More stories

  • in

    Island rivers carve passageways through coral reefs

    Volcanic islands, such as the islands of Hawaii and the Caribbean, are surrounded by coral reefs that encircle an island in a labyrinthine, living ring. A coral reef is punctured at points by reef passes — wide channels that cut through the coral and serve as conduits for ocean water and nutrients to filter in and out. These watery passageways provide circulation throughout a reef, helping to maintain the health of corals by flushing out freshwater and transporting key nutrients.Now, MIT scientists have found that reef passes are shaped by island rivers. In a study appearing today in the journal Geophysical Research Letters, the team shows that the locations of reef passes along coral reefs line up with where rivers funnel out from an island’s coast.Their findings provide the first quantitative evidence of rivers forming reef passes.  Scientists and explorers had speculated that this may be the case: Where a river on a volcanic island meets the coast, the freshwater and sediment it carries flows toward the reef, where a strong enough flow can tunnel into the surrounding coral. This idea has been proposed from time to time but never quantitatively tested, until now.“The results of this study help us to understand how the health of coral reefs depends on the islands they surround,” says study author Taylor Perron, the Cecil and Ida Green Professor of Earth, Atmospheric and Planetary Sciences at MIT.“A lot of discussion around rivers and their impact on reefs today has been negative because of human impact and the effects of agricultural practices,” adds lead author Megan Gillen, a graduate student in the MIT-WHOI Joint Program in Oceanography. “This study shows the potential long-term benefits rivers can have on reefs, which I hope reshapes the paradigm and highlights the natural state of rivers interacting with reefs.”The study’s other co-author is Andrew Ashton of the Woods Hole Oceanographic Institution.Drawing the linesThe new study is based on the team’s analysis of the Society Islands, a chain of islands in the South Pacific Ocean that includes Tahiti and Bora Bora. Gillen, who joined the MIT-WHOI program in 2020, was interested in exploring connections between coral reefs and the islands they surround. With limited options for on-site work during the Covid-19 pandemic, she and Perron looked to see what they could learn through satellite images and maps of island topography. They did a quick search using Google Earth and zeroed in on the Society Islands for their uniquely visible reef and island features.“The islands in this chain have these iconic, beautiful reefs, and we kept noticing these reef passes that seemed to align with deeply embayed portions of the coastline,” Gillen says. “We started asking ourselves, is there a correlation here?”Viewed from above, the coral reefs that circle some islands bear what look to be notches, like cracks that run straight through a ring. These breaks in the coral are reef passes — large channels that run tens of meters deep and can be wide enough for some boats to pass through. On first look, Gillen noticed that the most obvious reef passes seemed to line up with flooded river valleys — depressions in the coastline that have been eroded over time by island rivers that flow toward the ocean. She wondered whether and to what extent island rivers might shape reef passes.“People have examined the flow through reef passes to understand how ocean waves and seawater circulate in and out of lagoons, but there have been no claims of how these passes are formed,” Gillen says. “Reef pass formation has been mentioned infrequently in the literature, and people haven’t explored it in depth.”Reefs unraveledTo get a detailed view of the topography in and around the Society Islands, the team used data from the NASA Shuttle Radar Topography Mission — two radar antennae that flew aboard the space shuttle in 1999 and measured the topography across 80 percent of the Earth’s surface.The researchers used the mission’s topographic data in the Society Islands to create a map of every drainage basin along the coast of each island, to get an idea of where major rivers flow or once flowed. They also marked the locations of every reef pass in the surrounding coral reefs. They then essentially “unraveled” each island’s coastline and reef into a straight line, and compared the locations of basins versus reef passes.“Looking at the unwrapped shorelines, we find a significant correlation in the spatial relationship between these big river basins and where the passes line up,” Gillen says. “So we can say that statistically, the alignment of reef passes and large rivers does not seem random. The big rivers have a role in forming passes.”As for how rivers shape the coral conduits, the team has two ideas, which they call, respectively, reef incision and reef encroachment. In reef incision, they propose that reef passes can form in times when the sea level is relatively low, such that the reef is exposed above the sea surface and a river can flow directly over the reef. The water and sediment carried by the river can then erode the coral, progressively carving a path through the reef.When sea level is relatively higher, the team suspects a reef pass can still form, through reef encroachment. Coral reefs naturally live close to the water surface, where there is light and opportunity for photosynthesis. When sea levels rise, corals naturally grow upward and inward toward an island, to try to “catch up” to the water line.“Reefs migrate toward the islands as sea levels rise, trying to keep pace with changing average sea level,” Gillen says.However, part of the encroaching reef can end up in old river channels that were previously carved out by large rivers and that are lower than the rest of the island coastline. The corals in these river beds end up deeper than light can extend into the water column, and inevitably drown, leaving a gap in the form of a reef pass.“We don’t think it’s an either/or situation,” Gillen says. “Reef incision occurs when sea levels fall, and reef encroachment happens when sea levels rise. Both mechanisms, occurring over dozens of cycles of sea-level rise and island evolution, are likely responsible for the formation and maintenance of reef passes over time.”The team also looked to see whether there were differences in reef passes in older versus younger islands. They observed that younger islands were surrounded by more reef passes that were spaced closer together, versus older islands that had fewer reef passes that were farther apart.As islands age, they subside, or sink, into the ocean, which reduces the amount of land that funnels rainwater into rivers. Eventually, rivers are too weak to keep the reef passes open, at which point, the ocean likely takes over, and incoming waves could act to close up some passes.Gillen is exploring ideas for how rivers, or river-like flow, can be engineered to create paths through coral reefs in ways that would promote circulation and benefit reef health.“Part of me wonders: If you had a more persistent flow, in places where you don’t naturally have rivers interacting with the reef, could that potentially be a way to increase health, by incorporating that river component back into the reef system?” Gillen says. “That’s something we’re thinking about.”This research was supported, in part, by the WHOI Watson and Von Damm fellowships. More

  • in

    After more than a decade of successes, ESI’s work will spread out across the Institute

