motherboard

    Out of This WorldFrom designing a new instrument that can extract oxygen out of Martian air to investigating gravitational waves, MIT community members continued their longstanding tradition of deepening our understanding of the cosmos. MOXIE pulled breathable oxygen out of thin Martian airMichael Hecht of MIT’s Haystack Observatory spoke with GBH’s Edgar Herwick about how the MIT-designed MOXIE instrument successfully extracted oxygen out of Martian air. “I’ve been using the expression ‘a small breath for man, a giant leap for humankind,’” says Hecht, who is the principal investigator for MOXIE.Full story via GBH

    The down-to-Earth applications of spaceAssistant Professor Danielle Wood joined Bloomberg TV to discuss her work focused on using space technologies as a way to advance the U.N. Sustainable Development Goals. She emphasizes how space “is a platform for serving the broad public. We use satellites to observe the environment and the climate, we use satellites to connect people across different parts of the Earth, and they give us information about our positions and our weather. All of these are broad public goods that really can serve people across the world all at once.”Full story via Bloomberg TV

    How Perseverance is hunting for life on MarsIn a conversation with New Scientist reporter Jonathan O’Callaghan, Professor Tanja Bosak discussed her work with the NASA Perseverance rover’s rock reconnaissance mission. “In the middle of a pandemic, I think we needed something good to happen, and that’s why so many people wanted all the science and engineering that goes into landing a rover on Mars to succeed,” says Bosak.Full story via New Scientist

    What scientists have learned from hidden ripples in spacetimeNergis Mavalvala, dean of the School of Science, spoke with Becky Ferreira of Motherboard’s “Space Show” about LIGO’s 2015 discovery of gravitational waves and what researchers in the field have learned since then. “Every one of these observations tells us a little bit more about how nature has assembled our universe,” says Mavalvala. “Really, in the end, the question we’re asking is: ‘How did this universe that we observe come about?’” Full story via MotherboardJoining the Conversation

    MIT authors contributed nearly 100 op-eds and essays to top news outlets this year, along with research-focused deep dives in The Conversation.

    Building on Vannevar Bush’s “wild garden” to cultivate solutions to human needsPresident L. Rafael Reif examined Vannevar Bush’s groundbreaking 1945 “Science, the Endless Frontier” report and considered how our needs today have changed. “To meet this moment, we need to ensure that our federally sponsored research addresses questions that will enhance our competitiveness now and in the future,” writes Reif. “Our current system has many strengths … but we must not allow these historical advantages to blind us to gaps that could become fatal weaknesses.”Full story via Issues in Science and Technology

    Good news: There’s a labor shortageWriting for The New York Times, Professor David Autor explored how the current labor shortage provides an opportunity to improve the quality of jobs in the U.S. “The period of labor scarcity, then, is an opportunity to catalyze better working conditions for those who need them most,” writes Autor.Full story via New York Times

    Opening the path to biotechIn an editorial for Science, Professor Sangeeta Bhatia, Professor Emerita Nancy Hopkins, and President Emerita Susan Hockfield underscored the importance of addressing the underrepresentation of women and individuals of color in tech transfer. “The discoveries women and minority researchers are making today have great potential as a force for good in the world,” they write, “but reaching that potential is only possible if paths to real-world applications are open to everybody.”Full story via Science

    To protect from lab leaks, we need “banal” safety rules, not anti-terrorism measuresMIT Professor Susan Silbey and Professor Ruthanne Huising of Emlyon Business School made the case that to prevent lab leaks, there should be a greater emphasis placed on biosafety. “The global research community does not need more rules, more layers of oversight, and more intermediary actors,” they write. “What it needs is more attention and respect to already known biosafety measures and techniques.”Full story via Stat

    Boston: The Silicon Valley of longevity?Writing for The Boston Globe, AgeLab Director Joseph Coughlin and Research Associate Luke Yoquinto explored how Greater Boston could serve as an innovation hub for aging populations. “By making groundbreaking creativity and inventiveness for older adults both seen and felt, Greater Boston and New England will be able to offer the world a new vision of old age,” they write.Full story via The Boston Globe

    More of the latest MIT In the Media summaries, with links to the original reporting, are available at news.mit.edu/in-the-media. More

  • in

    MIT community in 2021: A year in review

    During 2021, the Covid-19 pandemic continued to color much of the year, as MIT saw both the promise of vaccines as well as the rise of troubling new variants. The Institute also made new commitments to climate action, saw the opening of new and renovated spaces, continued in its efforts to support its diverse voices, and celebrated new Nobel laureates and astronaut candidates. Here are some of the top stories in the MIT community this year.

