More stories

  • in

    Artificial reef designed by MIT engineers could protect marine life, reduce storm damage

    The beautiful, gnarled, nooked-and-crannied reefs that surround tropical islands serve as a marine refuge and natural buffer against stormy seas. But as the effects of climate change bleach and break down coral reefs around the world, and extreme weather events become more common, coastal communities are left increasingly vulnerable to frequent flooding and erosion.

    An MIT team is now hoping to fortify coastlines with “architected” reefs — sustainable, offshore structures engineered to mimic the wave-buffering effects of natural reefs while also providing pockets for fish and other marine life.

    The team’s reef design centers on a cylindrical structure surrounded by four rudder-like slats. The engineers found that when this structure stands up against a wave, it efficiently breaks the wave into turbulent jets that ultimately dissipate most of the wave’s total energy. The team has calculated that the new design could reduce as much wave energy as existing artificial reefs, using 10 times less material.

    The researchers plan to fabricate each cylindrical structure from sustainable cement, which they would mold in a pattern of “voxels” that could be automatically assembled, and would provide pockets for fish to explore and other marine life to settle in. The cylinders could be connected to form a long, semipermeable wall, which the engineers could erect along a coastline, about half a mile from shore. Based on the team’s initial experiments with lab-scale prototypes, the architected reef could reduce the energy of incoming waves by more than 95 percent.

    “This would be like a long wave-breaker,” says Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering. “If waves are 6 meters high coming toward this reef structure, they would be ultimately less than a meter high on the other side. So, this kills the impact of the waves, which could prevent erosion and flooding.”

    Details of the architected reef design are reported today in a study appearing in the open-access journal PNAS Nexus. Triantafyllou’s MIT co-authors are Edvard Ronglan SM ’23; graduate students Alfonso Parra Rubio, Jose del Auila Ferrandis, and Erik Strand; research scientists Patricia Maria Stathatou and Carolina Bastidas; and Professor Neil Gershenfeld, director of the Center for Bits and Atoms; along with Alexis Oliveira Da Silva at the Polytechnic Institute of Paris, Dixia Fan of Westlake University, and Jeffrey Gair Jr. of Scinetics, Inc.

    Leveraging turbulence

    Some regions have already erected artificial reefs to protect their coastlines from encroaching storms. These structures are typically sunken ships, retired oil and gas platforms, and even assembled configurations of concrete, metal, tires, and stones. However, there’s variability in the types of artificial reefs that are currently in place, and no standard for engineering such structures. What’s more, the designs that are deployed tend to have a low wave dissipation per unit volume of material used. That is, it takes a huge amount of material to break enough wave energy to adequately protect coastal communities.

    The MIT team instead looked for ways to engineer an artificial reef that would efficiently dissipate wave energy with less material, while also providing a refuge for fish living along any vulnerable coast.

    “Remember, natural coral reefs are only found in tropical waters,” says Triantafyllou, who is director of the MIT Sea Grant. “We cannot have these reefs, for instance, in Massachusetts. But architected reefs don’t depend on temperature, so they can be placed in any water, to protect more coastal areas.”

    MIT researchers test the wave-breaking performance of two artificial reef structures in the MIT Towing Tank.Credit: Courtesy of the researchers

    The new effort is the result of a collaboration between researchers in MIT Sea Grant, who developed the reef structure’s hydrodynamic design, and researchers at the Center for Bits and Atoms (CBA), who worked to make the structure modular and easy to fabricate on location. The team’s architected reef design grew out of two seemingly unrelated problems. CBA researchers were developing ultralight cellular structures for the aerospace industry, while Sea Grant researchers were assessing the performance of blowout preventers in offshore oil structures — cylindrical valves that are used to seal off oil and gas wells and prevent them from leaking.

    The team’s tests showed that the structure’s cylindrical arrangement generated a high amount of drag. In other words, the structure appeared to be especially efficient in dissipating high-force flows of oil and gas. They wondered: Could the same arrangement dissipate another type of flow, in ocean waves?

    The researchers began to play with the general structure in simulations of water flow, tweaking its dimensions and adding certain elements to see whether and how waves changed as they crashed against each simulated design. This iterative process ultimately landed on an optimized geometry: a vertical cylinder flanked by four long slats, each attached to the cylinder in a way that leaves space for water to flow through the resulting structure. They found this setup essentially breaks up any incoming wave energy, causing parts of the wave-induced flow to spiral to the sides rather than crashing ahead.

    “We’re leveraging this turbulence and these powerful jets to ultimately dissipate wave energy,” Ferrandis says.