    MIT’s Environmental Solutions Initiative (ESI), a pioneering cross-disciplinary body that helped give a major boost to sustainability and solutions to climate change at MIT, will close as a separate entity at the end of June. But that’s far from the end for its wide-ranging work, which will go forward under different auspices. Many of its key functions will become part of MIT’s recently launched Climate Project. John Fernandez, head of ESI for nearly a decade, will return to the School of Architecture and Planning, where some of ESI’s important work will continue as part of a new interdisciplinary lab.When the ideas that led to the founding of MIT’s Environmental Solutions Initiative first began to be discussed, its founders recall, there was already a great deal of work happening at MIT relating to climate change and sustainability. As Professor John Sterman of the MIT Sloan School of Management puts it, “there was a lot going on, but it wasn’t integrated. So the whole added up to less than the sum of its parts.”ESI was founded in 2014 to help fill that coordinating role, and in the years since it has accomplished a wide range of significant milestones in research, education, and communication about sustainable solutions in a wide range of areas. Its founding director, Professor Susan Solomon, helmed it for its first year, and then handed the leadership to Fernandez, who has led it since 2015.“There wasn’t much of an ecosystem [on sustainability] back then,” Solomon recalls. But with the help of ESI and some other entities, that ecosystem has blossomed. She says that Fernandez “has nurtured some incredible things under ESI,” including work on nature-based climate solutions, and also other areas such as sustainable mining, and reduction of plastics in the environment.Desiree Plata, director of MIT’s Climate and Sustainability Consortium and associate professor of civil and environmental engineering, says that one key achievement of the initiative has been in “communication with the external world, to help take really complex systems and topics and put them in not just plain-speak, but something that’s scientifically rigorous and defensible, for the outside world to consume.”In particular, ESI has created three very successful products, which continue under the auspices of the Climate Project. These include the popular TIL Climate Podcast, the Webby Award-winning Climate Portal website, and the online climate primer developed with Professor Kerry Emanuel. “These are some of the most frequented websites at MIT,” Plata says, and “the impact of this work on the global knowledge base cannot be overstated.”Fernandez says that ESI has played a significant part in helping to catalyze what has become “a rich institutional landscape of work in sustainability and climate change” at MIT. He emphasizes three major areas where he feels the ESI has been able to have the most impact: engaging the MIT community, initiating and stewarding critical environmental research, and catalyzing efforts to promote sustainability as fundamental to the mission of a research university.Engagement of the MIT community, he says, began with two programs: a research seed grant program and the creation of MIT’s undergraduate minor in environment and sustainability, launched in 2017.ESI also created a Rapid Response Group, which gave students a chance to work on real-world projects with external partners, including government agencies, community groups, nongovernmental organizations, and businesses. In the process, they often learned why dealing with environmental challenges in the real world takes so much longer than they might have thought, he says, and that a challenge that “seemed fairly straightforward at the outset turned out to be more complex and nuanced than expected.”The second major area, initiating and stewarding environmental research, grew into a set of six specific program areas: natural climate solutions, mining, cities and climate change, plastics and the environment, arts and climate, and climate justice.These efforts included collaborations with a Nobel Peace Prize laureate, three successive presidential administrations from Colombia, and members of communities affected by climate change, including coal miners, indigenous groups, various cities, companies, the U.N., many agencies — and the popular musical group Coldplay, which has pledged to work toward climate neutrality for its performances. “It was the role that the ESI played as a host and steward of these research programs that may serve as a key element of our legacy,” Fernandez says.The third broad area, he says, “is the idea that the ESI as an entity at MIT would catalyze this movement of a research university toward sustainability as a core priority.” While MIT was founded to be an academic partner to the industrialization of the world, “aren’t we in a different world now? The kind of massive infrastructure planning and investment and construction that needs to happen to decarbonize the energy system is maybe the largest industrialization effort ever undertaken. Even more than in the recent past, the set of priorities driving this have to do with sustainable development.”Overall, Fernandez says, “we did everything we could to infuse the Institute in its teaching and research activities with the idea that the world is now in dire need of sustainable solutions.”Fernandez “has nurtured some incredible things under ESI,” Solomon says. “It’s been a very strong and useful program, both for education and research.” But it is appropriate at this time to distribute its projects to other venues, she says. “We do now have a major thrust in the Climate Project, and you don’t want to have redundancies and overlaps between the two.”Fernandez says “one of the missions of the Climate Project is really acting to coalesce and aggregate lots of work around MIT.” Now, with the Climate Project itself, along with the Climate Policy Center and the Center for Sustainability Science and Strategy, it makes more sense for ESI’s climate-related projects to be integrated into these new entities, and other projects that are less directly connected to climate to take their places in various appropriate departments or labs, he says.“We did enough with ESI that we made it possible for these other centers to really flourish,” he says. “And in that sense, we played our role.”As of June 1, Fernandez has returned to his role as professor of architecture and urbanism and building technology in the School of Architecture and Planning, where he directs the Urban Metabolism Group. He will also be starting up a new group called Environment ResearchAction (ERA) to continue ESI work in cities, nature, and artificial intelligence.  More