    Continuing to work through CovidVaccines became widely available to the MIT community early in the year — thanks, in significant part, to the ingenuity of MIT scientists and engineers. In response, the Institute developed a policy requiring vaccination for most members of the community and planned a return to fully in-person teaching and working at MIT for the fall 2021 semester.

    With copious protections in place, the fall semester in many ways embodied MIT’s resilience: In-person teaching expanded, staff returned with new flexible arrangements, and community spirit lifted as face-to-face meetings became possible in many cases once again. Some annual traditions, such as Commencement, stayed remote, while others, like the outdoor Great Glass Pumpkin Patch, and 2.009 grand finale, returned, adding smiles and a sense of gratitude among community members.Melissa Nobles appointed chancellor

    In August, Melissa Nobles, the former Kenin Sahin Dean of the MIT School of Humanities, Arts, and Social Sciences, became the Institute’s new chancellor. A political scientist, Nobles succeeded Cynthia Barnhart, who returned to research and teaching after seven years as chancellor.

    In other news related to MIT’s top administration, Martin Schmidt announced in November that after 40 years at MIT, he plans to step down as provost to become the next president of Rensselaer Polytechnic Institute, his alma mater.

    New climate action plan

    MIT unveiled a new action plan to tackle the climate crisis, committing to net-zero emissions by 2026 and charting a course marshaling all of MIT’s capabilities toward decarbonization. The plan includes a broad array of new initiatives and significant expansions of existing programs to address the needs for new technologies, new policies, and new kinds of outreach to bring the Institute’s expertise to bear on this critical global issue.

    In November, a delegation from MIT also traveled to Scotland for COP26, the 2021 United Nations climate change conference, where international negotiators sought to keep global climate goals on track. Approximately 20 MIT faculty, staff, and students were on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    MIT and Harvard transfer edX

    MIT and Harvard University announced in June that assets of edX, the nonprofit they launched in 2012 to provide an open online platform for university courses, would be acquired by the publicly-traded education technology company 2U, and reorganized as a public benefit company under the 2U umbrella. In exchange, 2U was set to transfer net proceeds from the $800 million transaction to a nonprofit organization, also led by MIT and Harvard, to explore the next generation of online education.

    Supporting our diverse communityAs an important step forward in MIT’s ongoing efforts to create a more welcoming and inclusive community, the Institute hired six new assistant deans, one in each school and in the MIT Schwarzman College of Computing, to serve as diversity, equity, and inclusion professionals. In addition, this week Institute Community and Equity Officer John Dozier provided an update on the Strategic Action Plan for Diversity, Equity, and Inclusion, the first draft of which was released in March.

    A community discussion also examined the complexities of Asian American and Pacific Islander identity and acceptance at MIT, while underscoring the need for collaborative work among groups to combat prejudice and create equity. The forum was held amid a string of violent assaults on Asian Americans in the U.S., which raised public awareness about anti-Asian discrimination. Meanwhile, Professor Emma Teng provided historic context for the crisis.

    Three with MIT ties win Nobel PrizesProfessor Joshua Angrist, whose influential work has enhanced rigorous empirical research in economics, shared half of the 2021 Nobel Prize in economic sciences with Guido Imbens of the Stanford Graduate School of Business; the other half went to David Card of the University of California at Berkeley.

    In addition, David Julius ’77, a professor at the University of California at San Francisco, shared the 2021 Nobel Prize in Physiology or Medicine with Ardem Patapoutian, a professor at the Scripps Research Institute, for their discoveries in how the body senses touch and temperature. And Maria Ressa, a journalist in the Philippines and digital fellow at the MIT Initiative on the Digital Economy, shared the 2021 Nobel Peace Prize with journalist Dmitry Muratov of Russia.

