More stories

  • in

    J-PAL North America announces five new partnerships with state and local governments

    J-PAL North America, a research center in MIT’s Department of Economics, has announced five new partnerships with state and local governments across the United States after a call for proposals in early February. Over the next year, these partners will work with J-PAL North America’s State and Local Innovation Initiative to evaluate policy-relevant questions critical to alleviating poverty in the United States.

    J-PAL North America will work with the Colorado Department of Higher Education, Ohio’s Franklin County Department of Job and Family Services, the New Mexico Public Education Department, Puerto Rico’s Department of Economic Development and Commerce, and Oregon’s Jackson County Fire District 3. Each partner will leverage support from J-PAL North America to develop randomized evaluations, which have the potential to reveal widely applicable lessons about which programs and policies are most effective. 

    State and local leaders are vital stakeholders in developing rigorous evidence in order to understand which policies and programs work to reduce poverty, and why. By supporting each government partner in developing these five evaluation projects, the voice of policymakers and practitioners will remain a central part of the research process. Each of this year’s selected projects seeks to address policy concerns that have been identified by state and local governments in J-PAL North America’s State and Local Learning Agenda as key areas for addressing barriers to mobility from poverty, including environment, education, economic security, and housing stability. 

    One project looks to mitigate the emission of carbon co-pollutants, which cause disproportionately high rates of health problems among communities experiencing poverty. 

    Oregon’s Jackson County Fire District 3 will investigate the impact of subsidies on the uptake of wildfire risk reduction activities in a county severely affected by wildfires. “Wildfires have become more prevalent, longer lasting, and more destructive in Oregon and across the western United States. We also know that wildfire is disproportionately impacting our most vulnerable populations,” says Bob Horton, fire chief of Jackson County Fire District 3. “With technical support from JPAL North America’s staff and this grant funding, we will devise the most current and effective strategy, deeply rooted in the evidence, to drive the take-up of home-hardening behaviors — methods to increase a home’s resistance to fire — and lower the risk to homes when faced with wildfire.” 

    This project is in alignment with the priorities of J-PAL’s Environment, Energy, and Climate Change sector and its agenda for catalyzing more policy-relevant research on adaptation strategies. 

    Policymakers and researchers have also identified programs aimed at increasing opportunity within education as a key priority for evaluation. In partnering with J-PAL North America, the Colorado Department of Higher Education will assess the impact of My Colorado Journey, an online platform available to all Coloradans that provides information on education, training, and career pathways. 

    “As Colorado builds back stronger from the pandemic, we know that education and workforce development are at the center of Colorado’s recovery agenda,” shares Executive Director Angie Paccione of the Colorado Department of Education. “Platforms like My Colorado Journey are key to supporting the education, training, and workforce exploration of Coloradans of any age. With support from J-PAL North America, we can better understand how to effectively serve Coloradans, further enhance this vital platform, and continue to build a Colorado for all.”

    Similarly, the New Mexico Public Education Department proposes their intervention within the context of New Mexico’s community school state initiative. They will look at the impact of case management and cash transfers on students at risk of multiple school transfers throughout their education, which include children who are experiencing homelessness, migrant children, children in the foster care system, and military-connected children, among others. “New Mexico is delighted to partner with J-PAL North America to explore visionary pathways to success for highly mobile students,” says New Mexico Public Education Secretary (Designate) Kurt Steinhaus. “We look forward to implementing and testing innovative solutions, such as cash transfers, that can expand our current nationally recognized community schools strategy. Together, we aim to find solutions that meet the needs of highly mobile students and families who lack stable housing.”

    Another key priority for the intersection of policy and research is economic security — fostering upward mobility by providing individuals with resources to promote stable incomes and increase standards of living. By adjusting caseworker employment services to better align with local needs, Puerto Rico’s Department of Economic Development and Commerce (DEDC) looks to understand how individualized services can impact employment and earnings. 

    “The commitment of the government of Puerto Rico is to develop human resources to the highest quality standards,” says DEDC Secretary Cidre Miranda, whose statement was provided in Spanish and translated. “For the DEDC, it is fundamental to contribute to the development of initiatives like this one, because they have the objective of forging the future professionals that Puerto Rico requires and needs.” J-PAL North America’s partnership with DEDC has the potential to provide valuable lessons for other state and local programs also seeking to promote economic security. 

