More stories

  • in

    Aligning economic and regulatory frameworks for today’s nuclear reactor technology

    Liam Hines ’22 didn’t move to Sarasota, Florida, until high school, but he’s a Floridian through and through. He jokes that he’s even got a floral shirt, what he calls a “Florida formal,” for every occasion.Which is why it broke his heart when toxic red algae used to devastate the Sunshine State’s coastline, including at his favorite beach, Caspersen. The outbreak made headline news during his high school years, with the blooms destroying marine wildlife and adversely impacting the state’s tourism-driven economy.In Florida, Hines says, environmental awareness is pretty high because everyday citizens are being directly impacted by climate change. After all, it’s hard not to worry when beautiful white sand beaches are covered in dead fish. Ongoing concerns about the climate cemented Hines’ resolve to pick a career that would have a strong “positive environmental impact.” He chose nuclear, as he saw it as “a green, low-carbon-emissions energy source with a pretty straightforward path to implementation.”

    Liam Hines: Ensuring that nuclear policy keeps up with nuclear technology.

    Undergraduate studies at MITKnowing he wanted a career in the sciences, Hines applied and got accepted to MIT for undergraduate studies in fall 2018. An orientation program hosted by the Department of Nuclear Science and Engineering (NSE) sold him on the idea of pursuing the field. “The department is just a really tight-knit community, and that really appealed to me,” Hines says.During his undergraduate years, Hines realized he needed a job to pay part of his bills. “Instead of answering calls at the dorm front desk or working in the dining halls, I decided I’m going to become a licensed nuclear operator onsite,” he says. “Reactor operations offer so much hands-on experience with real nuclear systems. It doesn’t hurt that it pays better.” Becoming a licensed nuclear reactor operator is hard work, however, involving a year-long training process studying maintenance, operations, and equipment oversight. A bonus: The job, supervising the MIT Nuclear Reactor Laboratory, taught him the fundamentals of nuclear physics and engineering.Always interested in research, Hines got an early start by exploring the regulatory challenges of advanced fusion systems. There have been questions related to licensing requirements and the safety consequences of the onsite radionuclide inventory. Hines’ undergraduate research work involved studying precedent for such fusion facilities and comparing them to experimental facilities such as the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory.Doctoral focus on legal and regulatory frameworksWhen scientists want to make technologies as safe as possible, they have to do two things in concert: First they evaluate the safety of the technology, and then make sure legal and regulatory structures take into account the evolution of these advanced technologies. Hines is taking such a two-pronged approach to his doctoral work on nuclear fission systems.Under the guidance of Professor Koroush Shirvan, Hines is conducting systems modeling of various reactor cores that include graphite, and simulating operations under long time spans. He then studies radionuclide transport from low-level waste facilities — the consequences of offsite storage after 50 or 100 or even 10,000 years of storage. The work has to make sure to hit safety and engineering margins, but also tread a fine line. “You want to make sure you’re not over-engineering systems and adding undue cost, but also making sure to assess the unique hazards of these advanced technologies as accurately as possible,” Hines says.On a parallel track, under Professor Haruko Wainwright’s advisement, Hines is applying the current science on radionuclide geochemistry to track radionuclide wastes and map their profile for hazards. One of the challenges fission reactors face is that existing low-level waste regulations were fine-tuned to old reactors. Regulations have not kept up: “Now that we have new technologies with new wastes, some of the hazards of the new waste are completely missed by existing standards,” Hines says. He is working to seal these gaps.A philosophy-driven outlookHines is grateful for the dynamic learning environment at NSE. “A lot of the faculty have that go-getter attitude,” he points out, impressed by the entrepreneurial spirit on campus. “It’s made me confident to really tackle the things that I care about.”An ethics class as an undergraduate made Hines realize there were discussions in class he could apply to the nuclear realm, especially when it came to teasing apart the implications of the technology — where the devices would be built and who they would serve. He eventually went on to double-major in NSE and philosophy.The framework style of reading and reasoning involved in studying philosophy is particularly relevant in his current line of work, where he has to extract key points regarding nuclear regulatory issues. Much like philosophy discussions today that involve going over material that has been discussed for centuries and framing them through new perspectives, nuclear regulatory issues too need to take the long view.“In philosophy, we have to insert ourselves into very large conversations. Similarly, in nuclear engineering, you have to understand how to take apart the discourse that’s most relevant to your research and frame it,” Hines says. This technique is especially necessary because most of the time the nuclear regulatory issues might seem like wading in the weeds of nitty-gritty technical matters, but they can have a huge impact on the public and public perception, Hines adds.As for Florida, Hines visits every chance he can get. The red tide still surfaces but not as consistently as it once did. And since he started his job as a nuclear operator in his undergraduate days, Hines has progressed to senior reactor operator. This time around he gets to sign off on the checklists. “It’s much like when I was shift lead at Dunkin’ Donuts in high school,” Hines says, “everyone is kind of doing the same thing, but you get to be in charge for the afternoon.” More

  • in

    Lessons from Fukushima: Prepare for the unlikely

    When a devastating earthquake and tsunami overwhelmed the protective systems at the Fukushima Dai’ichi nuclear power plant complex in Japan in March 2011, it triggered a sequence of events leading to one of the worst releases of radioactive materials in the world to date. Although nuclear energy is having a revival as a low-emissions energy source to mitigate climate change, the Fukushima accident is still cited as a reason for hesitancy in adopting it.