    National STEM leadersBefore taking office in January, President Joe Biden selected two MIT faculty leaders for top science and technology posts in his administration. Eric Lander, director of the Broad Institute and professor of biology, was named presidential science advisor and director of the Office of Science and Technology Policy. Maria Zuber, vice president for research and professor of earth, atmospheric, and planetary sciences, was named co-chair of the President’s Council of Advisors on Science and Technology (PCAST), along with Caltech chemical engineer Frances Arnold — the first women ever to co-chair PCAST.

    Paula Hammond, head of the Department of Chemical Engineering, was also chosen to serve as a member of PCAST. Earlier in the year, Hammond, along with chemical engineer Arup Chakraborty, was named an Institute Professor, the highest honor bestowed upon MIT faculty.

    Task Force 2021 final report

    MIT’s Task Force 2021 and Beyond, charged with reimagining the future of MIT, released its final report, 18 months after it began work in the shadow of the Covid-19 pandemic. The report offers 17 recommendations to strengthen and streamline MIT, and make the Institute more successful across its teaching, research, and innovation endeavors. In addition to a providing a substantive list of recommendations, the report suggests routes to implementation, and assigns one or more senior leaders or faculty governance committees with oversight, for every idea presented.

    Newly opened or reopened

    A number of facilities, new or newly redesigned, opened in 2021. These included a new MIT Welcome Center in Kendall Square; the new InnovationHQ, a hub for MIT entrepreneurship; the newly renovated and reimagined Hayden Library and courtyard; and the new MIT Press Bookstore. Two new student residences also opened, and the community welcomed programming from the Institute’s new outdoor open space.

    Students win an impressive number of distinguished fellowshipsAs always, MIT students continued to shine. This year, exceptional undergraduates were awarded Fulbright, Marshall, Mitchell, Rhodes, and Schwarzman scholarships.

    Remembering those we’ve lostAmong community members who died this year were William Dalzell, Sergio Dominguez, Gene Dresselhaus, Sow Hsin-Chen, Ronald Kurtz, Paul Lagacé, Shirley McBay, ChoKyun Rha, George Shultz, Isadore Singer, James Swan, and Jing Wang. A longer list of 2021 obituaries is available on MIT News.

    In Case You Missed It… 

    Additional top community stories of 2021 included NASA’s selection of three new alumni astronaut candidates; the announcement of the 2021 MIT Solve Global Challenges; the successful conclusion of the MIT Campaign for a Better World; a win for MIT in the American Solar Challenge; a look at chess at the Institute; a roundup of new books from MIT authors; and the introduction of STEM-focused young-adult graphic fiction from the MIT Press. More

  • in

    Q&A: Can the world change course on climate?

    In this ongoing series on climate issues, MIT faculty, students, and alumni in the humanistic fields share perspectives that are significant for solving climate change and mitigating its myriad social and ecological impacts. Nazli Choucri is a professor of political science and an expert on climate issues, who also focuses on international relations and cyberpolitics. She is the architect and director of the Global System for Sustainable Development, an evolving knowledge networking system centered on sustainability problems and solution strategies. The author and/or editor of 12 books, she is also the founding editor of the MIT Press book series “Global Environmental Accord: Strategies for Sustainability and Institutional Innovation.” Q: The impacts of climate change — including storms, floods, wildfires, and droughts — have the potential to destabilize nations, yet they are not constrained by borders. What international developments most concern you in terms of addressing climate change and its myriad ecological and social impacts?