  • in

    Study helps pinpoint areas where microplastics will accumulate

    The accumulation of microplastics in the environment, and within our bodies, is an increasingly worrisome issue. But predicting where these ubiquitous particles will accumulate, and therefore where remediation efforts should be focused, has been difficult because of the many factors that contribute to their dispersal and deposition.New research from MIT shows that one key factor in determining where microparticles are likely to build up has to do with the presence of biofilms. These thin, sticky biopolymer layers are shed by microorganisms and can accumulate on surfaces, including along sandy riverbeds or seashores. The study found that, all other conditions being equal, microparticles are less likely to accumulate in sediment infused with biofilms, because if they land there, they are more likely to be resuspended by flowing water and carried away.The open-access findings appear in the journal Geophysical Research Letters, in a paper by MIT postdoc Hyoungchul Park and professor of civil and environmental engineering Heidi Nepf. “Microplastics are definitely in the news a lot,” Nepf says, “and we don’t fully understand where the hotspots of accumulation are likely to be. This work gives a little bit of guidance” on some of the factors that can cause these particles, and small particles in general, to accumulate in certain locations.Most experiments looking at the ways microparticles are transported and deposited have been conducted over bare sand, Park says. “But in nature, there are a lot of microorganisms, such as bacteria, fungi, and algae, and when they adhere to the stream bed they generate some sticky things.” These substances are known as extracellular polymeric substances, or EPS, and they “can significantly affect the channel bed characteristics,” he says. The new research focused on determining exactly how these substances affected the transport of microparticles, including microplastics.The research involved a flow tank with a bottom lined with fine sand, and sometimes with vertical plastic tubes simulating the presence of mangrove roots. In some experiments the bed consisted of pure sand, and in others the sand was mixed with a biological material to simulate the natural biofilms found in many riverbed and seashore environments.Water mixed with tiny plastic particles was pumped through the tank for three hours, and then the bed surface was photographed under ultraviolet light that caused the plastic particles to fluoresce, allowing a quantitative measurement of their concentration.The results revealed two different phenomena that affected how much of the plastic accumulated on the different surfaces. Immediately around the rods that stood in for above-ground roots, turbulence prevented particle deposition. In addition, as the amount of simulated biofilms in the sediment bed increased, the accumulation of particles also decreased.Nepf and Park concluded that the biofilms filled up the spaces between the sand grains, leaving less room for the microparticles to fit in. The particles were more exposed because they penetrated less deeply in between the sand grains, and as a result they were much more easily resuspended and carried away by the flowing water.“These biological films fill the pore spaces between the sediment grains,” Park explains, “and that makes the deposited particles — the particles that land on the bed — more exposed to the forces generated by the flow, which makes it easier for them to be resuspended. What we found was that in a channel with the same flow conditions and the same vegetation and the same sand bed, if one is without EPS and one is with EPS, then the one without EPS has a much higher deposition rate than the one with EPS.”Nepf adds: “The biofilm is blocking the plastics from accumulating in the bed because they can’t go deep into the bed. They just stay right on the surface, and then they get picked up and moved elsewhere. So, if I spilled a large amount of microplastic in two rivers, and one had a sandy or gravel bottom, and one was muddier with more biofilm, I would expect more of the microplastics to be retained in the sandy or gravelly river.”All of this is complicated by other factors, such as the turbulence of the water or the roughness of the bottom surface, she says. But it provides a “nice lens” to provide some suggestions for people who are trying to study the impacts of microplastics in the field. “They’re trying to determine what kinds of habitats these plastics are in, and this gives a framework for how you might categorize those habitats,” she says. “It gives guidance to where you should go to find more plastics versus less.”As an example, Park suggests, in mangrove ecosystems, microplastics may preferentially accumulate in the outer edges, which tend to be sandy, while the interior zones have sediment with more biofilm. Thus, this work suggests “the sandy outer regions may be potential hotspots for microplastic accumulation,” he says, and can make this a priority zone for monitoring and protection.“This is a highly relevant finding,” says Isabella Schalko, a research scientist at ETH Zurich, who was not associated with this research. “It suggests that restoration measures such as re-vegetation or promoting biofilm growth could help mitigate microplastic accumulation in aquatic systems. It highlights the powerful role of biological and physical features in shaping particle transport processes.”The work was supported by Shell International Exploration and Production through the MIT Energy Initiative. More

  • in

    Imaging technique removes the effect of water in underwater scenes