    A new study synthesizes information from multidisciplinary sources to understand how the Fukushima Dai’ichi disaster unfolded, and points to the importance of mitigation measures and last lines of defense — even against accidents considered highly unlikely. These procedures have received relatively little attention, but they are critical in determining how severe the consequences of a reactor failure will be, the researchers say.

    The researchers note that their synthesis is one of the few attempts to look at data across disciplinary boundaries, including: the physics and engineering of what took place within the plant’s systems, the plant operators’ actions throughout the emergency, actions by emergency responders, the meteorology of radionuclide releases and transport, and the environmental and health consequences documented since the event.

    The study appears in the journal iScience, in an open-access paper by postdoc Ali Ayoub and Professor Haruko Wainwright at MIT, along with others in Switzerland, Japan, and New Mexico.

    Since 2013, Wainwright has been leading the research to integrate all the radiation monitoring data in the Fukushima region into integrated maps. “I was staring at the contamination map for nearly 10 years, wondering what created the main plume extending in the northwest direction, but I could not find exact information,” Wainwright says. “Our study is unique because we started from the consequence, the contamination map, and tried to identify the key factors for the consequence. Other people study the Fukushima accident from the root cause, the tsunami.”

    One thing they found was that while all the operating reactors, units 1, 2, and 3, suffered core meltdowns as a result of the failure of emergency cooling systems, units 1 and 3 — although they did experience hydrogen explosions — did not release as much radiation to the environment because their venting systems essentially worked to relieve pressure inside the containment vessels as intended. But the same system in unit 2 failed badly.

    “People think that the hydrogen explosion or the core meltdown were the worst things, or the major driver of the radiological consequences of the accident,” Wainright says, “but our analysis found that’s not the case.” Much more significant in terms of the radiological release was the failure of the one venting mechanism.

    “There is a pressure-release mechanism that goes through water where a lot of the radionuclides get filtered out,” she explains. That system was effective in units 1 and 3, filtering out more than 90 percent of the radioactive elements before the gas was vented. However, “in unit 2, that pressure release mechanism got stuck, and the operators could not manually open it.” A hydrogen explosion in unit 1 had damaged the pressure relief mechanism of unit 2. This led to a breach of the containment structure and direct, unfiltered venting to the atmosphere, which, according to the new study, was what produced the greatest amount of contamination from the whole weeks-long event.

    Another factor was the timing of the attempt to vent the pressure buildup in the reactor. Guidelines at the time, and to this day in many reactors, specified that no venting should take place until the pressure inside the reactor containment vessel reached a specified threshold, with no regard to the wind directions at the time. In the case of Fukushima, an earlier venting could have dramatically reduced the impact: Much of the release happened when winds were blowing directly inland, but earlier the wind had been blowing offshore.

    “That pressure-release mechanism has not been a major focus of the engineering community,” she says. While there is appropriate attention to measures that prevent a core meltdown in the first place, “this sort of last line of defense has not been the main focus and should get more attention.”

    Wainwright says the study also underlines several successes in the management of the Fukushima accident. Many of the safety systems did work as they were designed. For example, even though the oldest reactor, unit 1, suffered the greatest internal damage, it released little radioactive material. Most people were able to evacuate from the 20-kilometer (12-mile) zone before the largest release happened. The mitigation measures were “somewhat successful,” Wainwright says. But there was tremendous confusion and anger during and after the accident because there were no preparations in place for such an event.

    Much work has focused on ways to prevent the kind of accidents that happened at Fukushima — for example, in the U.S. reactor operators can deploy portable backup power supplies to maintain proper reactor cooling at any reactor site. But the ongoing situation at the Zaporizhzhia nuclear complex in Ukraine, where nuclear safety is challenged by acts of war, demonstrates that despite engineers’ and operators’ best efforts to prevent it, “the totally unexpected could still happen,” Wainwright says.

    “The big-picture message is that we should have equal attention to both prevention and mitigation of accidents,” she says. “This is the essence of resilience, and it applies beyond nuclear power plants to all essential infrastructure of a functioning society, for example, the electric grid, the food and water supply, the transportation sector, etc.”