    A: Climate change is a global issue. By definition, and a long history of practice, countries focus on their own priorities and challenges. Over time, we have seen the gradual development of norms reflecting shared interests, and the institutional arrangements to support and pursue the global good. What concerns me most is that general responses to the climate crisis are being framed in broad terms; the overall pace of change remains perilously slow; and uncertainty remains about operational action and implementation of stated intent. We have just seen the completion of the 26th meeting of states devoted to climate change, the United Nations Climate Change Conference (COP26). In some ways this is positive. Yet, past commitments remain unfulfilled, creating added stress in an already stressful political situation. Industrial countries are uneven in their recognition of, and responses to, climate change. This may signal uncertainty about whether climate matters are sufficiently compelling to call for immediate action. Alternatively, the push for changing course may seem too costly at a time when other imperatives — such as employment, economic growth, or protecting borders — inevitably dominate discourse and decisions. Whatever the cause, the result has been an unwillingness to take strong action. Unfortunately, climate change remains within the domain of “low politics,” although there are signs the issue is making a slow but steady shift to “high politics” — those issues deemed vital to the existence of the state. This means that short-term priorities, such as those noted above, continue to shape national politics and international positions and, by extension, to obscure the existential threat revealed by scientific evidence. As for developing countries, these are overwhelmed by internal challenges, and managing the difficulties of daily life always takes priority over other challenges, however compelling. Long-term thinking is a luxury, but daily bread is a necessity. Non-state actors — including registered nongovernmental organizations, climate organizations, sustainability support groups, activists of various sorts, and in some cases much of civil society — have been left with a large share of the responsibility for educating and convincing diverse constituencies of the consequences of inaction on climate change. But many of these institutions carry their own burdens and struggle to manage current pressures. The international community, through its formal and informal institutions, continues to articulate the perils of climate change and to search for a powerful consensus that can prove effective both in form and in function. The general contours are agreed upon — more or less. But leadership of, for, and by the global collective is elusive and difficult to shape. Most concerning of all is the clear reluctance to address head-on the challenge of planning for changes that we know will occur. The reality that we are all being affected — in different ways and to different degrees — has yet to be sufficiently appreciated by everyone, everywhere. Yet, in many parts of the world, major shifts in climate will create pressures on human settlements, spur forced migrations, or generate social dislocations. Some small island states, for example, may not survive a sea-level surge. Everywhere there is a need to cut emissions, and this means adaptation and/or major changes in economic activity and in lifestyle.The discourse and debate at COP26 reflect all of such persistent features in the international system. So far, the largest achievements center on the common consensus that more must be done to prevent the rise in temperature from creating a global catastrophe. This is not enough, however. Differences remain, and countries have yet to specify what cuts in emissions they are willing to make.Echoes of who is responsible for what remains strong. The thorny matter of the unfulfilled pledge of $100 billion once promised by rich countries to help countries to reduce their emissions remained unresolved. At the same time, however, some important agreements were reached. The United States and China announced they would make greater efforts to cut methane, a powerful greenhouse gas. More than 100 countries agreed to end deforestation. India joined the countries committed to attain zero emissions by 2070. And on matters of finance, countries agreed to a two-year plan to determine how to meet the needs of the most-vulnerable countries. Q: In what ways do you think the tools and insights from political science can advance efforts to address climate change and its impacts?A: I prefer to take a multidisciplinary view of the issues at hand, rather than focus on the tools of political science alone. Disciplinary perspectives can create siloed views and positions that undermine any overall drive toward consensus. The scientific evidence is pointing to, even anticipating, pervasive changes that transcend known and established parameters of social order all across the globe.That said, political science provides important insight, even guidance, for addressing the impacts of climate change in some notable ways. One is understanding the extent to which our formal institutions enable discussion, debate, and decisions about the directions we can take collectively to adapt, adjust, or even depart from the established practices of managing social order.If we consider politics as the allocation of values in terms of who gets what, when, and how, then it becomes clear that the current allocation requires a change in course. Coordination and cooperation across the jurisdictions of sovereign states is foundational for any response to climate change impacts.We have already recognized, and to some extent, developed targets for reducing carbon emissions — a central impact from traditional forms of energy use — and are making notable efforts to shift toward alternatives. This move is an easy one compared to all the work that needs to be done to address climate change. But, in taking this step we have learned quite a bit that might help in creating a necessary consensus for cross-jurisdiction coordination and response.Respecting individuals and protecting life is increasingly recognized as a global value — at least in principle. As we work to change course, new norms will be developed, and political science provides important perspectives on how to establish such norms. We will be faced with demands for institutional design, and these will need to embody our guiding values. For example, having learned to recognize the burdens of inequity, we can establish the value of equity as foundational for our social order both now and as we recognize and address the impacts of climate change.