    Standing up to storms

    Once the researchers identified an optimal wave-dissipating structure, they fabricated a laboratory-scale version of an architected reef made from a series of the cylindrical structures, which they 3D-printed from plastic. Each test cylinder measured about 1 foot wide and 4 feet tall. They assembled a number of cylinders, each spaced about a foot apart, to form a fence-like structure, which they then lowered into a wave tank at MIT. They then generated waves of various heights and measured them before and after passing through the architected reef.

    “We saw the waves reduce substantially, as the reef destroyed their energy,” Triantafyllou says.

    The team has also looked into making the structures more porous, and friendly to fish. They found that, rather than making each structure from a solid slab of plastic, they could use a more affordable and sustainable type of cement.

    “We’ve worked with biologists to test the cement we intend to use, and it’s benign to fish, and ready to go,” he adds.

    They identified an ideal pattern of “voxels,” or microstructures, that cement could be molded into, in order to fabricate the reefs while creating pockets in which fish could live. This voxel geometry resembles individual egg cartons, stacked end to end, and appears to not affect the structure’s overall wave-dissipating power.

    “These voxels still maintain a big drag while allowing fish to move inside,” Ferrandis says.

    The team is currently fabricating cement voxel structures and assembling them into a lab-scale architected reef, which they will test under various wave conditions. They envision that the voxel design could be modular, and scalable to any desired size, and easy to transport and install in various offshore locations. “Now we’re simulating actual sea patterns, and testing how these models will perform when we eventually have to deploy them,” says Anjali Sinha, a graduate student at MIT who recently joined the group.

    Going forward, the team hopes to work with beach towns in Massachusetts to test the structures on a pilot scale.

    “These test structures would not be small,” Triantafyllou emphasizes. “They would be about a mile long, and about 5 meters tall, and would cost something like 6 million dollars per mile. So it’s not cheap. But it could prevent billions of dollars in storm damage. And with climate change, protecting the coasts will become a big issue.”

    This work was funded, in part, by the U.S. Defense Advanced Research Projects Agency. More

  • in

    Gosha Geogdzhayev and Sadhana Lolla named 2024 Gates Cambridge Scholars

    This article was updated on April 23 to reflect the promotion of Gosha Geogdzhayev from alternate to winner of the Gates Cambridge Scholarship.

    MIT seniors Gosha Geogdzhayev and Sadhana Lolla have won the prestigious Gates Cambridge Scholarship, which offers students an opportunity to pursue graduate study in the field of their choice at Cambridge University in the U.K.

    Established in 2000, Gates Cambridge offers full-cost post-graduate scholarships to outstanding applicants from countries outside of the U.K. The mission of Gates Cambridge is to build a global network of future leaders committed to improving the lives of others.

    Gosha Geogdzhayev

    Originally from New York City, Geogdzhayev is a senior majoring in physics with minors in mathematics and computer science. At Cambridge, Geogdzhayev intends to pursue an MPhil in quantitative climate and environmental science. He is interested in applying these subjects to climate science and intends to spend his career developing novel statistical methods for climate prediction.

    At MIT, Geogdzhayev researches climate emulators with Professor Raffaele Ferrari’s group in the Department of Earth, Atmospheric and Planetary Sciences and is part of the “Bringing Computation to the Climate Challenge” Grand Challenges project. He is currently working on an operator-based emulator for the projection of climate extremes. Previously, Geogdzhayev studied the statistics of changing chaotic systems, work that has recently been published as a first-author paper.

    As a recipient of the National Oceanic and Atmospheric Agency (NOAA) Hollings Scholarship, Geogdzhayev has worked on bias correction methods for climate data at the NOAA Geophysical Fluid Dynamics Laboratory. He is the recipient of several other awards in the field of earth and atmospheric sciences, notably the American Meteorological Society Ward and Eileen Seguin Scholarship.

    Outside of research, Geogdzhayev enjoys writing poetry and is actively involved with his living community, Burton 1, for which he has previously served as floor chair.

    Sadhana Lolla

    Lolla, a senior from Clarksburg, Maryland, is majoring in computer science and minoring in mathematics and literature. At Cambridge, she will pursue an MPhil in technology policy.

    In the future, Lolla aims to lead conversations on deploying and developing technology for marginalized communities, such as the rural Indian village that her family calls home, while also conducting research in embodied intelligence.

    At MIT, Lolla conducts research on safe and trustworthy robotics and deep learning at the Distributed Robotics Laboratory with Professor Daniela Rus. Her research has spanned debiasing strategies for autonomous vehicles and accelerating robotic design processes. At Microsoft Research and Themis AI, she works on creating uncertainty-aware frameworks for deep learning, which has impacts across computational biology, language modeling, and robotics. She has presented her work at the Neural Information Processing Systems (NeurIPS) conference and the International Conference on Machine Learning (ICML). 