    One thing the researchers recommend is that in designing evacuation protocols, planners should make more effort to learn from much more frequent disasters such as wildfires and hurricanes. “We think getting more interdisciplinary, transdisciplinary knowledge from other kinds of disasters would be essential,” she says. Most of the emergency response strategies presently in place, she says, were designed in the 1980s and ’90s, and need to be modernized. “Consequences can be mitigated. A nuclear accident does not have to be a catastrophe, as is often portrayed in popular culture,” Wainright says.

    The research team included Giovanni Sansavini at ETH Zurich in Switzerland; Randall Gauntt at Sandia National Laboratories in New Mexico; and Kimiaki Saito at the Japan Atomic Energy Agency. More

  • in

    Soaring high, in the Army and the lab

    Starting off as a junior helicopter pilot, Lt. Col. Jill Rahon deployed to Afghanistan three times. During the last one, she was an air mission commander, the  pilot who is designated to interface with the ground troops throughout the mission.

    Today, Rahon is a fourth-year doctoral student studying applied physics at the Department of Nuclear Science and Engineering (NSE). Under the supervision of Areg Danagoulian, she is working on engineering solutions for enforcement of nuclear nonproliferation treaties. Rahon and her husband have 2-year-old twins: “They have the same warm relationship with my advisor that I had with my dad’s (PhD) advisor,” she says.

    Jill Rahon: Engineering solutions for enforcement of nuclear nonproliferation treaties

    A path to the armed forces

    The daughter of a health physicist father and a food chemist mother, Rahon grew up in the Hudson Valley, very close to New York City. Nine-eleven was a life-altering event: “Many of my friends’ fathers and uncles were policemen and firefighters [who] died responding to the attacks,” Rahon says. A hurt and angry teenager, Rahon was determined to do her part to help: She joined the Army and decided to pursue science, becoming part of the first class to enter West Point after 9/11.

    Rahon started by studying strategic history, a field that covers treaties and geopolitical relationships. It would prove useful later. Inspired by her father, who works in the nuclear field, Rahon added on a nuclear science and engineering track.

    After graduating from West Point, Rahon wanted to join active combat and chose aviation. At flight school in Fort Novosel, Alabama, she discovered that she loved flying. It was there that Rahon learned to fly the legendary Chinook helicopter. In short order, Rahon was assigned to the 101st Airborne Division and deployed to Afghanistan quickly thereafter.

    As expected, flying in Afghanistan, especially on night missions, was adrenaline-charged. “You’re thinking on the fly, you’re talking on five different radios, you’re making decisions for all the helicopters that are part of the mission,” Rahon remembers. Very often Rahon and her cohorts did not have the luxury of time. “We would get information that would need to be acted on quickly,” she says. During the planning meetings, she would be delighted to see a classmate from West Point function as the ground forces commander. “It would be surprising to see somebody you knew from a different setting halfway around the world, working toward common goals,” Rahon says.

    Also awesome: helping launch the first training program for female pilots to be recruited in the Afghan National Air Force. “I got to meet [and mentor] these strong young women who maybe didn’t have the same encouragement that I had growing up and they were out there hanging tough,” Rahon says.

    Exploring physics and nuclear engineering

    After serving in the combat forces, Rahon decided she wanted to teach physics at West Point. She applied to become a part of the Functional Area (FA52) as a nuclear and countering weapons of mass destruction officer.

    FA52 officers provide nuclear technical advice to maneuver commanders about nuclear weapons, effects, and operating in a nuclear environment or battlefield. Rahon’s specialty is radiation detection and operations in a nuclear environment, which poses unique threats and challenges to forces.

    Knowing she wanted to teach at West Point, she “brushed up extensively on math and physics” and applied to MIT NSE to pursue a master’s degree. “My fellow students were such an inspiration. They might not have had the same life experiences that I had but were still so mature and driven and knowledgeable not only about nuclear engineering but how that fits in the energy sector and in politics,” Rahon says.

    Resonance analysis to verify treaties

    Rahon returned to NSE to pursue her doctorate, where she does a “lot of detection and treaty verification work.”

    When looking at nuclear fuels to verify safeguards for treaties, experts search for the presence and quantities of heavy elements such as uranium, plutonium, thorium, and any of their decay products. To do so nondestructively is of high importance so they don’t destroy a piece of the material or fuel to identify it.

    Rahon’s research is built on resonance analysis, the fact that most midrange to heavy isotopes have unique resonance signatures that are accessed by neutrons of epithermal energy, which is relatively low on the scale of possible neutron energies. This means they travel slowly — crossing a distance of 2 meters in tens of microseconds, permitting their detection time to be used to calculate their energy.

    Studying how neutrons of a particular energy interact with a sample to identify worrisome nuclear materials is much like studying fingerprints to solve crimes. Isotopes that have a spike in likelihood of interaction occurring over a small neutron energy are said to have resonances, and these resonance patterns are isotopically unique. Experts can use this technique to nondestructively assess an item, identifying the constituent isotopes and their concentrations.