    The ocean is teeming with life. But unless you get up close, much of the marine world can easily remain unseen. That’s because water itself can act as an effective cloak: Light that shines through the ocean can bend, scatter, and quickly fade as it travels through the dense medium of water and reflects off the persistent haze of ocean particles. This makes it extremely challenging to capture the true color of objects in the ocean without imaging them at close range.Now a team from MIT and the Woods Hole Oceanographic Institution (WHOI) has developed an image-analysis tool that cuts through the ocean’s optical effects and generates images of underwater environments that look as if the water had been drained away, revealing an ocean scene’s true colors. The team paired the color-correcting tool with a computational model that converts images of a scene into a three-dimensional underwater “world,” that can then be explored virtually.The researchers have dubbed the new tool “SeaSplat,” in reference to both its underwater application and a method known as 3D gaussian splatting (3DGS), which takes images of a scene and stitches them together to generate a complete, three-dimensional representation that can be viewed in detail, from any perspective.“With SeaSplat, it can model explicitly what the water is doing, and as a result it can in some ways remove the water, and produces better 3D models of an underwater scene,” says MIT graduate student Daniel Yang.The researchers applied SeaSplat to images of the sea floor taken by divers and underwater vehicles, in various locations including the U.S. Virgin Islands. The method generated 3D “worlds” from the images that were truer and more vivid and varied in color, compared to previous methods.The team says SeaSplat could help marine biologists monitor the health of certain ocean communities. For instance, as an underwater robot explores and takes pictures of a coral reef, SeaSplat would simultaneously process the images and render a true-color, 3D representation, that scientists could then virtually “fly” through, at their own pace and path, to inspect the underwater scene, for instance for signs of coral bleaching.“Bleaching looks white from close up, but could appear blue and hazy from far away, and you might not be able to detect it,” says Yogesh Girdhar, an associate scientist at WHOI. “Coral bleaching, and different coral species, could be easier to detect with SeaSplat imagery, to get the true colors in the ocean.”Girdhar and Yang will present a paper detailing SeaSplat at the IEEE International Conference on Robotics and Automation (ICRA). Their study co-author is John Leonard, professor of mechanical engineering at MIT.Aquatic opticsIn the ocean, the color and clarity of objects is distorted by the effects of light traveling through water. In recent years, researchers have developed color-correcting tools that aim to reproduce the true colors in the ocean. These efforts involved adapting tools that were developed originally for environments out of water, for instance to reveal the true color of features in foggy conditions. One recent work accurately reproduces true colors in the ocean, with an algorithm named “Sea-Thru,” though this method requires a huge amount of computational power, which makes its use in producing 3D scene models challenging.In parallel, others have made advances in 3D gaussian splatting, with tools that seamlessly stitch images of a scene together, and intelligently fill in any gaps to create a whole, 3D version of the scene. These 3D worlds enable “novel view synthesis,” meaning that someone can view the generated 3D scene, not just from the perspective of the original images, but from any angle and distance.But 3DGS has only successfully been applied to environments out of water. Efforts to adapt 3D reconstruction to underwater imagery have been hampered, mainly by two optical underwater effects: backscatter and attenuation. Backscatter occurs when light reflects off of tiny particles in the ocean, creating a veil-like haze. Attenuation is the phenomenon by which light of certain wavelengths attenuates, or fades with distance. In the ocean, for instance, red objects appear to fade more than blue objects when viewed from farther away.Out of water, the color of objects appears more or less the same regardless of the angle or distance from which they are viewed. In water, however, color can quickly change and fade depending on one’s perspective. When 3DGS methods attempt to stitch underwater images into a cohesive 3D whole, they are unable to resolve objects due to aquatic backscatter and attenuation effects that distort the color of objects at different angles.“One dream of underwater robotic vision that we have is: Imagine if you could remove all the water in the ocean. What would you see?” Leonard says.A model swimIn their new work, Yang and his colleagues developed a color-correcting algorithm that accounts for the optical effects of backscatter and attenuation. The algorithm determines the degree to which every pixel in an image must have been distorted by backscatter and attenuation effects, and then essentially takes away those aquatic effects, and computes what the pixel’s true color must be.Yang then worked the color-correcting algorithm into a 3D gaussian splatting model to create SeaSplat, which can quickly analyze underwater images of a scene and generate a true-color, 3D virtual version of the same scene that can be explored in detail from any angle and distance.The team applied SeaSplat to multiple underwater scenes, including images taken in the Red Sea, in the Carribean off the coast of Curaçao, and the Pacific Ocean, near Panama. These images, which the team took from a pre-existing dataset, represent a range of ocean locations and water conditions. They also tested SeaSplat on images taken by a remote-controlled underwater robot in the U.S. Virgin Islands.From the images of each ocean scene, SeaSplat generated a true-color 3D world that the researchers were able to virtually explore, for instance zooming in and out of a scene and viewing certain features from different perspectives. Even when viewing from different angles and distances, they found objects in every scene retained their true color, rather than fading as they would if viewed through the actual ocean.“Once it generates a 3D model, a scientist can just ‘swim’ through the model as though they are scuba-diving, and look at things in high detail, with real color,” Yang says.For now, the method requires hefty computing resources in the form of a desktop computer that would be too bulky to carry aboard an underwater robot. Still, SeaSplat could work for tethered operations, where a vehicle, tied to a ship, can explore and take images that can be sent up to a ship’s computer.“This is the first approach that can very quickly build high-quality 3D models with accurate colors, underwater, and it can create them and render them fast,” Girdhar says. “That will help to quantify biodiversity, and assess the health of coral reef and other marine communities.”This work was supported, in part, by the Investment in Science Fund at WHOI, and by the U.S. National Science Foundation. More