    Q: You teach a class on “Sustainability Development: Theory and Practice.” Broadly speaking, what are goals of this class? What lessons do you hope students will carry with them into the future?A: The goal of 17.181, my class on sustainability, is to frame as clearly as possible the concept of sustainable development (sustainability) with attention to conceptual, empirical, institutional, and policy issues.The course centers on human activities. Individuals are embedded in complex interactive systems: the social system, the natural environment, and the constructed cyber domain — each with distinct temporal, special, and dynamic features. Sustainability issues intersect with, but cannot be folded into, the impacts of climate change. Sustainability places human beings in social systems at the core of what must be done to respect the imperatives of a highly complex natural environment.We consider sustainability an evolving knowledge domain with attendant policy implications. It is driven by events on the ground, not by revolution in academic or theoretical concerns per se. Overall, sustainable development refers to the process of meeting the needs of current and future generations, without undermining the resilience of the life-supporting properties, the integrity of social systems, or the supports of the human-constructed cyberspace.More specifically, we differentiate among four fundamental dimensions and their necessary conditions:

    (a) ecological systems — exhibiting balance and resilience;(b) economic production and consumption — with equity and efficiency;(c) governance and politics — with participation and responsiveness; and(d) institutional performance — demonstrating adaptation and incorporating feedback.The core proposition is this: If all conditions hold, then the system is (or can be) sustainable. Then, we must examine the critical drivers — people, resources, technology, and their interactions — followed by a review and assessment of evolving policy responses. Then we ask: What are new opportunities?I would like students to carry forward these ideas and issues: what has been deemed “normal” in modern Western societies and in developing societies seeking to emulate the Western model is damaging humans in many ways — all well-known. Yet only recently have alternatives begun to be considered to the traditional economic growth model based on industrialization and high levels of energy use. To make changes, we must first understand the underlying incentives, realities, and choices that shape a whole set of dysfunctional behaviors and outcomes. We then need to delve deep into the driving sources and consequences, and to consider the many ways in which our known “normal” can be adjusted — in theory and in practice. Q: In confronting an issue as formidable as global climate change, what gives you hope?  A: I see a few hopeful signs; among them:The scientific evidence is clear and compelling. We are no longer discussing whether there is climate change, or if we will face major challenges of unprecedented proportions, or even how to bring about an international consensus on the salience of such threats.Climate change has been recognized as a global phenomenon. Imperatives for cooperation are necessary. No one can go it alone. Major efforts have and are being made in world politics to forge action agendas with specific targets.The issue appears to be on the verge of becoming one of “high politics” in the United States.Younger generations are more sensitive to the reality that we are altering the life-supporting properties of our planet. They are generally more educated, skilled, and open to addressing such challenges than their elders.However disappointing the results of COP26 might seem, the global community is moving in the right direction.None of the above points, individually or jointly, translates into an effective response to the known impacts of climate change — let alone the unknown. But, this is what gives me hope.

    Interview prepared by MIT SHASS CommunicationsEditorial, design, and series director: Emily HiestandSenior writer: Kathryn O’Neill More

  • in

    Q&A: More-sustainable concrete with machine learning

    As a building material, concrete withstands the test of time. Its use dates back to early civilizations, and today it is the most popular composite choice in the world. However, it’s not without its faults. Production of its key ingredient, cement, contributes 8-9 percent of the global anthropogenic CO2 emissions and 2-3 percent of energy consumption, which is only projected to increase in the coming years. With aging United States infrastructure, the federal government recently passed a milestone bill to revitalize and upgrade it, along with a push to reduce greenhouse gas emissions where possible, putting concrete in the crosshairs for modernization, too.

    Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in the MIT Department of Materials Science and Engineering, and Jie Chen, MIT-IBM Watson AI Lab research scientist and manager, think artificial intelligence can help meet this need by designing and formulating new, more sustainable concrete mixtures, with lower costs and carbon dioxide emissions, while improving material performance and reusing manufacturing byproducts in the material itself. Olivetti’s research improves environmental and economic sustainability of materials, and Chen develops and optimizes machine learning and computational techniques, which he can apply to materials reformulation. Olivetti and Chen, along with their collaborators, have recently teamed up for an MIT-IBM Watson AI Lab project to make concrete more sustainable for the benefit of society, the climate, and the economy.