    Resonance analysis can be used to verify that the fuels are what the nuclear plant owner says they are. “There are a lot of safeguards activities and verification protocols that are managed by the International Atomic Energy Agency (IAEA) to ensure that a state is not misusing nuclear power for ulterior motives,” Rahon points out. And her method helps.

    “Our technique that leverages resonance analysis is nothing new,” Rahon says, “It’s been applied practically since the ’70s at very large beam facilities, hundreds of meters long with a very large accelerator that pulses neutrons, and then you’re able to correlate a neutron time of flight with a resonance profile. What we’ve done that is novel is we’ve shrunk it down to a 3-meter system with a portable neutron residence generator and a 2-meter beam path,” she says.

    Mobility confers many significant advantages: “This is something that could be conceivably put on the back of a truck and moved to a fuel facility, then driven to the next one for inspections or put at a treaty verification site. It could be taken out to a silo field where they are dismantling nuclear weapons,” Rahon says. However, the miniaturization does come with significant challenges, such as the neutron generator’s impacts on the signal to noise ratio.

    Rahon is delighted her research can ensure that a necessary fuel source will not be misused. “We need nuclear power. We need low-carbon solutions for energy and we need safe ones. We need to ensure that this powerful technology is not being misused. And that’s why these engineering solutions are needed for these safeguards,” she says.

    Rahon sees parallels between her time in active duty and her doctoral research. Teamwork and communication are key in both, she says. Her dad is her role model and Rahon is a firm believer in mentorship, something she nurtured both in the armed forces and at MIT. “My advisor is genuinely a wonderful person who has always given me so much support from not only being a student, but also being a parent,” Rahon adds.

    In turn, Danagoulian has been impressed by Rahon’s remarkable abilities: “Raising twins, doing research in applied nuclear physics, and flying coalition forces into Taliban territory while evading ground fire … [Jill] developed her own research project with minimal help from me and defended it brilliantly during the first part of the exam,” he says. 

    It seems that Rahon flies high no matter which mission she takes on. More

  • in

    Rafael Mariano Grossi speaks about nuclear power’s role at a critical moment in history

    On Sept. 22, Rafael Mariano Grossi, director general of the International Atomic Energy Agency (IAEA), delivered the 2023 David J. Rose Lecture in Nuclear Technology at MIT. This lecture series was started nearly 40 years ago in honor of the late Professor David Rose — a nuclear engineering professor and fusion technology pioneer. In addition to his scientific contributions, Rose was invested in the ethical issues associated with new technologies. His widow, Renate Rose, who spoke briefly before Grossi’s lecture, said that her husband adamantly called for the abolishment of nuclear weapons, insisting that all science should serve the common good and that every scientist should follow his or her conscience.

    In his prefatory remarks, MIT Vice Provost Richard Lester, a former PhD student of David Rose, said that even today, he still feels the influence of his thesis advisor, many decades after they’d worked together. Lester called it a “great honor” to introduce Grossi, noting that the director general was guiding the agency through an especially demanding time. “His presence with us is a reminder that the biggest challenges we face today are truly global challenges, and that international organizations like the IAEA have a central role to play in resolving them.”

    The title of Grossi’s talk was “The IAEA at the Crossroads of History,” and he made a strong case for this being a critical juncture, or “inflection point,” for nuclear power. He started his speech, however, with somewhat of an historical footnote, discussing a letter that Rose sent in 1977 to Sigvard Eklund, IAEA’s then-director general. Rose urged the IAEA to establish a coordinated worldwide program in controlled fusion research. It took a while for the idea to gain traction, but international collaboration in fusion formally began in 1985, eight years after Rose’s proposal. “I thought I would begin with this story, because it shows that cooperation between MIT and the IAEA goes back a long way,” Grossi said.

    2023 David J. Rose Lecture in Nuclear TechnologyVideo: MIT Department of Nuclear Science and Engineering

    Overall, he painted a mostly encouraging picture for the future of nuclear power, largely based on its potential to generate electricity or thermal energy without adding greenhouse gases to the atmosphere. In the face of rapidly-unfolding climate change, Grossi said, “low-carbon nuclear power is now seen as part of [the] solution by an increasing number of people. It’s getting harder to be an environmentalist in good faith who is against nuclear.”

    Public acceptance is growing throughout the world, he added. In Sweden, where people had long protested against radioactive waste transport, a poll now shows that more than 85 percent of the people approve of the nation’s high-level waste handling and disposal facilities. Even Finland’s Green Party has embraced nuclear power, Grossi said. “I don’t think we could imagine a pro-nuclear Green Party five years ago, let alone in 1970 or ’80.”