  • in

    The MIT-Portugal Program enters Phase 4

    Since its founding 19 years ago as a pioneering collaboration with Portuguese universities, research institutions and corporations, the MIT-Portugal Program (MPP) has achieved a slew of successes — from enabling 47 entrepreneurial spinoffs and funding over 220 joint projects between MIT and Portuguese researchers to training a generation of exceptional researchers on both sides of the Atlantic.In March, with nearly two decades of collaboration under their belts, MIT and the Portuguese Science and Technology Foundation (FCT) signed an agreement that officially launches the program’s next chapter. Running through 2030, MPP’s Phase 4 will support continued exploration of innovative ideas and solutions in fields ranging from artificial intelligence and nanotechnology to climate change — both on the MIT campus and with partners throughout Portugal.  “One of the advantages of having a program that has gone on so long is that we are pretty well familiar with each other at this point. Over the years, we’ve learned each other’s systems, strengths and weaknesses and we’ve been able to create a synergy that would not have existed if we worked together for a short period of time,” says Douglas Hart, MIT mechanical engineering professor and MPP co-director.Hart and John Hansman, the T. Wilson Professor of Aeronautics and Astronautics at MIT and MPP co-director, are eager to take the program’s existing research projects further, while adding new areas of focus identified by MIT and FCT. Known as the Fundação para a Ciência e Tecnologia in Portugal, FCT is the national public agency supporting research in science, technology and innovation under Portugal’s Ministry of Education, Science and Innovation.“Over the past two decades, the partnership with MIT has built a foundation of trust that has fostered collaboration among researchers and the development of projects with significant scientific impact and contributions to the Portuguese economy,” Fernando Alexandre, Portugal’s minister for education, science, and innovation, says. “In this new phase of the partnership, running from 2025 to 2030, we expect even greater ambition and impact — raising Portuguese science and its capacity to transform the economy and improve our society to even higher levels, while helping to address the challenges we face in areas such as climate change and the oceans, digitalization, and space.”“International collaborations like the MIT-Portugal Program are absolutely vital to MIT’s mission of research, education and service. I’m thrilled to see the program move into its next phase,” says MIT President Sally Kornbluth. “MPP offers our faculty and students opportunities to work in unique research environments where they not only make new findings and learn new methods but also contribute to solving urgent local and global problems. MPP’s work in the realm of ocean science and climate is a prime example of how international partnerships like this can help solve important human problems.”Sharing MIT’s commitment to academic independence and excellence, Kornbluth adds, “the institutions and researchers we partner with through MPP enhance MIT’s ability to achieve its mission, enabling us to pursue the exacting standards of intellectual and creative distinction that make MIT a cradle of innovation and world leader in scientific discovery.”The epitome of an effective international collaboration, MPP has stayed true to its mission and continued to deliver results here in the U.S. and in Portugal for nearly two decades — prevailing amid myriad shifts in the political, social, and economic landscape. The multifaceted program encompasses an annual research conference and educational summits such as an Innovation Workshop at MIT each June and a Marine Robotics Summer School in the Azores in July, as well as student and faculty exchanges that facilitate collaborative research. During the third phase of the program alone, 59 MIT students and 53 faculty and researchers visited Portugal, and MIT hosted 131 students and 49 faculty and researchers from Portuguese universities and other institutions.In each roughly five-year phase, MPP researchers focus on a handful of core research areas. For Phase 3, MPP advanced cutting-edge research in four strategic areas: climate science and climate change; Earth systems: oceans to near space; digital transformation in manufacturing; and sustainable cities. Within these broad areas, MIT and FCT researchers worked together on numerous small-scale projects and several large “flagship” ones, including development of Portugal’s CubeSat satellite, a collaboration between MPP and several Portuguese universities and companies that marked the country’s second satellite launch and the first in 30 years.While work in the Phase 3 fields will continue during Phase 4, researchers will also turn their attention to four more areas: chips/nanotechnology, energy (a previous focus in Phase 2), artificial intelligence, and space.“We are opening up the aperture for additional collaboration areas,” Hansman says.In addition to focusing on distinct subject areas, each phase has emphasized the various parts of MPP’s mission to differing degrees. While Phase 3 accentuated collaborative research more than educational exchanges and entrepreneurship, those two aspects will be given more weight under the Phase 4 agreement, Hart said.“We have approval in Phase 4 to bring a number of Portuguese students over, and our principal investigators will benefit from close collaborations with Portuguese researchers,” he says.The longevity of MPP and the recent launch of Phase 4 are evidence of the program’s value. The program has played a role in the educational, technological and economic progress Portugal has achieved over the past two decades, as well.  “The Portugal of today is remarkably stronger than the Portugal of 20 years ago, and many of the places where they are stronger have been impacted by the program,” says Hansman, pointing to sustainable cities and “green” energy, in particular. “We can’t take direct credit, but we’ve been part of Portugal’s journey forward.”Since MPP began, Hart adds, “Portugal has become much more entrepreneurial. Many, many, many more start-up companies are coming out of Portuguese universities than there used to be.”  A recent analysis of MPP and FCT’s other U.S. collaborations highlighted a number of positive outcomes. The report noted that collaborations with MIT and other US universities have enhanced Portuguese research capacities and promoted organizational upgrades in the national R&D ecosystem, while providing Portuguese universities and companies with opportunities to engage in complex projects that would have been difficult to undertake on their own.Regarding MIT in particular, the report found that MPP’s long-term collaboration has spawned the establishment of sustained doctoral programs and pointed to a marked shift within Portugal’s educational ecosystem toward globally aligned standards. MPP, it reported, has facilitated the education of 198 Portuguese PhDs.Portugal’s universities, students and companies are not alone in benefitting from the research, networks, and economic activity MPP has spawned. MPP also delivers unique value to MIT, as well as to the broader US science and research community. Among the program’s consistent themes over the years, for example, is “joint interest in the Atlantic,” Hansman says.This summer, Faial Island in the Azores will host MPP’s fifth annual Marine Robotics Summer School, a two-week course open to 12 Portuguese Master’s and first year PhD students and 12 MIT upper-level undergraduates and graduate students. The course, which includes lectures by MIT and Portuguese faculty and other researchers, workshops, labs and hands-on experiences, “is always my favorite,” said Hart.“I get to work with some of the best researchers in the world there, and some of the top students coming out of Woods Hole Oceanographic Institution, MIT, and Portugal,” he says, adding that some of his previous Marine Robotics Summer School students have come to study at MIT and then gone on to become professors in ocean science.“So, it’s been exciting to see the growth of students coming out of that program, certainly a positive impact,” Hart says.MPP provides one-of-a-kind opportunities for ocean research due to the unique marine facilities available in Portugal, including not only open ocean off the Azores but also Lisbon’s deep-water port and a Portuguese Naval facility just south of Lisbon that is available for collaborative research by international scientists. Like MIT, Portuguese universities are also strongly invested in climate change research — a field of study keenly related to ocean systems.“The international collaboration has allowed us to test and further develop our research prototypes in different aquaculture environments both in the US and in Portugal, while building on the unique expertise of our Portuguese faculty collaborator Dr. Ricardo Calado from the University of Aveiro and our industry collaborators,” says Stefanie Mueller, the TIBCO Career Development Associate Professor in MIT’s departments of Electrical Engineering and Computer Science and Mechanical Engineering and leader of the Human-Computer Interaction Group at the MIT Computer Science and Artificial Intelligence Lab.Mueller points to the work of MIT mechanical engineering PhD student Charlene Xia, a Marine Robotics Summer School participant, whose research is aimed at developing an economical system to monitor the microbiome of seaweed farms and halt the spread of harmful bacteria associated with ocean warming. In addition to participating in the summer school as a student, Xia returned to the Azores for two subsequent years as a teaching assistant.“The MIT-Portugal Program has been a key enabler of our research on monitoring the aquatic microbiome for potential disease outbreaks,” Mueller says.As MPP enters its next phase, Hart and Hansman are optimistic about the program’s continuing success on both sides of the Atlantic and envision broadening its impact going forward.“I think, at this point, the research is going really well, and we’ve got a lot of connections. I think one of our goals is to expand not the science of the program necessarily, but the groups involved,” Hart says, noting that MPP could have a bigger presence in technical fields such as AI and micro-nano manufacturing, as well as in social sciences and humanities.“We’d like to involve many more people and new people here at MIT, as well as in Portugal,” he says, “so that we can reach a larger slice of the population.”  More