    Finally, Ohio’s Franklin County Department of Job and Family Services seeks to understand the impact of an eviction prevention workshop in a county with eviction rates that are higher than both the state and national average. “Stable housing should not be a luxury, but for far too many Franklin County families it has become one,” Deputy Franklin County Administrator Joy Bivens says. “We need to view our community’s affordable housing crisis through both a social determinants of health and racial equity lens. We are grateful for the opportunity to partner with J-PAL North America to ensure we are pursuing research-based interventions that, yes, address immediate housing needs, but also provide long-term stability so they can climb the economic ladder.”

    Franklin County Department of Job and Family Services’ evaluation aligns with policymaker and researcher interests to ensure safe and affordable housing. This partnership will have great potential to not only improve resources local to Franklin County, but, along with each of the other four agencies, can also provide a useful model for other government agencies facing similar challenges.For more information on state and local policy priorities, see J-PAL North America’s State and Local Learning Agenda. To learn more about the State and Local Innovation Initiative, please visit the Initiative webpage or contact Initiative Manager Louise Geraghty. More

  • in

    Q&A: Can the world change course on climate?

    In this ongoing series on climate issues, MIT faculty, students, and alumni in the humanistic fields share perspectives that are significant for solving climate change and mitigating its myriad social and ecological impacts. Nazli Choucri is a professor of political science and an expert on climate issues, who also focuses on international relations and cyberpolitics. She is the architect and director of the Global System for Sustainable Development, an evolving knowledge networking system centered on sustainability problems and solution strategies. The author and/or editor of 12 books, she is also the founding editor of the MIT Press book series “Global Environmental Accord: Strategies for Sustainability and Institutional Innovation.” Q: The impacts of climate change — including storms, floods, wildfires, and droughts — have the potential to destabilize nations, yet they are not constrained by borders. What international developments most concern you in terms of addressing climate change and its myriad ecological and social impacts?

    A: Climate change is a global issue. By definition, and a long history of practice, countries focus on their own priorities and challenges. Over time, we have seen the gradual development of norms reflecting shared interests, and the institutional arrangements to support and pursue the global good. What concerns me most is that general responses to the climate crisis are being framed in broad terms; the overall pace of change remains perilously slow; and uncertainty remains about operational action and implementation of stated intent. We have just seen the completion of the 26th meeting of states devoted to climate change, the United Nations Climate Change Conference (COP26). In some ways this is positive. Yet, past commitments remain unfulfilled, creating added stress in an already stressful political situation. Industrial countries are uneven in their recognition of, and responses to, climate change. This may signal uncertainty about whether climate matters are sufficiently compelling to call for immediate action. Alternatively, the push for changing course may seem too costly at a time when other imperatives — such as employment, economic growth, or protecting borders — inevitably dominate discourse and decisions. Whatever the cause, the result has been an unwillingness to take strong action. Unfortunately, climate change remains within the domain of “low politics,” although there are signs the issue is making a slow but steady shift to “high politics” — those issues deemed vital to the existence of the state. This means that short-term priorities, such as those noted above, continue to shape national politics and international positions and, by extension, to obscure the existential threat revealed by scientific evidence. As for developing countries, these are overwhelmed by internal challenges, and managing the difficulties of daily life always takes priority over other challenges, however compelling. Long-term thinking is a luxury, but daily bread is a necessity. Non-state actors — including registered nongovernmental organizations, climate organizations, sustainability support groups, activists of various sorts, and in some cases much of civil society — have been left with a large share of the responsibility for educating and convincing diverse constituencies of the consequences of inaction on climate change. But many of these institutions carry their own burdens and struggle to manage current pressures. The international community, through its formal and informal institutions, continues to articulate the perils of climate change and to search for a powerful consensus that can prove effective both in form and in function. The general contours are agreed upon — more or less. But leadership of, for, and by the global collective is elusive and difficult to shape. Most concerning of all is the clear reluctance to address head-on the challenge of planning for changes that we know will occur. The reality that we are all being affected — in different ways and to different degrees — has yet to be sufficiently appreciated by everyone, everywhere. Yet, in many parts of the world, major shifts in climate will create pressures on human settlements, spur forced migrations, or generate social dislocations. Some small island states, for example, may not survive a sea-level surge. Everywhere there is a need to cut emissions, and this means adaptation and/or major changes in economic activity and in lifestyle.The discourse and debate at COP26 reflect all of such persistent features in the international system. So far, the largest achievements center on the common consensus that more must be done to prevent the rise in temperature from creating a global catastrophe. This is not enough, however. Differences remain, and countries have yet to specify what cuts in emissions they are willing to make.Echoes of who is responsible for what remains strong. The thorny matter of the unfulfilled pledge of $100 billion once promised by rich countries to help countries to reduce their emissions remained unresolved. At the same time, however, some important agreements were reached. The United States and China announced they would make greater efforts to cut methane, a powerful greenhouse gas. More than 100 countries agreed to end deforestation. India joined the countries committed to attain zero emissions by 2070. And on matters of finance, countries agreed to a two-year plan to determine how to meet the needs of the most-vulnerable countries. Q: In what ways do you think the tools and insights from political science can advance efforts to address climate change and its impacts?A: I prefer to take a multidisciplinary view of the issues at hand, rather than focus on the tools of political science alone. Disciplinary perspectives can create siloed views and positions that undermine any overall drive toward consensus. The scientific evidence is pointing to, even anticipating, pervasive changes that transcend known and established parameters of social order all across the globe.That said, political science provides important insight, even guidance, for addressing the impacts of climate change in some notable ways. One is understanding the extent to which our formal institutions enable discussion, debate, and decisions about the directions we can take collectively to adapt, adjust, or even depart from the established practices of managing social order.If we consider politics as the allocation of values in terms of who gets what, when, and how, then it becomes clear that the current allocation requires a change in course. Coordination and cooperation across the jurisdictions of sovereign states is foundational for any response to climate change impacts.We have already recognized, and to some extent, developed targets for reducing carbon emissions — a central impact from traditional forms of energy use — and are making notable efforts to shift toward alternatives. This move is an easy one compared to all the work that needs to be done to address climate change. But, in taking this step we have learned quite a bit that might help in creating a necessary consensus for cross-jurisdiction coordination and response.Respecting individuals and protecting life is increasingly recognized as a global value — at least in principle. As we work to change course, new norms will be developed, and political science provides important perspectives on how to establish such norms. We will be faced with demands for institutional design, and these will need to embody our guiding values. For example, having learned to recognize the burdens of inequity, we can establish the value of equity as foundational for our social order both now and as we recognize and address the impacts of climate change.