    Outside of research, Lolla leads initiatives to make computer science education more accessible globally. She is an instructor for class 6.s191 (MIT Introduction to Deep Learning), one of the largest AI courses in the world, which reaches millions of students annually. She serves as the curriculum lead for Momentum AI, the only U.S. program that teaches AI to underserved students for free, and she has taught hundreds of students in Northern Scotland as part of the MIT Global Teaching Labs program.

    Lolla was also the director for xFair, MIT’s largest student-run career fair, and is an executive board member for Next Sing, where she works to make a cappella more accessible for students across musical backgrounds. In her free time, she enjoys singing, solving crossword puzzles, and baking. More

  • in

    New MIT.nano equipment to accelerate innovation in “tough tech” sectors

    A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

    The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

    MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

    “The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

    The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

    “We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

    Pushing the boundaries of innovation

    Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

    “This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

    Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

    “In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

    Scholvin predicts the equipment will lead to exponential growth in research opportunities.

    “I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

    Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

    “The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

    Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

    He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

    Fulfilling a mission

    MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

    “This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

    Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

    “We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.” More

  • in

    New tool predicts flood risk from hurricanes in a warming climate

    Coastal cities and communities will face more frequent major hurricanes with climate change in the coming years. To help prepare coastal cities against future storms, MIT scientists have developed a method to predict how much flooding a coastal community is likely to experience as hurricanes evolve over the next decades.

    When hurricanes make landfall, strong winds whip up salty ocean waters that generate storm surge in coastal regions. As the storms move over land, torrential rainfall can induce further flooding inland. When multiple flood sources such as storm surge and rainfall interact, they can compound a hurricane’s hazards, leading to significantly more flooding than would result from any one source alone. The new study introduces a physics-based method for predicting how the risk of such complex, compound flooding may evolve under a warming climate in coastal cities.

    One example of compound flooding’s impact is the aftermath from Hurricane Sandy in 2012. The storm made landfall on the East Coast of the United States as heavy winds whipped up a towering storm surge that combined with rainfall-driven flooding in some areas to cause historic and devastating floods across New York and New Jersey.

    In their study, the MIT team applied the new compound flood-modeling method to New York City to predict how climate change may influence the risk of compound flooding from Sandy-like hurricanes over the next decades.  

    They found that, in today’s climate, a Sandy-level compound flooding event will likely hit New York City every 150 years. By midcentury, a warmer climate will drive up the frequency of such flooding, to every 60 years. At the end of the century, destructive Sandy-like floods will deluge the city every 30 years — a fivefold increase compared to the present climate.

    “Long-term average damages from weather hazards are usually dominated by the rare, intense events like Hurricane Sandy,” says study co-author Kerry Emanuel, professor emeritus of atmospheric science at MIT. “It is important to get these right.”

    While these are sobering projections, the researchers hope the flood forecasts can help city planners prepare and protect against future disasters. “Our methodology equips coastal city authorities and policymakers with essential tools to conduct compound flooding risk assessments from hurricanes in coastal cities at a detailed, granular level, extending to each street or building, in both current and future decades,” says study author Ali Sarhadi, a postdoc in MIT’s Department of Earth, Atmospheric and Planetary Sciences.

    The team’s open-access study appears online today in the Bulletin of the American Meteorological Society. Co-authors include Raphaël Rousseau-Rizzi at MIT’s Lorenz Center, Kyle Mandli at Columbia University, Jeffrey Neal at the University of Bristol, Michael Wiper at the Charles III University of Madrid, and Monika Feldmann at the Swiss Federal Institute of Technology Lausanne.

    The seeds of floods

    To forecast a region’s flood risk, weather modelers typically look to the past. Historical records contain measurements of previous hurricanes’ wind speeds, rainfall, and spatial extent, which scientists use to predict where and how much flooding may occur with coming storms. But Sarhadi believes that the limitations and brevity of these historical records are insufficient for predicting future hurricanes’ risks.

    “Even if we had lengthy historical records, they wouldn’t be a good guide for future risks because of climate change,” he says. “Climate change is changing the structural characteristics, frequency, intensity, and movement of hurricanes, and we cannot rely on the past.”

    Sarhadi and his colleagues instead looked to predict a region’s risk of hurricane flooding in a changing climate using a physics-based risk assessment methodology. They first paired simulations of hurricane activity with coupled ocean and atmospheric models over time. With the hurricane simulations, developed originally by Emanuel, the researchers virtually scatter tens of thousands of “seeds” of hurricanes into a simulated climate. Most seeds dissipate, while a few grow into category-level storms, depending on the conditions of the ocean and atmosphere.