  • in

    MIT Maritime Consortium sets sail

    Around 11 billion tons of goods, or about 1.5 tons per person worldwide, are transported by sea each year, representing about 90 percent of global trade by volume. Internationally, the merchant shipping fleet numbers around 110,000 vessels. These ships, and the ports that service them, are significant contributors to the local and global economy — and they’re significant contributors to greenhouse gas emissions.A new consortium, formalized in a signing ceremony at MIT last week, aims to address climate-harming emissions in the maritime shipping industry, while supporting efforts for environmentally friendly operation in compliance with the decarbonization goals set by the International Maritime Organization.“This is a timely collaboration with key stakeholders from the maritime industry with a very bold and interdisciplinary research agenda that will establish new technologies and evidence-based standards,” says Themis Sapsis, the William Koch Professor of Marine Technology at MIT and the director of MIT’s Center for Ocean Engineering. “It aims to bring the best from MIT in key areas for commercial shipping, such as nuclear technology for commercial settings, autonomous operation and AI methods, improved hydrodynamics and ship design, cybersecurity, and manufacturing.” Co-led by Sapsis and Fotini Christia, the Ford International Professor of the Social Sciences; director of the Institute for Data, Systems, and Society (IDSS); and director of the MIT Sociotechnical Systems Research Center, the newly-launched MIT Maritime Consortium (MC) brings together MIT collaborators from across campus, including the Center for Ocean Engineering, which is housed in the Department of Mechanical Engineering; IDSS, which is housed in the MIT Schwarzman College of Computing; the departments of Nuclear Science and Engineering and Civil and Environmental Engineering; MIT Sea Grant; and others, with a national and an international community of industry experts.The Maritime Consortium’s founding members are the American Bureau of Shipping (ABS), Capital Clean Energy Carriers Corp., and HD Korea Shipbuilding and Offshore Engineering. Innovation members are Foresight-Group, Navios Maritime Partners L.P., Singapore Maritime Institute, and Dorian LPG.“The challenges the maritime industry faces are challenges that no individual company or organization can address alone,” says Christia. “The solution involves almost every discipline from the School of Engineering, as well as AI and data-driven algorithms, and policy and regulation — it’s a true MIT problem.”Researchers will explore new designs for nuclear systems consistent with the techno-economic needs and constraints of commercial shipping, economic and environmental feasibility of alternative fuels, new data-driven algorithms and rigorous evaluation criteria for autonomous platforms in the maritime space, cyber-physical situational awareness and anomaly detection, as well as 3D printing technologies for onboard manufacturing. Collaborators will also advise on research priorities toward evidence-based standards related to MIT presidential priorities around climate, sustainability, and AI.MIT has been a leading center of ship research and design for over a century, and is widely recognized for contributions to hydrodynamics, ship structural mechanics and dynamics, propeller design, and overall ship design, and its unique educational program for U.S. Navy Officers, the Naval Construction and Engineering Program. Research today is at the forefront of ocean science and engineering, with significant efforts in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. The consortium’s academic home at MIT also opens the door to cross-departmental collaboration across the Institute.The MC will launch multiple research projects designed to tackle challenges from a variety of angles, all united by cutting-edge data analysis and computation techniques. Collaborators will research new designs and methods that improve efficiency and reduce greenhouse gas emissions, explore feasibility of alternative fuels, and advance data-driven decision-making, manufacturing and materials, hydrodynamic performance, and cybersecurity.“This consortium brings a powerful collection of significant companies that, together, has the potential to be a global shipping shaper in itself,” says Christopher J. Wiernicki SM ’85, chair and chief executive officer of ABS. “The strength and uniqueness of this consortium is the members, which are all world-class organizations and real difference makers. The ability to harness the members’ experience and know-how, along with MIT’s technology reach, creates real jet fuel to drive progress,” Wiernicki says. “As well as researching key barriers, bottlenecks, and knowledge gaps in the emissions challenge, the consortium looks to enable development of the novel technology and policy innovation that will be key. Long term, the consortium hopes to provide the gravity we will need to bend the curve.” More