    Q: You teach a class on “Sustainability Development: Theory and Practice.” Broadly speaking, what are goals of this class? What lessons do you hope students will carry with them into the future?A: The goal of 17.181, my class on sustainability, is to frame as clearly as possible the concept of sustainable development (sustainability) with attention to conceptual, empirical, institutional, and policy issues.The course centers on human activities. Individuals are embedded in complex interactive systems: the social system, the natural environment, and the constructed cyber domain — each with distinct temporal, special, and dynamic features. Sustainability issues intersect with, but cannot be folded into, the impacts of climate change. Sustainability places human beings in social systems at the core of what must be done to respect the imperatives of a highly complex natural environment.We consider sustainability an evolving knowledge domain with attendant policy implications. It is driven by events on the ground, not by revolution in academic or theoretical concerns per se. Overall, sustainable development refers to the process of meeting the needs of current and future generations, without undermining the resilience of the life-supporting properties, the integrity of social systems, or the supports of the human-constructed cyberspace.More specifically, we differentiate among four fundamental dimensions and their necessary conditions:

    (a) ecological systems — exhibiting balance and resilience;(b) economic production and consumption — with equity and efficiency;(c) governance and politics — with participation and responsiveness; and(d) institutional performance — demonstrating adaptation and incorporating feedback.The core proposition is this: If all conditions hold, then the system is (or can be) sustainable. Then, we must examine the critical drivers — people, resources, technology, and their interactions — followed by a review and assessment of evolving policy responses. Then we ask: What are new opportunities?I would like students to carry forward these ideas and issues: what has been deemed “normal” in modern Western societies and in developing societies seeking to emulate the Western model is damaging humans in many ways — all well-known. Yet only recently have alternatives begun to be considered to the traditional economic growth model based on industrialization and high levels of energy use. To make changes, we must first understand the underlying incentives, realities, and choices that shape a whole set of dysfunctional behaviors and outcomes. We then need to delve deep into the driving sources and consequences, and to consider the many ways in which our known “normal” can be adjusted — in theory and in practice. Q: In confronting an issue as formidable as global climate change, what gives you hope?  A: I see a few hopeful signs; among them:The scientific evidence is clear and compelling. We are no longer discussing whether there is climate change, or if we will face major challenges of unprecedented proportions, or even how to bring about an international consensus on the salience of such threats.Climate change has been recognized as a global phenomenon. Imperatives for cooperation are necessary. No one can go it alone. Major efforts have and are being made in world politics to forge action agendas with specific targets.The issue appears to be on the verge of becoming one of “high politics” in the United States.Younger generations are more sensitive to the reality that we are altering the life-supporting properties of our planet. They are generally more educated, skilled, and open to addressing such challenges than their elders.However disappointing the results of COP26 might seem, the global community is moving in the right direction.None of the above points, individually or jointly, translates into an effective response to the known impacts of climate change — let alone the unknown. But, this is what gives me hope.