    When the team drives these hurricane simulations with climate models of ocean and atmospheric conditions under certain global temperature projections, they can see how hurricanes change, for instance in terms of intensity, frequency, and size, under past, current, and future climate conditions.

    The team then sought to precisely predict the level and degree of compound flooding from future hurricanes in coastal cities. The researchers first used rainfall models to simulate rain intensity for a large number of simulated hurricanes, then applied numerical models to hydraulically translate that rainfall intensity into flooding on the ground during landfalling of hurricanes, given information about a region such as its surface and topography characteristics. They also simulated the same hurricanes’ storm surges, using hydrodynamic models to translate hurricanes’ maximum wind speed and sea level pressure into surge height in coastal areas. The simulation further assessed the propagation of ocean waters into coastal areas, causing coastal flooding.

    Then, the team developed a numerical hydrodynamic model to predict how two sources of hurricane-induced flooding, such as storm surge and rain-driven flooding, would simultaneously interact through time and space, as simulated hurricanes make landfall in coastal regions such as New York City, in both current and future climates.  

    “There’s a complex, nonlinear hydrodynamic interaction between saltwater surge-driven flooding and freshwater rainfall-driven flooding, that forms compound flooding that a lot of existing methods ignore,” Sarhadi says. “As a result, they underestimate the risk of compound flooding.”

    Amplified risk

    With their flood-forecasting method in place, the team applied it to a specific test case: New York City. They used the multipronged method to predict the city’s risk of compound flooding from hurricanes, and more specifically from Sandy-like hurricanes, in present and future climates. Their simulations showed that the city’s odds of experiencing Sandy-like flooding will increase significantly over the next decades as the climate warms, from once every 150 years in the current climate, to every 60 years by 2050, and every 30 years by 2099.

    Interestingly, they found that much of this increase in risk has less to do with how hurricanes themselves will change with warming climates, but with how sea levels will increase around the world.

    “In future decades, we will experience sea level rise in coastal areas, and we also incorporated that effect into our models to see how much that would increase the risk of compound flooding,” Sarhadi explains. “And in fact, we see sea level rise is playing a major role in amplifying the risk of compound flooding from hurricanes in New York City.”

    The team’s methodology can be applied to any coastal city to assess the risk of compound flooding from hurricanes and extratropical storms. With this approach, Sarhadi hopes decision-makers can make informed decisions regarding the implementation of adaptive measures, such as reinforcing coastal defenses to enhance infrastructure and community resilience.

    “Another aspect highlighting the urgency of our research is the projected 25 percent increase in coastal populations by midcentury, leading to heightened exposure to damaging storms,” Sarhadi says. “Additionally, we have trillions of dollars in assets situated in coastal flood-prone areas, necessitating proactive strategies to reduce damages from compound flooding from hurricanes under a warming climate.”

    This research was supported, in part, by Homesite Insurance. More

  • in

    The science and art of complex systems

    As a high school student, Gosha Geogdzhayev attended Saturday science classes at Columbia University, including one called The Physics of Climate Change. “They showed us a satellite image of the Earth’s atmosphere, and I thought, ‘Wow, this is so beautiful,’” he recalls. Since then, climate science has been one of his driving interests.

    With the MIT Department of Earth, Atmospheric and Planetary Sciences and the BC3 Climate Grand Challenges project, Geogdzhayev is creating climate model “emulators” in order to localize the large-scale data provided by global climate models (GCMs). As he explains, GCMs can make broad predictions about climate change, but they are not proficient at analyzing impacts in localized areas. However, simpler “emulator” models can learn from GCMs and other data sources to answer specialized questions. The model Geogdzhayev is currently working on will project the frequency of extreme heat events in Nigeria.

    A senior majoring in physics, Geogdzhayev hopes that his current and future research will help reshape the scientific approach to studying climate trends. More accurate predictions of climate conditions could have benefits far beyond scientific analysis, and affect the decisions of policymakers, businesspeople, and truly anyone concerned about climate change.

    “I have this fascination with complex systems, and reducing that complexity and picking it apart,” Geogdzhayev says.

    His pursuit of discovery has led him from Berlin, Germany, to Princeton, New Jersey, with stops in between. He has worked with Transsolar KlimaEngineering, NASA, NOAA, FU Berlin, and MIT, including through the MIT Climate Stability Consortium’s Climate Scholars Program, in research positions that explore climate science in different ways. His projects have involved applications such as severe weather alerts, predictions of late seasonal freezes, and eco-friendly building design. 

    The written word

    Originating even earlier than his passion for climate science is Geogdzhayev’s love of writing. He recently discovered original poetry dating back all the way to middle school. In this poetry he found a coincidental throughline to his current life: “There was one poem about climate, actually. It was so bad,” he says, laughing. “But it was cool to see.”