    Q: What applications does concrete have, and what properties make it a preferred building material?

    Olivetti: Concrete is the dominant building material globally with an annual consumption of 30 billion metric tons. That is over 20 times the next most produced material, steel, and the scale of its use leads to considerable environmental impact, approximately 5-8 percent of global greenhouse gas (GHG) emissions. It can be made locally, has a broad range of structural applications, and is cost-effective. Concrete is a mixture of fine and coarse aggregate, water, cement binder (the glue), and other additives.

    Q: Why isn’t it sustainable, and what research problems are you trying to tackle with this project?

    Olivetti: The community is working on several ways to reduce the impact of this material, including alternative fuels use for heating the cement mixture, increasing energy and materials efficiency and carbon sequestration at production facilities, but one important opportunity is to develop an alternative to the cement binder.

    While cement is 10 percent of the concrete mass, it accounts for 80 percent of the GHG footprint. This impact is derived from the fuel burned to heat and run the chemical reaction required in manufacturing, but also the chemical reaction itself releases CO2 from the calcination of limestone. Therefore, partially replacing the input ingredients to cement (traditionally ordinary Portland cement or OPC) with alternative materials from waste and byproducts can reduce the GHG footprint. But use of these alternatives is not inherently more sustainable because wastes might have to travel long distances, which adds to fuel emissions and cost, or might require pretreatment processes. The optimal way to make use of these alternate materials will be situation-dependent. But because of the vast scale, we also need solutions that account for the huge volumes of concrete needed. This project is trying to develop novel concrete mixtures that will decrease the GHG impact of the cement and concrete, moving away from the trial-and-error processes towards those that are more predictive.

    Chen: If we want to fight climate change and make our environment better, are there alternative ingredients or a reformulation we could use so that less greenhouse gas is emitted? We hope that through this project using machine learning we’ll be able to find a good answer.

    Q: Why is this problem important to address now, at this point in history?

    Olivetti: There is urgent need to address greenhouse gas emissions as aggressively as possible, and the road to doing so isn’t necessarily straightforward for all areas of industry. For transportation and electricity generation, there are paths that have been identified to decarbonize those sectors. We need to move much more aggressively to achieve those in the time needed; further, the technological approaches to achieve that are more clear. However, for tough-to-decarbonize sectors, such as industrial materials production, the pathways to decarbonization are not as mapped out.

    Q: How are you planning to address this problem to produce better concrete?

    Olivetti: The goal is to predict mixtures that will both meet performance criteria, such as strength and durability, with those that also balance economic and environmental impact. A key to this is to use industrial wastes in blended cements and concretes. To do this, we need to understand the glass and mineral reactivity of constituent materials. This reactivity not only determines the limit of the possible use in cement systems but also controls concrete processing, and the development of strength and pore structure, which ultimately control concrete durability and life-cycle CO2 emissions.

    Chen: We investigate using waste materials to replace part of the cement component. This is something that we’ve hypothesized would be more sustainable and economic — actually waste materials are common, and they cost less. Because of the reduction in the use of cement, the final concrete product would be responsible for much less carbon dioxide production. Figuring out the right concrete mixture proportion that makes endurable concretes while achieving other goals is a very challenging problem. Machine learning is giving us an opportunity to explore the advancement of predictive modeling, uncertainty quantification, and optimization to solve the issue. What we are doing is exploring options using deep learning as well as multi-objective optimization techniques to find an answer. These efforts are now more feasible to carry out, and they will produce results with reliability estimates that we need to understand what makes a good concrete.

    Q: What kinds of AI and computational techniques are you employing for this?

    Olivetti: We use AI techniques to collect data on individual concrete ingredients, mix proportions, and concrete performance from the literature through natural language processing. We also add data obtained from industry and/or high throughput atomistic modeling and experiments to optimize the design of concrete mixtures. Then we use this information to develop insight into the reactivity of possible waste and byproduct materials as alternatives to cement materials for low-CO2 concrete. By incorporating generic information on concrete ingredients, the resulting concrete performance predictors are expected to be more reliable and transformative than existing AI models.