    Interview prepared by MIT SHASS CommunicationsEditorial, design, and series director: Emily HiestandSenior writer: Kathryn O’Neill More

  • in

    The reasons behind lithium-ion batteries’ rapid cost decline

    Lithium-ion batteries, those marvels of lightweight power that have made possible today’s age of handheld electronics and electric vehicles, have plunged in cost since their introduction three decades ago at a rate similar to the drop in solar panel prices, as documented by a study published last March. But what brought about such an astonishing cost decline, of about 97 percent?

    Some of the researchers behind that earlier study have now analyzed what accounted for the extraordinary savings. They found that by far the biggest factor was work on research and development, particularly in chemistry and materials science. This outweighed the gains achieved through economies of scale, though that turned out to be the second-largest category of reductions.

    The new findings are being published today in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler, recent graduate student Juhyun Song PhD ’19, and Jessika Trancik, a professor in MIT’s Institute for Data, Systems and Society.

    The findings could be useful for policymakers and planners to help guide spending priorities in order to continue the pathway toward ever-lower costs for this and other crucial energy storage technologies, according to Trancik. Their work suggests that there is still considerable room for further improvement in electrochemical battery technologies, she says.

    The analysis required digging through a variety of sources, since much of the relevant information consists of closely held proprietary business data. “The data collection effort was extensive,” Ziegler says. “We looked at academic articles, industry and government reports, press releases, and specification sheets. We even looked at some legal filings that came out. We had to piece together data from many different sources to get a sense of what was happening.” He says they collected “about 15,000 qualitative and quantitative data points, across 1,000 individual records from approximately 280 references.”

    Data from the earliest times are hardest to access and can have the greatest uncertainties, Trancik says, but by comparing different data sources from the same period they have attempted to account for these uncertainties.

    Overall, she says, “we estimate that the majority of the cost decline, more than 50 percent, came from research-and-development-related activities.” That included both private sector and government-funded research and development, and “the vast majority” of that cost decline within that R&D category came from chemistry and materials research.

    That was an interesting finding, she says, because “there were so many variables that people were working on through very different kinds of efforts,” including the design of the battery cells themselves, their manufacturing systems, supply chains, and so on. “The cost improvement emerged from a diverse set of efforts and many people, and not from the work of only a few individuals.”

    The findings about the importance of investment in R&D were especially significant, Ziegler says, because much of this investment happened after lithium-ion battery technology was commercialized, a stage at which some analysts thought the research contribution would become less significant. Over roughly a 20-year period starting five years after the batteries’ introduction in the early 1990s, he says, “most of the cost reduction still came from R&D. The R&D contribution didn’t end when commercialization began. In fact, it was still the biggest contributor to cost reduction.”

    The study took advantage of an analytical approach that Trancik and her team initially developed to analyze the similarly precipitous drop in costs of silicon solar panels over the last few decades. They also applied the approach to understand the rising costs of nuclear energy. “This is really getting at the fundamental mechanisms of technological change,” she says. “And we can also develop these models looking forward in time, which allows us to uncover the levers that people could use to improve the technology in the future.”

    One advantage of the methodology Trancik and her colleagues have developed, she says, is that it helps to sort out the relative importance of different factors when many variables are changing all at once, which typically happens as a technology improves. “It’s not simply adding up the cost effects of these variables,” she says, “because many of these variables affect many different cost components. There’s this kind of intricate web of dependencies.” But the team’s methodology makes it possible to “look at how that overall cost change can be attributed to those variables, by essentially mapping out that network of dependencies,” she says.

    This can help provide guidance on public spending, private investments, and other incentives. “What are all the things that different decision makers could do?” she asks. “What decisions do they have agency over so that they could improve the technology, which is important in the case of low-carbon technologies, where we’re looking for solutions to climate change and we have limited time and limited resources? The new approach allows us to potentially be a bit more intentional about where we make those investments of time and money.”

    “This paper collects data available in a systematic way to determine changes in the cost components of lithium-ion batteries between 1990-1995 and 2010-2015,” says Laura Diaz Anadon, a professor of climate change policy at Cambridge University, who was not connected to this research. “This period was an important one in the history of the technology, and understanding the evolution of cost components lays the groundwork for future work on mechanisms and could help inform research efforts in other types of batteries.”