    As a scientist, Geogdzhayev finds that poetry helps quiet his often busy mind. Writing provides a vehicle to understand himself, and therefore to communicate more effectively with others, which he sees as necessary for success in his field.

    “A lot of good work comes from being able to communicate with other people. And poetry is a way for me to flex those muscles. If I can communicate with myself, and if I can communicate myself to others, that is transferable to science,” he says.

    Since last spring Geogdzhayev has attended poetry workshop classes at Harvard University, which he enjoys partly because it nudges him to explore spaces outside of MIT.

    He has contributed prolifically to platforms on campus as well. Since his first year, he has written as a staff blogger for MIT Admissions, creating posts about his life at MIT for prospective students. He has also written for the yearly fashion publication “Infinite Magazine.”

    Merging both science and writing, a peer-reviewed publication by Geogdzhayev will soon be published in the journal “Physica D: Nonlinear Phenomena.” The piece explores the validity of climate statistics under climate change through an abstract mathematical system.

    Leading with heart

    Geogdzhayev enjoys being a collaborator, but also excels in leadership positions. When he first arrived at MIT, his dorm, Burton Conner, was closed for renovation, and he could not access that living community directly. Once his sophomore year arrived however, he was quick to volunteer to streamline the process to get new students involved, and eventually became floor chair for his living community, Burton 1.

    Following the social stagnation caused by the Covid-19 pandemic and the dorm renovation, he helped rebuild a sense of community for his dorm by planning social events and governmental organization for the floor. He now regards the members of Burton 1 as his closest friends and partners in “general tomfoolery.”

    This sense of leadership is coupled with an affinity for teaching. Geogdzhayev is a peer mentor in the Physics Mentorship Program and taught climate modeling classes to local high school students as a part of SPLASH. He describes these experiences as “very fun” and can imagine himself as a university professor dedicated to both teaching and research.

    Following graduation, Geogdzhayev intends to pursue a PhD in climate science or applied math. “I can see myself working on research for the rest of my life,” he says. More

  • in

    Celebrating five years of MIT.nano

    There is vast opportunity for nanoscale innovation to transform the world in positive ways — expressed MIT.nano Director Vladimir Bulović as he posed two questions to attendees at the start of the inaugural Nano Summit: “Where are we heading? And what is the next big thing we can develop?”

    “The answer to that puts into perspective our main purpose — and that is to change the world,” Bulović, the Fariborz Maseeh Professor of Emerging Technologies, told an audience of more than 325 in-person and 150 virtual participants gathered for an exploration of nano-related research at MIT and a celebration of MIT.nano’s fifth anniversary.

    Over a decade ago, MIT embarked on a massive project for the ultra-small — building an advanced facility to support research at the nanoscale. Construction of MIT.nano in the heart of MIT’s campus, a process compared to assembling a ship in a bottle, began in 2015, and the facility launched in October 2018.

    Fast forward five years: MIT.nano now contains nearly 170 tools and instruments serving more than 1,200 trained researchers. These individuals come from over 300 principal investigator labs, representing more than 50 MIT departments, labs, and centers. The facility also serves external users from industry, other academic institutions, and over 130 startup and multinational companies.

    A cross section of these faculty and researchers joined industry partners and MIT community members to kick off the first Nano Summit, which is expected to become an annual flagship event for MIT.nano and its industry consortium. Held on Oct. 24, the inaugural conference was co-hosted by the MIT Industrial Liaison Program.

    Six topical sessions highlighted recent developments in quantum science and engineering, materials, advanced electronics, energy, biology, and immersive data technology. The Nano Summit also featured startup ventures and an art exhibition.

    Watch the videos here.

    Seeing and manipulating at the nanoscale — and beyond

    “We need to develop new ways of building the next generation of materials,” said Frances Ross, the TDK Professor in Materials Science and Engineering (DMSE). “We need to use electron microscopy to help us understand not only what the structure is after it’s built, but how it came to be. I think the next few years in this piece of the nano realm are going to be really amazing.”

    Speakers in the session “The Next Materials Revolution,” chaired by MIT.nano co-director for Characterization.nano and associate professor in DMSE James LeBeau, highlighted areas in which cutting-edge microscopy provides insights into the behavior of functional materials at the nanoscale, from anti-ferroelectrics to thin-film photovoltaics and 2D materials. They shared images and videos collected using the instruments in MIT.nano’s characterization suites, which were specifically designed and constructed to minimize mechanical-vibrational and electro-magnetic interference.