    Fifty-seven nuclear reactors are being constructed right now in 17 countries. One of the world’s newest facilities, the Barakah nuclear power plant in the United Arab Emirates, “was built on ground rich in oil and natural gas,” he said. In China, the world’s first pebble-bed high-temperature reactor has been operating for two years, offering potential advantages in safety, efficiency, and modularity. For countries that don’t have any nuclear plants, small modular reactors of this kind “offer the chance of a more gradual and affordable way to scale up nuclear power,” Grossi noted. The IAEA is working with countries like Ghana, Kenya, and Senegal to help them develop the safety and regulatory infrastructures that would be needed to build and responsibly operate modular nuclear reactors like this.

    Grossi also discussed a number of lesser-known projects the IAEA is engaged in that have little to do with power generation. Seventy percent of the people in Africa, for example, have no access to radiotherapy to fight cancer. To this end, the IAEA is now helping to provide radiotherapy services in Tanzania and other African countries. At the IAEA’s Marine Environmental Laboratories in Monaco, researchers are using isotopic tracing techniques to study the impact of microplastic pollution on the oceans. The Covid-19 pandemic illustrated the potentially devastating effects of zoonotic diseases that can infect humans with animal-borne viruses. To counteract this threat, the IAEA has sent hundreds of reverse transcription-polymerase chain reaction (RT-PCR) machines — capable of detecting specific genetic materials in pathogens — to more than 130 countries.

    Meanwhile, new risks have emerged from the war in Ukraine, where fighting has raged for a year-and-a-half near the six nuclear reactors in Zaporizhzhia — Europe’s largest nuclear power plant. Early in the conflict, the IAEA sent a team of experts to monitor the plant and to do everything possible to prevent a nuclear accident that would bring “even more misery to people who are already suffering so much,” Grossi said. A major accident, he added, would likely stall investments in nuclear power at a time when its future prospects were starting to brighten.

    At the end of his talk, Grossi returned to the subject of fusion, which he expects to become an important energy source, perhaps in the not-too-distant future. He was encouraged by the visit he’d just had to the MIT spinoff company, Commonwealth Fusion Systems. With regard to fusion, he said, “for the first time, all the pieces of the puzzle are there: the physics, the policy drivers, and the investment.” In fact, an agreement was signed on the day of his lecture, which made MIT’s Plasma Science and Fusion Center an IAEA collaboration center — the second such center in the United States.

    “When I think of all the new forms of collaboration happening today, I imagine Professor Rose would be delighted,” Grossi said. “It really is something to hold [his] letter and know how much progress has been made since 1977 in fusion. I look forward to our collaboration going forward.” More

  • in

    3 Questions: What should scientists and the public know about nuclear waste?

    Many researchers see an expansion of nuclear power, which produces no greenhouse gas emissions from its power generation, as an essential component of strategies to combat global climate change. Yet there is still strong resistance to such expansion, and much of that is based on the issue of how to safely dispose of the resulting radioactive waste material. MIT recently convened a workshop to help nuclear engineers, policymakers, and academics learn about approaches to communicating accurate information about the management of nuclear waste to students and the public, in hopes of allaying fears and encouraging support for the development of new, safer nuclear power plants around the world.

    Organized by Haruko Wainwright, an MIT assistant professor of nuclear science and engineering and of civil and environmental engineering, the workshop included professors, researchers, industry representatives, and government officials, and was designed to emphasize the multidisciplinary nature of the issue. MIT News asked Wainwright to describe the workshop and its conclusions, which she reported on in a paper just published in the Journal of Environmental Radioactivity.

    Q: What was the main objective of the this workshop?

    A: There is a growing concern that, in spite of much excitement about new nuclear reactor deployment and nuclear energy for tackling climate change, relatively less attention is being paid to the thorny question of long-term management of the spent fuel (waste) from these reactors. The government and industry have embraced consent-based siting approaches — that is, finding sites to store and dispose nuclear waste through broad community participation with equity and environmental justice considered. However, many of us in academia feel that those in the industry are missing key facts to communicate to the public.

    Understanding and managing nuclear waste requires a multidisciplinary expertise in nuclear, civil, and chemical engineering as well as environmental and earth sciences. For example, the amount of waste per se, which is always very small for nuclear systems, is not the only factor determining the environmental impacts because some radionuclides in the waste are vastly more mobile than others, and thus can spread farther and more quickly. Nuclear engineers, environmental scientists, and others need to work together to predict the environmental impacts of radionuclides in the waste generated by the new reactors, and to develop waste isolation strategies for an extended time.

    We organized this workshop to ensure this collaborative approach is mastered from the start. A second objective was to develop a blueprint for educating next-generation engineers and scientists about nuclear waste and shaping a more broadly educated group of nuclear and general engineers.

    Q: What kinds of innovative teaching practices were discussed and recommended, and are there examples of these practices in action?