    Chen: The final objective is to figure out what constituents, and how much of each, to put into the recipe for producing the concrete that optimizes the various factors: strength, cost, environmental impact, performance, etc. For each of the objectives, we need certain models: We need a model to predict the performance of the concrete (like, how long does it last and how much weight does it sustain?), a model to estimate the cost, and a model to estimate how much carbon dioxide is generated. We will need to build these models by using data from literature, from industry, and from lab experiments.

    We are exploring Gaussian process models to predict the concrete strength, going forward into days and weeks. This model can give us an uncertainty estimate of the prediction as well. Such a model needs specification of parameters, for which we will use another model to calculate. At the same time, we also explore neural network models because we can inject domain knowledge from human experience into them. Some models are as simple as multi-layer perceptions, while some are more complex, like graph neural networks. The goal here is that we want to have a model that is not only accurate but also robust — the input data is noisy, and the model must embrace the noise, so that its prediction is still accurate and reliable for the multi-objective optimization.

    Once we have built models that we are confident with, we will inject their predictions and uncertainty estimates into the optimization of multiple objectives, under constraints and under uncertainties.

    Q: How do you balance cost-benefit trade-offs?

    Chen: The multiple objectives we consider are not necessarily consistent, and sometimes they are at odds with each other. The goal is to identify scenarios where the values for our objectives cannot be further pushed simultaneously without compromising one or a few. For example, if you want to further reduce the cost, you probably have to suffer the performance or suffer the environmental impact. Eventually, we will give the results to policymakers and they will look into the results and weigh the options. For example, they may be able to tolerate a slightly higher cost under a significant reduction in greenhouse gas. Alternatively, if the cost varies little but the concrete performance changes drastically, say, doubles or triples, then this is definitely a favorable outcome.

    Q: What kinds of challenges do you face in this work?

    Chen: The data we get either from industry or from literature are very noisy; the concrete measurements can vary a lot, depending on where and when they are taken. There are also substantial missing data when we integrate them from different sources, so, we need to spend a lot of effort to organize and make the data usable for building and training machine learning models. We also explore imputation techniques that substitute missing features, as well as models that tolerate missing features, in our predictive modeling and uncertainty estimate.

    Q: What do you hope to achieve through this work?

    Chen: In the end, we are suggesting either one or a few concrete recipes, or a continuum of recipes, to manufacturers and policymakers. We hope that this will provide invaluable information for both the construction industry and for the effort of protecting our beloved Earth.

    Olivetti: We’d like to develop a robust way to design cements that make use of waste materials to lower their CO2 footprint. Nobody is trying to make waste, so we can’t rely on one stream as a feedstock if we want this to be massively scalable. We have to be flexible and robust to shift with feedstocks changes, and for that we need improved understanding. Our approach to develop local, dynamic, and flexible alternatives is to learn what makes these wastes reactive, so we know how to optimize their use and do so as broadly as possible. We do that through predictive model development through software we have developed in my group to automatically extract data from literature on over 5 million texts and patents on various topics. We link this to the creative capabilities of our IBM collaborators to design methods that predict the final impact of new cements. If we are successful, we can lower the emissions of this ubiquitous material and play our part in achieving carbon emissions mitigation goals.

    Other researchers involved with this project include Stefanie Jegelka, the X-Window Consortium Career Development Associate Professor in the MIT Department of Electrical Engineering and Computer Science; Richard Goodwin, IBM principal researcher; Soumya Ghosh, MIT-IBM Watson AI Lab research staff member; and Kristen Severson, former research staff member. Collaborators included Nghia Hoang, former research staff member with MIT-IBM Watson AI Lab and IBM Research; and Jeremy Gregory, research scientist in the MIT Department of Civil and Environmental Engineering and executive director of the MIT Concrete Sustainability Hub.