    Later, in the “Biology and Human Health” session chaired by Boris Magasanik Professor of Biology Thomas Schwartz, biologists echoed the materials scientists, stressing the importance of the ultra-quiet, low-vibration environment in Characterization.nano to obtain high-resolution images of biological structures.

    “Why is MIT.nano important for us?” asked Schwartz. “An important element of biology is to understand the structure of biology macromolecules. We want to get to an atomic resolution of these structures. CryoEM (cryo-electron microscopy) is an excellent method for this. In order to enable the resolution revolution, we had to get these instruments to MIT. For that, MIT.nano was fantastic.”

    Seychelle Vos, the Robert A. Swanson (1969) Career Development Professor of Life Sciences, shared CryoEM images from her lab’s work, followed by biology Associate Professor Joey Davis who spoke about image processing. When asked about the next stage for CryoEM, Davis said he’s most excited about in-situ tomography, noting that there are new instruments being designed that will improve the current labor-intensive process.

    To chart the future of energy, chemistry associate professor Yogi Surendranath is also using MIT.nano to see what is happening at the nanoscale in his research to use renewable electricity to change carbon dioxide into fuel.

    “MIT.nano has played an immense role, not only in facilitating our ability to make nanostructures, but also to understand nanostructures through advanced imaging capabilities,” said Surendranath. “I see a lot of the future of MIT.nano around the question of how nanostructures evolve and change under the conditions that are relevant to their function. The tools at MIT.nano can help us sort that out.”

    Tech transfer and quantum computing

    The “Advanced Electronics” session chaired by Jesús del Alamo, the Donner Professor of Science in the Department of Electrical Engineering and Computer Science (EECS), brought together industry partners and MIT faculty for a panel discussion on the future of semiconductors and microelectronics. “Excellence in innovation is not enough, we also need to be excellent in transferring these to the marketplace,” said del Alamo. On this point, panelists spoke about strengthening the industry-university connection, as well as the importance of collaborative research environments and of access to advanced facilities, such as MIT.nano, for these environments to thrive.

    The session came on the heels of a startup exhibit in which eleven START.nano companies presented their technologies in health, energy, climate, and virtual reality, among other topics. START.nano, MIT.nano’s hard-tech accelerator, provides participants use of MIT.nano’s facilities at a discounted rate and access to MIT’s startup ecosystem. The program aims to ease hard-tech startups’ transition from the lab to the marketplace, surviving common “valleys of death” as they move from idea to prototype to scaling up.

    When asked about the state of quantum computing in the “Quantum Science and Engineering” session, physics professor Aram Harrow related his response to these startup challenges. “There are quite a few valleys to cross — there are the technical valleys, and then also the commercial valleys.” He spoke about scaling superconducting qubits and qubits made of suspended trapped ions, and the need for more scalable architectures, which we have the ingredients for, he said, but putting everything together is quite challenging.

    Throughout the session, William Oliver, professor of physics and the Henry Ellis Warren (1894) Professor of Electrical Engineering and Computer Science, asked the panelists how MIT.nano can address challenges in assembly and scalability in quantum science.

    “To harness the power of students to innovate, you really need to allow them to get their hands dirty, try new things, try all their crazy ideas, before this goes into a foundry-level process,” responded Kevin O’Brien, associate professor in EECS. “That’s what my group has been working on at MIT.nano, building these superconducting quantum processors using the state-of-the art fabrication techniques in MIT.nano.”

    Connecting the digital to the physical

    In his reflections on the semiconductor industry, Douglas Carlson, senior vice president for technology at MACOM, stressed connecting the digital world to real-world application. Later, in the “Immersive Data Technology” session, MIT.nano associate director Brian Anthony explained how, at the MIT.nano Immersion Lab, researchers are doing just that.

    “We think about and facilitate work that has the human immersed between hardware, data, and experience,” said Anthony, principal research scientist in mechanical engineering. He spoke about using the capabilities of the Immersion Lab to apply immersive technologies to different areas — health, sports, performance, manufacturing, and education, among others. Speakers in this session gave specific examples in hardware, pediatric health, and opera.

    Anthony connected this third pillar of MIT.nano to the fab and characterization facilities, highlighting how the Immersion Lab supports work conducted in other parts of the building. The Immersion Lab’s strength, he said, is taking novel work being developed inside MIT.nano and bringing it up to the human scale to think about applications and uses.

    Artworks that are scientifically inspired

    The Nano Summit closed with a reception at MIT.nano where guests could explore the facility and gaze through the cleanroom windows, where users were actively conducting research. Attendees were encouraged to visit an exhibition on MIT.nano’s first- and second-floor galleries featuring work by students from the MIT Program in Art, Culture, and Technology (ACT) who were invited to utilize MIT.nano’s tool sets and environments as inspiration for art.