     A: Some participants teach project-based or simulation-based courses of real-world situations. For example, students are divided into several groups representing various stakeholders — such as the public, policymakers, scientists, and governments — and discuss the potential siting of a nuclear waste repository in a community. Such a course helps the students to consider the perspectives of different groups, understand a plurality of points of view, and learn how to communicate their ideas and concerns effectively. Other courses may ask students to synthesize key technical facts and numbers, and to develop a Congressional testimony statement or an opinion article for newspapers. 

    Q: What are some of the biggest misconceptions people have about nuclear waste, and how do you think these misconceptions can be addressed?

    A: The workshop participants agreed that the broader and life-cycle perspectives are important. Within the nuclear energy life cycle, for example, people focus disproportionally on high-level radioactive waste or spent fuel, which has been highly regulated and well managed. Nuclear systems also produce secondary waste, including low-level waste and uranium mining waste, which gets less attention.

    The participants also believe that the nuclear industry has been exemplary in leading the environmental and waste isolation science and technologies. Nuclear waste disposal strategies were developed in the 1950s, much earlier than other hazardous waste which began to receive serious regulation only in the 1970s. In addition, current nuclear waste disposal practices consider the compliance periods of isolation for thousands of years, while other hazardous waste disposal is not required to consider beyond 30 years, although some waste has an essentially infinite longevity, for example, mercury or lead. Finally, there is relatively unregulated waste — such as CO2 from fossil energy, agricultural effluents and other sources — that is released freely into the biosphere and is already impacting our environment. Yet, many people remain more concerned about the relatively well-regulated nuclear waste than about all these unregulated sources.

    Interestingly, many engineers — even nuclear engineers — do not know these facts. We believe that we need to teach students not just cutting-edge technologies, but also broader perspectives, including the history of industries and regulations, as well as environmental science.

    At the same time, we need to move the nuclear community to think more holistically about waste and its environmental impacts from the early stages of design of nuclear systems. We should design new reactors from the “waste up.”  We believe that the nuclear industry should continue to lead waste-management technologies and strategies, and also encourage other industries to adopt lifecycle approaches about their own waste to improve the overall sustainability. More

  • in

    Helping the cause of environmental resilience

    Haruko Wainwright, the Norman C. Rasmussen Career Development Professor in Nuclear Science and Engineering (NSE) and assistant professor in civil and environmental engineering at MIT, grew up in rural Japan, where many nuclear facilities are located. She remembers worrying about the facilities as a child. Wainwright was only 6 at the time of the Chernobyl accident in 1986, but still recollects it vividly.

    Those early memories have contributed to Wainwright’s determination to research how technologies can mold environmental resilience — the capability of mitigating the consequences of accidents and recovering from contamination.

    Wainwright believes that environmental monitoring can help improve resilience. She co-leads the U.S. Department of Energy (DOE)’s Advanced Long-term Environmental Monitoring Systems (ALTEMIS) project, which integrates technologies such as in situ sensors, geophysics, remote sensing, simulations, and artificial intelligence to establish new paradigms for monitoring. The project focuses on soil and groundwater contamination at more than 100 U.S. sites that were used for nuclear weapons production.

    As part of this research, which was featured last year in Environmental Science & Technology Journal, Wainwright is working on a machine learning framework for improving environmental monitoring strategies. She hopes the ALTEMIS project will enable the rapid detection of anomalies while ensuring the stability of residual contamination and waste disposal facilities.

    Childhood in rural Japan

    Even as a child, Wainwright was interested in physics, history, and a variety of other subjects.

    But growing up in a rural area was not ideal for someone interested in STEM. There were no engineers or scientists in the community and no science museums, either. “It was not so cool to be interested in science, and I never talked about my interest with anyone,” Wainwright recalls.

    Television and books were the only door to the world of science. “I did not study English until middle school and I had never been on a plane until college. I sometimes find it miraculous that I am now working in the U.S. and teaching at MIT,” she says.

    As she grew a little older, Wainwright heard a lot of discussions about nuclear facilities in the region and many stories about Hiroshima and Nagasaki.

    At the same time, giants like Marie Curie inspired her to pursue science. Nuclear physics was particularly fascinating. “At some point during high school, I started wondering ‘what are radiations, what is radioactivity, what is light,’” she recalls. Reading Richard Feynman’s books and trying to understand quantum mechanics made her want to study physics in college.

    Pursuing research in the United States

    Wainwright pursued an undergraduate degree in engineering physics at Kyoto University. After two research internships in the United States, Wainwright was impressed by the dynamic and fast-paced research environment in the country.

    And compared to Japan, there were “more women in science and engineering,” Wainwright says. She enrolled at the University of California at Berkeley in 2005, where she completed her doctorate in nuclear engineering with minors in statistics and civil and environmental engineering.