  • in

    Seeking climate connections among the oceans’ smallest organisms

    Andrew Babbin tries to pack light for work trips. Along with the travel essentials, though, he also brings a roll each of electrical tape, duct tape, lab tape, a pack of cable ties, and some bungee cords.“It’s my MacGyver kit: You never know when you have to rig something on the fly in the field or fix a broken bag,” Babbin says.The trips Babbin takes are far out to sea, on month-long cruises, where he works to sample waters off the Pacific coast and out in the open ocean. In remote locations, repair essentials often come in handy, as when Babbin had to zip-tie a wrench to a sampling device to help it sink through an icy Antarctic lake.Babbin is an oceanographer and marine biogeochemist who studies marine microbes and the ways in which they control the cycling of nitrogen between the ocean and the atmosphere. This exchange helps maintain healthy ocean ecosystems and supports the ocean’s capacity to store carbon.By combining measurements that he takes in the ocean with experiments in his MIT lab, Babbin is working to understand the connections between microbes and ocean nitrogen, which could in turn help scientists identify ways to maintain the ocean’s health and productivity. His work has taken him to many coastal and open-ocean regions around the globe.“You really become an oceanographer and an Earth scientist to see the world,” says Babbin, who recently earned tenure as the Cecil and Ida Green Career Development Professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “We embrace the diversity of places and cultures on this planet. To see just a small fraction of that is special.”A powerful cycleThe ocean has been a constant presence for Babbin since childhood. His family is from Monmouth County, New Jersey, where he and his twin sister grew up playing along the Jersey shore. When they were teenagers, their parents took the kids on family cruise vacations.“I always loved being on the water,” he says. “My favorite parts of any of those cruises were the days at sea, where you were just in the middle of some ocean basin with water all around you.”In school, Babbin gravitated to the sciences, and chemistry in particular. After high school, he attended Columbia University, where a visit to the school’s Earth and environmental engineering department catalyzed a realization.“For me, it was always this excitement about the water and about chemistry, and it was this pop of, ‘Oh wow, it doesn’t have to be one or the other,’” Babbin says.He chose to major in Earth and environmental engineering, with a concentration in water resources and climate risks. After graduating in 2008, Babbin returned to his home state, where he attended Princeton University and set a course for a PhD in geosciences, with a focus on chemical oceanography and environmental microbiology. His advisor, oceanographer Bess Ward, took Babbin on as a member of her research group and invited him on several month-long cruises to various parts of the eastern tropical Pacific.“I still remember that first trip,” Babbin recalls. “It was a whirlwind. Everyone else had been to sea a gazillion times and was loading the boat and strapping things down, and I had no idea of anything. And within a few hours, I was doing an experiment as the ship rocked back and forth!”Babbin learned to deploy sampling cannisters overboard, then haul them back up and analyze the seawater inside for signs of nitrogen — an essential nutrient for all living things on Earth.As it turns out, the plants and animals that depend on nitrogen to survive are unable to take it up from the atmosphere themselves. They require a sort of go-between, in the form of microbes that “fix” nitrogen, converting it from nitrogen gas to more digestible forms. In the ocean, this nitrogen fixation is done by highly specialized microbial species, which work to make nitrogen available to phytoplankton — microscopic plant-like organisms that are the foundation of the marine food chain. Phytoplankton are also a main route by which the ocean absorbs carbon dioxide from the atmosphere.Microorganisms may also use these biologically available forms of nitrogen for energy under certain conditions, returning nitrogen to the atmosphere. These microbes can also release a byproduct of nitrous oxide, which is a potent greenhouse gas that also can catalyze ozone loss in the stratosphere.Through his graduate work, at sea and in the lab, Babbin became fascinated with the cycling of nitrogen and the role that nitrogen-fixing microbes play in supporting the ocean’s ecosystems and the climate overall. A balance of nitrogen inputs and outputs sustains phytoplankton and maintains the ocean’s ability to soak up carbon dioxide.“Some of the really pressing questions in ocean biogeochemistry pertain to this cycling of nitrogen,” Babbin says. “Understanding the ways in which this one element cycles through the ocean, and how it is central to ecosystem health and the planet’s climate, has been really powerful.”In the lab and out to seaAfter completing his PhD in 2014, Babbin arrived at MIT as a postdoc in the Department of Civil and Environmental Engineering.“My first feeling when I came here was, wow, this really is a nerd’s playground,” Babbin says. “I embraced being part of a culture where we seek to understand the world better, while also doing the things we really want to do.”In 2017, he accepted a faculty position in MIT’s Department of Earth, Atmospheric and Planetary Sciences. He set up his laboratory space, painted in his favorite brilliant orange, on the top floor of the Green Building.His group uses 3D printers to fabricate microfluidic devices in which they reproduce the conditions of the ocean environment and study microbe metabolism and its effects on marine chemistry. In the field, Babbin has led research expeditions to the Galapagos Islands and parts of the eastern Pacific, where he has collected and analyzed samples of air and water for signs of nitrogen transformations and microbial activity. His new measuring station in the Galapagos is able to infer marine emissions of nitrous oxide across a large swath of the eastern tropical Pacific Ocean. His group has also sailed to southern Cuba, where the researchers studied interactions of microbes in coral reefs.Most recently, Babbin traveled to Antarctica, where he set up camp next to frozen lakes and plumbed for samples of pristine ice water that he will analyze for genetic remnants of ancient microbes. Such preserved bacterial DNA could help scientists understand how microbes evolved and influenced the Earth’s climate over billions of years.“Microbes are the terraformers,” Babbin notes. “They have been, since life evolved more than 3 billion years ago. We have to think about how they shape the natural world and how they will respond to the Anthropocene as humans monkey with the planet ourselves.”Collective actionBabbin is now charting new research directions. In addition to his work at sea and in the lab, he is venturing into engineering, with a new project to design denitrifying capsules. While nitrogen is an essential nutrient for maintaining a marine ecosystem, too much nitrogen, such as from fertilizer that runs off into lakes and streams, can generate blooms of toxic algae. Babbin is looking to design eco-friendly capsules that scrub excess anthropogenic nitrogen from local waterways. He’s also beginning the process of designing a new sensor to measure low-oxygen concentrations in the ocean. As the planet warms, the oceans are losing oxygen, creating “dead zones” where fish cannot survive. While others including Babbin have tried to map these oxygen minimum zones, or OMZs, they have done so sporadically, by dropping sensors into the ocean over limited range, depth, and times. Babbin’s sensors could potentially provide a more complete map of OMZs, as they would be deployed on wide-ranging, deep-diving, and naturally propulsive vehicles: sharks.“We want to measure oxygen. Sharks need oxygen. And if you look at where the sharks don’t go, you might have a sense of where the oxygen is not,” says Babbin, who is working with marine biologists on ways to tag sharks with oxygen sensors. “A number of these large pelagic fish move up and down the water column frequently, so you can map the depth to which they dive to, and infer something about the behavior. And my suggestion is, you might also infer something about the ocean’s chemistry.”When he reflects on what stimulates new ideas and research directions, Babbin credits working with others, in his own group and across MIT.“My best thoughts come from this collective action,” Babbin says. “Particularly because we all have different upbringings and approach things from a different perspective.”He’s bringing this collaborative spirit to his new role, as a mission director for MIT’s Climate Project. Along with Jesse Kroll, who is a professor of civil and environmental engineering and of chemical engineering, Babbin co-leads one of the project’s six missions: Restoring the Atmosphere, Protecting the Land and Oceans. Babbin and Kroll are planning a number of workshops across campus that they hope will generate new connections, and spark new ideas, particularly around ways to evaluate the effectiveness of different climate mitigation strategies and better assess the impacts of climate on society.“One area we want to promote is thinking of climate science and climate interventions as two sides of the same coin,” Babbin says. “There’s so much action that’s trying to be catalyzed. But we want it to be the best action. Because we really have one shot at doing this. Time is of the essence.” More

  • in

    Surface-based sonar system could rapidly map the ocean floor at high resolution

    On June 18, 2023, the Titan submersible was about an hour-and-a-half into its two-hour descent to the Titanic wreckage at the bottom of the Atlantic Ocean when it lost contact with its support ship. This cease in communication set off a frantic search for the tourist submersible and five passengers onboard, located about two miles below the ocean’s surface.Deep-ocean search and recovery is one of the many missions of military services like the U.S. Coast Guard Office of Search and Rescue and the U.S. Navy Supervisor of Salvage and Diving. For this mission, the longest delays come from transporting search-and-rescue equipment via ship to the area of interest and comprehensively surveying that area. A search operation on the scale of that for Titan — which was conducted 420 nautical miles from the nearest port and covered 13,000 square kilometers, an area roughly twice the size of Connecticut — could take weeks to complete. The search area for Titan is considered relatively small, focused on the immediate vicinity of the Titanic. When the area is less known, operations could take months. (A remotely operated underwater vehicle deployed by a Canadian vessel ended up finding the debris field of Titan on the seafloor, four days after the submersible had gone missing.)A research team from MIT Lincoln Laboratory and the MIT Department of Mechanical Engineering’s Ocean Science and Engineering lab is developing a surface-based sonar system that could accelerate the timeline for small- and large-scale search operations to days. Called the Autonomous Sparse-Aperture Multibeam Echo Sounder, the system scans at surface-ship rates while providing sufficient resolution to find objects and features in the deep ocean, without the time and expense of deploying underwater vehicles. The echo sounder — which features a large sonar array using a small set of autonomous surface vehicles (ASVs) that can be deployed via aircraft into the ocean — holds the potential to map the seabed at 50 times the coverage rate of an underwater vehicle and 100 times the resolution of a surface vessel.