    In his closing remarks, Bulović reflected on the community of people who keep MIT.nano running and who are using the tools to advance their research. “Today we are celebrating the facility and all the work that has been done over the last five years to bring it to where it is today. It is there to function not just as a space, but as an essential part of MIT’s mission in research, innovation, and education. I hope that all of us here today take away a deep appreciation and admiration for those who are leading the journey into the nano age.” More

  • in

    Uncovering how biomes respond to climate change

    Before Leila Mirzagholi arrived at MIT’s Department of Civil and Environmental Engineering (CEE) to begin her postdoc appointment, she had spent most of her time in academia building cosmological models to detect properties of gravitational waves in the cosmos.

    But as a member of Assistant Professor César Terrer’s lab in CEE, Mirzagholi uses her physics and mathematical background to improve our understanding of the different factors that influence how much carbon land ecosystems can store under climate change.

    “What was always important to me was thinking about how to solve a problem and putting all the pieces together and building something from scratch,” Mirzagholi says, adding this was one of the reasons that it was possible for her to switch fields — and what drives her today as a climate scientist.

    Growing up in Iran, Mirzagholi knew she wanted to be a scientist from an early age. As a kid, she became captivated by physics, spending most of her free time in a local cultural center that hosted science events. “I remember in that center there was an observatory that held observational tours and it drew me into science,” says Mirzgholi. She also remembers a time when she was a kid watching the science fiction film “Contact” that introduces a female scientist character who finds evidence of extraterrestrial life and builds a spaceship to make first contact: “After that movie my mind was set on pursuing astrophysics.”

    With the encouragement of her parents to develop a strong mathematical background before pursuing physics, she earned a bachelor’s degree in mathematics from Tehran University. Then she completed a one-year master class in mathematics at Utrecht University before completing her PhD in theoretical physics at Max Planck Institute for Astrophysics in Munich. There, Mirzgholi’s thesis focused on developing cosmological models with a focus on phenomenological aspects like propagation of gravitational waves on the cosmic microwave background.

    Midway through her PhD, Mirzgholi became discouraged with building models to explain the dynamics of the early universe because there is little new data. “It starts to get personal and becomes a game of: ‘Is it my model or your model?’” she explains. She grew frustrated not knowing when the models she’d built would ever be tested.

    It was at this time that Mirzgholi started reading more about the topics of climate change and climate science. “I was really motivated by the problems and the nature of the problems, especially to make global terrestrial ecology more quantitative,” she says. She also liked the idea of contributing to a global problem that we are all facing. She started to think, “maybe I can do my part, I can work on research beneficial for society and the planet.”

    She made the switch following her PhD and started as a postdoc in the Crowther Lab at ETH Zurich, working on understanding the effects of environmental changes on global vegetation activity. After a stint at ETH, where her colleagues collaborated on projects with the Terrer Lab, she relocated to Cambridge, Massachusetts, to join the lab and CEE.

    Her latest article in Science, which was published in July and co-authored by researchers from ETH, shows how global warming affects the timing of autumn leaf senescence. “It’s important to understand the length of the growing season, and how much the forest or other biomes will have the capacity to take in carbon from the atmosphere.” Using remote sensing data, she was able to understand when the growing season will end under a warming climate. “We distinguish two dates — when autumn is onsetting and the leaves are starting to turn yellow, versus when the leaves are 50 percent yellow — to represent the progression of leaf senescence,” she says.

    In the context of rising temperature, when the warming is happening plays a crucial role. If warming temperatures happen before the summer solstice, it triggers trees to begin their seasonal cycles faster, leading to reduced photosynthesis, ending in an earlier autumn. On the other hand, if the warming happens after the summer solstice, it delays the discoloration process, making autumn last longer. “For every degree Celsius of pre-solstice warming, the onset of leaf senescence advances by 1.9 days, while each degree Celsius of post-solstice warming delays the senescence process by 2.6 days,” she explains. Understanding the timing of autumn leaf senescence is essential in efforts to predict carbon storage capacity when modeling global carbon cycles.

    Another problem she’s working on in the Terrer Lab is discovering how deforestation is changing our local climate. How much is it cooling or warming the temperature, and how is the hydrological cycle changing because of deforestation? Investigating these questions will give insight into how much we can depend on natural solutions for carbon uptake to help mitigate climate change. “Quantitatively, we want to put a number to the amount of carbon uptake from various natural solutions, as opposed to other solutions,” she says.

    With year-and-a-half left in her postdoc appointment, Mirzagholi has begun considering her next career steps. She likes the idea of applying to climate scientist jobs in industry or national labs, as well as tenure track faculty positions. Whether she pursues a career in academia or industry, Mirzagholi aims to continue conducting fundamental climate science research. Her multidisciplinary background in physics, mathematics, and climate science has given her a multifaceted perspective, which she applies to every research problem.