    Before moving to MIT NSE in 2022, Wainwright was a staff scientist in the Earth and Environmental Area at Lawrence Berkeley National Laboratory (LBNL). She worked on a variety of topics, including radioactive contamination, climate science, CO2 sequestration, precision agriculture, and watershed science. Her time at LBNL helped Wainwright build a solid foundation about a variety of environmental sensors and monitoring and simulation methods across different earth science disciplines.   

    Empowering communities through monitoring

    One of the most compelling takeaways from Wainwright’s early research: People trust actual measurements and data as facts, even though they are skeptical about models and predictions. “I talked with many people living in Fukushima prefecture. Many of them have dosimeters and measure radiation levels on their own. They might not trust the government, but they trust their own data and are then convinced that it is safe to live there and to eat local food,” Wainwright says.

    She has been impressed that area citizens have gained significant knowledge about radiation and radioactivity through these efforts. “But they are often frustrated that people living far away, in cities like Tokyo, still avoid agricultural products from Fukushima,” Wainwright says.

    Wainwright thinks that data derived from environmental monitoring — through proper visualization and communication — can address misconceptions and fake news that often hurt people near contaminated sites.

    Wainwright is now interested in how these technologies — tested with real data at contaminated sites — can be proactively used for existing and future nuclear facilities “before contamination happens,” as she explored for Nuclear News. “I don’t think it is a good idea to simply dismiss someone’s concern as irrational. Showing credible data has been much more effective to provide assurance. Or a proper monitoring network would enable us to minimize contamination or support emergency responses when accidents happen,” she says.

    Educating communities and students

    Part of empowering communities involves improving their ability to process science-based information. “Potentially hazardous facilities always end up in rural regions; minorities’ concerns are often ignored. The problem is that these regions don’t produce so many scientists or policymakers; they don’t have a voice,” Wainwright says, “I am determined to dedicate my time to improve STEM education in rural regions and to increase the voice in these regions.”

    In a project funded by DOE, she collaborates with the team of researchers at the University of Alaska — the Alaska Center for Energy and Power and Teaching Through Technology program — aiming to improve STEM education for rural and indigenous communities. “Alaska is an important place for energy transition and environmental justice,” Wainwright says. Micro-nuclear reactors can potentially improve the life of rural communities who bear the brunt of the high cost of fuel and transportation. However, there is a distrust of nuclear technologies, stemming from past nuclear weapon testing. At the same time, Alaska has vast metal mining resources for renewable energy and batteries. And there are concerns about environmental contamination from mining and various sources. The teams’ vision is much broader, she points out. “The focus is on broader environmental monitoring technologies and relevant STEM education, addressing general water and air qualities,” Wainwright says.

    The issues also weave into the courses Wainwright teaches at MIT. “I think it is important for engineering students to be aware of environmental justice related to energy waste and mining as well as past contamination events and their recovery,” she says. “It is not OK just to send waste to, or develop mines in, rural regions, which could be a special place for some people. We need to make sure that these developments will not harm the environment and health of local communities.” Wainwright also hopes that this knowledge will ultimately encourage students to think creatively about engineering designs that minimize waste or recycle material.

    The last question of the final quiz of one of her recent courses was: Assume that you store high-level radioactive waste in your “backyard.” What technical strategies would make you and your family feel safe? “All students thought about this question seriously and many suggested excellent points, including those addressing environmental monitoring,” Wainwright says, “that made me hopeful about the future.” More

  • in

    Leveraging science and technology against the world’s top problems

    Looking back on nearly a half-century at MIT, Richard K. Lester, associate provost and Japan Steel Industry Professor, sees a “somewhat eccentric professional trajectory.”

    But while his path has been irregular, there has been a clearly defined through line, Lester says: the emergence of new science and new technologies, the potential of these developments to shake up the status quo and address some of society’s most consequential problems, and what the outcomes might mean for America’s place in the world.

    Perhaps no assignment in Lester’s portfolio better captures this theme than the new MIT Climate Grand Challenges competition. Spearheaded by Lester and Maria Zuber, MIT vice president for research, and launched at the height of the pandemic in summer 2020, this initiative is designed to mobilize the entire MIT research community around tackling “the really hard, challenging problems currently standing in the way of an effective global response to the climate emergency,” says Lester. “The focus is on those problems where progress requires developing and applying frontier knowledge in the natural and social sciences and cutting-edge technologies. This is the MIT community swinging for the fences in areas where we have a comparative advantage.”This is a passion project for him, not least because it has engaged colleagues from nearly all of MIT’s departments. After nearly 100 initial ideas were submitted by more than 300 faculty, 27 teams were named finalists and received funding to develop comprehensive research and innovation plans in such areas as decarbonizing complex industries; risk forecasting and adaptation; advancing climate equity; and carbon removal, management, and storage. In April, a small subset of this group will become multiyear flagship projects, augmenting the work of existing MIT units that are pursuing climate research. Lester is sunny in the face of these extraordinarily complex problems. “This is a bottom-up effort with exciting proposals, and where the Institute is collectively committed — it’s MIT at its best.”