    Play video

    Autonomous Sparse-Aperture Multibeam Echo SounderVideo: MIT Lincoln Laboratory

    “Our array provides the best of both worlds: the high resolution of underwater vehicles and the high coverage rate of surface ships,” says co–principal investigator Andrew March, assistant leader of the laboratory’s Advanced Undersea Systems and Technology Group. “Though large surface-based sonar systems at low frequency have the potential to determine the materials and profiles of the seabed, they typically do so at the expense of resolution, particularly with increasing ocean depth. Our array can likely determine this information, too, but at significantly enhanced resolution in the deep ocean.”Underwater unknownOceans cover 71 percent of Earth’s surface, yet more than 80 percent of this underwater realm remains undiscovered and unexplored. Humans know more about the surface of other planets and the moon than the bottom of our oceans. High-resolution seabed maps would not only be useful to find missing objects like ships or aircraft, but also to support a host of other scientific applications: understanding Earth’s geology, improving forecasting of ocean currents and corresponding weather and climate impacts, uncovering archaeological sites, monitoring marine ecosystems and habitats, and identifying locations containing natural resources such as mineral and oil deposits.Scientists and governments worldwide recognize the importance of creating a high-resolution global map of the seafloor; the problem is that no existing technology can achieve meter-scale resolution from the ocean surface. The average depth of our oceans is approximately 3,700 meters. However, today’s technologies capable of finding human-made objects on the seabed or identifying person-sized natural features — these technologies include sonar, lidar, cameras, and gravitational field mapping — have a maximum range of less than 1,000 meters through water.Ships with large sonar arrays mounted on their hull map the deep ocean by emitting low-frequency sound waves that bounce off the seafloor and return as echoes to the surface. Operation at low frequencies is necessary because water readily absorbs high-frequency sound waves, especially with increasing depth; however, such operation yields low-resolution images, with each image pixel representing a football field in size. Resolution is also restricted because sonar arrays installed on large mapping ships are already using all of the available hull space, thereby capping the sonar beam’s aperture size. By contrast, sonars on autonomous underwater vehicles (AUVs) that operate at higher frequencies within a few hundred meters of the seafloor generate maps with each pixel representing one square meter or less, resulting in 10,000 times more pixels in that same football field–sized area. However, this higher resolution comes with trade-offs: AUVs are time-consuming and expensive to deploy in the deep ocean, limiting the amount of seafloor that can be mapped; they have a maximum range of about 1,000 meters before their high-frequency sound gets absorbed; and they move at slow speeds to conserve power. The area-coverage rate of AUVs performing high-resolution mapping is about 8 square kilometers per hour; surface vessels map the deep ocean at more than 50 times that rate.A solution surfacesThe Autonomous Sparse-Aperture Multibeam Echo Sounder could offer a cost-effective approach to high-resolution, rapid mapping of the deep seafloor from the ocean’s surface. A collaborative fleet of about 20 ASVs, each hosting a small sonar array, effectively forms a single sonar array 100 times the size of a large sonar array installed on a ship. The large aperture achieved by the array (hundreds of meters) produces a narrow beam, which enables sound to be precisely steered to generate high-resolution maps at low frequency. Because very few sonars are installed relative to the array’s overall size (i.e., a sparse aperture), the cost is tractable.However, this collaborative and sparse setup introduces some operational challenges. First, for coherent 3D imaging, the relative position of each ASV’s sonar subarray must be accurately tracked through dynamic ocean-induced motions. Second, because sonar elements are not placed directly next to each other without any gaps, the array suffers from a lower signal-to-noise ratio and is less able to reject noise coming from unintended or undesired directions. To mitigate these challenges, the team has been developing a low-cost precision-relative navigation system and leveraging acoustic signal processing tools and new ocean-field estimation algorithms. The MIT campus collaborators are developing algorithms for data processing and image formation, especially to estimate depth-integrated water-column parameters. These enabling technologies will help account for complex ocean physics, spanning physical properties like temperature, dynamic processes like currents and waves, and acoustic propagation factors like sound speed.Processing for all required control and calculations could be completed either remotely or onboard the ASVs. For example, ASVs deployed from a ship or flying boat could be controlled and guided remotely from land via a satellite link or from a nearby support ship (with direct communications or a satellite link), and left to map the seabed for weeks or months at a time until maintenance is needed. Sonar-return health checks and coarse seabed mapping would be conducted on board, while full, high-resolution reconstruction of the seabed would require a supercomputing infrastructure on land or on a support ship.”Deploying vehicles in an area and letting them map for extended periods of time without the need for a ship to return home to replenish supplies and rotate crews would significantly simplify logistics and operating costs,” says co–principal investigator Paul Ryu, a researcher in the Advanced Undersea Systems and Technology Group.Since beginning their research in 2018, the team has turned their concept into a prototype. Initially, the scientists built a scale model of a sparse-aperture sonar array and tested it in a water tank at the laboratory’s Autonomous Systems Development Facility. Then, they prototyped an ASV-sized sonar subarray and demonstrated its functionality in Gloucester, Massachusetts. In follow-on sea tests in Boston Harbor, they deployed an 8-meter array containing multiple subarrays equivalent to 25 ASVs locked together; with this array, they generated 3D reconstructions of the seafloor and a shipwreck. Most recently, the team fabricated, in collaboration with Woods Hole Oceanographic Institution, a first-generation, 12-foot-long, all-electric ASV prototype carrying a sonar array underneath. With this prototype, they conducted preliminary relative navigation testing in Woods Hole, Massachusetts and Newport, Rhode Island. Their full deep-ocean concept calls for approximately 20 such ASVs of a similar size, likely powered by wave or solar energy.This work was funded through Lincoln Laboratory’s internally administered R&D portfolio on autonomous systems. The team is now seeking external sponsorship to continue development of their ocean floor–mapping technology, which was recognized with a 2024 R&D 100 Award.  More