    “Looking back, I’m grateful for all my educational experiences from spending time in the cultural center as a kid, my background in physics, the support from colleagues at the Crowther lab at ETH who facilitated my transition from physics to ecology, and now working at MIT alongside Professor Terrer, because it’s shaped my career path and the researcher I am today.” More

  • in

    Fast-tracking fusion energy’s arrival with AI and accessibility

    As the impacts of climate change continue to grow, so does interest in fusion’s potential as a clean energy source. While fusion reactions have been studied in laboratories since the 1930s, there are still many critical questions scientists must answer to make fusion power a reality, and time is of the essence. As part of their strategy to accelerate fusion energy’s arrival and reach carbon neutrality by 2050, the U.S. Department of Energy (DoE) has announced new funding for a project led by researchers at MIT’s Plasma Science and Fusion Center (PSFC) and four collaborating institutions.

    Cristina Rea, a research scientist and group leader at the PSFC, will serve as the primary investigator for the newly funded three-year collaboration to pilot the integration of fusion data into a system that can be read by AI-powered tools. The PSFC, together with scientists from the College of William and Mary, the University of Wisconsin at Madison, Auburn University, and the nonprofit HDF Group, plan to create a holistic fusion data platform, the elements of which could offer unprecedented access for researchers, especially underrepresented students. The project aims to encourage diverse participation in fusion and data science, both in academia and the workforce, through outreach programs led by the group’s co-investigators, of whom four out of five are women. 

    The DoE’s award, part of a $29 million funding package for seven projects across 19 institutions, will support the group’s efforts to distribute data produced by fusion devices like the PSFC’s Alcator C-Mod, a donut-shaped “tokamak” that utilized powerful magnets to control and confine fusion reactions. Alcator C-Mod operated from 1991 to 2016 and its data are still being studied, thanks in part to the PSFC’s commitment to the free exchange of knowledge.

    Currently, there are nearly 50 public experimental magnetic confinement-type fusion devices; however, both historical and current data from these devices can be difficult to access. Some fusion databases require signing user agreements, and not all data are catalogued and organized the same way. Moreover, it can be difficult to leverage machine learning, a class of AI tools, for data analysis and to enable scientific discovery without time-consuming data reorganization. The result is fewer scientists working on fusion, greater barriers to discovery, and a bottleneck in harnessing AI to accelerate progress.

    The project’s proposed data platform addresses technical barriers by being FAIR — Findable, Interoperable, Accessible, Reusable — and by adhering to UNESCO’s Open Science (OS) recommendations to improve the transparency and inclusivity of science; all of the researchers’ deliverables will adhere to FAIR and OS principles, as required by the DoE. The platform’s databases will be built using MDSplusML, an upgraded version of the MDSplus open-source software developed by PSFC researchers in the 1980s to catalogue the results of Alcator C-Mod’s experiments. Today, nearly 40 fusion research institutes use MDSplus to store and provide external access to their fusion data. The release of MDSplusML aims to continue that legacy of open collaboration.

    The researchers intend to address barriers to participation for women and disadvantaged groups not only by improving general access to fusion data, but also through a subsidized summer school that will focus on topics at the intersection of fusion and machine learning, which will be held at William and Mary for the next three years.

    Of the importance of their research, Rea says, “This project is about responding to the fusion community’s needs and setting ourselves up for success. Scientific advancements in fusion are enabled via multidisciplinary collaboration and cross-pollination, so accessibility is absolutely essential. I think we all understand now that diverse communities have more diverse ideas, and they allow faster problem-solving.”

    The collaboration’s work also aligns with vital areas of research identified in the International Atomic Energy Agency’s “AI for Fusion” Coordinated Research Project (CRP). Rea was selected as the technical coordinator for the IAEA’s CRP emphasizing community engagement and knowledge access to accelerate fusion research and development. In a letter of support written for the group’s proposed project, the IAEA stated that, “the work [the researchers] will carry out […] will be beneficial not only to our CRP but also to the international fusion community in large.”

    PSFC Director and Hitachi America Professor of Engineering Dennis Whyte adds, “I am thrilled to see PSFC and our collaborators be at the forefront of applying new AI tools while simultaneously encouraging and enabling extraction of critical data from our experiments.”

    “Having the opportunity to lead such an important project is extremely meaningful, and I feel a responsibility to show that women are leaders in STEM,” says Rea. “We have an incredible team, strongly motivated to improve our fusion ecosystem and to contribute to making fusion energy a reality.” More