    Nuclear to the core

    This initiative carries a particular resonance for Lester, who remains deeply engaged in nuclear engineering. “The role of nuclear energy is central and will need to become even more central if we’re to succeed in addressing the climate challenge,” he says. He also acknowledges that for nuclear energy technologies — both fission and fusion — to play a vital role in decarbonizing the economy, they must not just win “in the court of public opinion, but in the marketplace,” he says. “Over the years, my research has sought to elucidate what needs to be done to overcome these obstacles.”

    In fact, Lester has been campaigning for much of his career for a U.S. nuclear innovation agenda, a commitment that takes on increased urgency as the contours of the climate crisis sharpen. He argues for the rapid development and testing of nuclear technologies that can complement the renewable but intermittent energy sources of sun and wind. Whether powerful, large-scale, molten-salt-cooled reactors or small, modular, light water reactors, nuclear batteries or promising new fusion projects, U.S. energy policy must embrace nuclear innovation, says Lester, or risk losing the high-stakes race for a sustainable future.

    Chancing into a discipline

    Lester’s introduction to nuclear science was pure happenstance.

    Born in the English industrial city of Leeds, he grew up in a musical family and played piano, violin, and then viola. “It was a big part of my life,” he says, and for a time, music beckoned as a career. He tumbled into a chemical engineering concentration at Imperial College, London, after taking a job in a chemical factory following high school. “There’s a certain randomness to life, and in my case, it’s reflected in my choice of major, which had a very large impact on my ultimate career.”

    In his second year, Lester talked his way into running a small experiment in the university’s research reactor, on radiation effects in materials. “I got hooked, and began thinking of studying nuclear engineering.” But there were few graduate programs in British universities at the time. Then serendipity struck again. The instructor of Lester’s single humanities course at Imperial had previously taught at MIT, and suggested Lester take a look at the nuclear program there. “I will always be grateful to him (and, indirectly, to MIT’s Humanities program) for opening my eyes to the existence of this institution where I’ve spent my whole adult life,” says Lester.

    He arrived at MIT with the notion of mitigating the harms of nuclear weapons. It was a time when the nuclear arms race “was an existential threat in everyone’s life,” he recalls. He targeted his graduate studies on nuclear proliferation. But he also encountered an electrifying study by MIT meteorologist Jule Charney. “Professor Charney produced one of the first scientific assessments of the effects on climate of increasing CO2 concentrations in the atmosphere, with quantitative estimates that have not fundamentally changed in 40 years.”

    Lester shifted directions. “I came to MIT to work on nuclear security, but stayed in the nuclear field because of the contributions that it can and must make in addressing climate change,” he says.

    Research and policy

    His path forward, Lester believed, would involve applying his science and technology expertise to critical policy problems, grounded in immediate, real-world concerns, and aiming for broad policy impacts. Even as a member of NSE, he joined with colleagues from many MIT departments to study American industrial practices and what was required to make them globally competitive, and then founded MIT’s Industrial Performance Center (IPC). Working at the IPC with interdisciplinary teams of faculty and students on the sources of productivity and innovation, his research took him to many countries at different stages of industrialization, including China, Taiwan, Japan, and Brazil.

    Lester’s wide-ranging work yielded books (including the MIT Press bestseller “Made in America”), advisory positions with governments, corporations, and foundations, and unexpected collaborations. “My interests were always fairly broad, and being at MIT made it possible to team up with world-leading scholars and extraordinary students not just in nuclear engineering, but in many other fields such as political science, economics, and management,” he says.

    Forging cross-disciplinary ties and bringing creative people together around a common goal proved a valuable skill as Lester stepped into positions of ever-greater responsibility at the Institute. He didn’t exactly relish the prospect of a desk job, though. “I religiously avoided administrative roles until I felt I couldn’t keep avoiding them,” he says.

    Today, as associate provost, he tends to MIT’s international activities — a daunting task given increasing scrutiny of research universities’ globe-spanning research partnerships and education of foreign students. But even in the midst of these consuming chores, Lester remains devoted to his home department. “Being a nuclear engineer is a central part of my identity,” he says.

    To students entering the nuclear field nearly 50 years after he did, who are understandably “eager to fix everything that seems wrong immediately,” he has a message: “Be patient. The hard things, the ones that are really worth doing, will take a long time to do.” Putting the climate crisis behind us will take two generations, Lester believes. Current students will start the job, but it will also take the efforts of their children’s generation before it is done.  “So we need you to be energetic and creative, of course, but whatever you do we also need you to be patient and to have ‘stick-to-itiveness’ — and maybe also a moral compass that our generation has lacked.” More