    This research is supported by the MIT-IBM Watson AI Lab. More

  • in

    The reasons behind lithium-ion batteries’ rapid cost decline

    Lithium-ion batteries, those marvels of lightweight power that have made possible today’s age of handheld electronics and electric vehicles, have plunged in cost since their introduction three decades ago at a rate similar to the drop in solar panel prices, as documented by a study published last March. But what brought about such an astonishing cost decline, of about 97 percent?

    Some of the researchers behind that earlier study have now analyzed what accounted for the extraordinary savings. They found that by far the biggest factor was work on research and development, particularly in chemistry and materials science. This outweighed the gains achieved through economies of scale, though that turned out to be the second-largest category of reductions.

    The new findings are being published today in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler, recent graduate student Juhyun Song PhD ’19, and Jessika Trancik, a professor in MIT’s Institute for Data, Systems and Society.

    The findings could be useful for policymakers and planners to help guide spending priorities in order to continue the pathway toward ever-lower costs for this and other crucial energy storage technologies, according to Trancik. Their work suggests that there is still considerable room for further improvement in electrochemical battery technologies, she says.

    The analysis required digging through a variety of sources, since much of the relevant information consists of closely held proprietary business data. “The data collection effort was extensive,” Ziegler says. “We looked at academic articles, industry and government reports, press releases, and specification sheets. We even looked at some legal filings that came out. We had to piece together data from many different sources to get a sense of what was happening.” He says they collected “about 15,000 qualitative and quantitative data points, across 1,000 individual records from approximately 280 references.”

    Data from the earliest times are hardest to access and can have the greatest uncertainties, Trancik says, but by comparing different data sources from the same period they have attempted to account for these uncertainties.

    Overall, she says, “we estimate that the majority of the cost decline, more than 50 percent, came from research-and-development-related activities.” That included both private sector and government-funded research and development, and “the vast majority” of that cost decline within that R&D category came from chemistry and materials research.

    That was an interesting finding, she says, because “there were so many variables that people were working on through very different kinds of efforts,” including the design of the battery cells themselves, their manufacturing systems, supply chains, and so on. “The cost improvement emerged from a diverse set of efforts and many people, and not from the work of only a few individuals.”

    The findings about the importance of investment in R&D were especially significant, Ziegler says, because much of this investment happened after lithium-ion battery technology was commercialized, a stage at which some analysts thought the research contribution would become less significant. Over roughly a 20-year period starting five years after the batteries’ introduction in the early 1990s, he says, “most of the cost reduction still came from R&D. The R&D contribution didn’t end when commercialization began. In fact, it was still the biggest contributor to cost reduction.”

    The study took advantage of an analytical approach that Trancik and her team initially developed to analyze the similarly precipitous drop in costs of silicon solar panels over the last few decades. They also applied the approach to understand the rising costs of nuclear energy. “This is really getting at the fundamental mechanisms of technological change,” she says. “And we can also develop these models looking forward in time, which allows us to uncover the levers that people could use to improve the technology in the future.”

    One advantage of the methodology Trancik and her colleagues have developed, she says, is that it helps to sort out the relative importance of different factors when many variables are changing all at once, which typically happens as a technology improves. “It’s not simply adding up the cost effects of these variables,” she says, “because many of these variables affect many different cost components. There’s this kind of intricate web of dependencies.” But the team’s methodology makes it possible to “look at how that overall cost change can be attributed to those variables, by essentially mapping out that network of dependencies,” she says.

    This can help provide guidance on public spending, private investments, and other incentives. “What are all the things that different decision makers could do?” she asks. “What decisions do they have agency over so that they could improve the technology, which is important in the case of low-carbon technologies, where we’re looking for solutions to climate change and we have limited time and limited resources? The new approach allows us to potentially be a bit more intentional about where we make those investments of time and money.”

    “This paper collects data available in a systematic way to determine changes in the cost components of lithium-ion batteries between 1990-1995 and 2010-2015,” says Laura Diaz Anadon, a professor of climate change policy at Cambridge University, who was not connected to this research. “This period was an important one in the history of the technology, and understanding the evolution of cost components lays the groundwork for future work on mechanisms and could help inform research efforts in other types of batteries.”

    The research was supported by the Alfred P. Sloan Foundation, the Environmental Defense Fund, and the MIT Technology and Policy Program. More