    The research was supported by the Alfred P. Sloan Foundation, the Environmental Defense Fund, and the MIT Technology and Policy Program. More

  • in

    At UN climate change conference, trying to “keep 1.5 alive”

    After a one-year delay caused by the Covid-19 pandemic, negotiators from nearly 200 countries met this month in Glasgow, Scotland, at COP26, the United Nations climate change conference, to hammer out a new global agreement to reduce greenhouse gas emissions and prepare for climate impacts. A delegation of approximately 20 faculty, staff, and students from MIT was on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    On Saturday, Nov. 13, following two weeks of negotiations in the cavernous Scottish Events Campus, countries’ representatives agreed to the Glasgow Climate Pact. The pact reaffirms the goal of the 2015 Paris Agreement “to pursue efforts” to limit the global average temperature increase to 1.5 degrees Celsius above preindustrial levels, and recognizes that achieving this goal requires “reducing global carbon dioxide emissions by 45 percent by 2030 relative to the 2010 level and to net zero around mid-century.”

    “On issues like the need to reach net-zero emissions, reduce methane pollution, move beyond coal power, and tighten carbon accounting rules, the Glasgow pact represents some meaningful progress, but we still have so much work to do,” says Maria Zuber, MIT’s vice president for research, who led the Institute’s delegation to COP26. “Glasgow showed, once again, what a wicked complex problem climate change is, technically, economically, and politically. But it also underscored the determination of a global community of people committed to addressing it.”

    An “ambition gap”

    Both within the conference venue and at protests that spilled through the streets of Glasgow, one rallying cry was “keep 1.5 alive.” Alok Sharma, who was appointed by the UK government to preside over COP26, said in announcing the Glasgow pact: “We can now say with credibility that we have kept 1.5 degrees alive. But, its pulse is weak and it will only survive if we keep our promises and translate commitments into rapid action.”

    In remarks delivered during the first week of the conference, Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, presented findings from the latest MIT Global Change Outlook, which showed a wide gap between countries’ nationally determined contributions (NDCs) — the UN’s term for greenhouse gas emissions reduction pledges — and the reductions needed to put the world on track to meet the goals of the Paris Agreement and, now, the Glasgow pact.

    Pointing to this ambition gap, Paltsev called on all countries to do more, faster, to cut emissions. “We could dramatically reduce overall climate risk through more ambitious policy measures and investments,” says Paltsev. “We need to employ an integrated approach of moving to zero emissions in energy and industry, together with sustainable development and nature-based solutions, simultaneously improving human well-being and providing biodiversity benefits.”

    Finalizing the Paris rulebook

    A key outcome of COP26 (COP stands for “conference of the parties” to the UN Framework Convention on Climate Change, held for the 26th time) was the development of a set of rules to implement Article 6 of the Paris Agreement, which provides a mechanism for countries to receive credit for emissions reductions that they finance outside their borders, and to cooperate by buying and selling emissions reductions on international carbon markets.

    An agreement on this part of the Paris “rulebook” had eluded negotiators in the years since the Paris climate conference, in part because negotiators were concerned about how to prevent double-counting, wherein both buyers and sellers would claim credit for the emissions reductions.

    Michael Mehling, the deputy director of MIT’s Center for Energy and Environmental Policy Research (CEEPR) and an expert on international carbon markets, drew on a recent CEEPR working paper to describe critical negotiation issues under Article 6 during an event at the conference on Nov. 10 with climate negotiators and private sector representatives.

    He cited research that finds that Article 6, by leveraging the cost-efficiency of global carbon markets, could cut in half the cost that countries would incur to achieve their nationally determined contributions. “Which, seen from another angle, means you could double the ambition of these NDCs at no additional cost,” Mehling noted in his talk, adding that, given the persistent ambition gap, “any such opportunity is bitterly needed.”

    Andreas Haupt, a graduate student in the Institute for Data, Systems, and Society, joined MIT’s COP26 delegation to follow Article 6 negotiations. Haupt described the final days of negotiations over Article 6 as a “roller coaster.” Once negotiators reached an agreement, he says, “I felt relieved, but also unsure how strong of an effect the new rules, with all their weaknesses, will have. I am curious and hopeful regarding what will happen in the next year until the next large-scale negotiations in 2022.”

    Nature-based climate solutions

    World leaders also announced new agreements on the sidelines of the formal UN negotiations. One such agreement, a declaration on forests signed by more than 100 countries, commits to “working collectively to halt and reverse forest loss and land degradation by 2030.”

    A team from MIT’s Environmental Solutions Initiative (ESI), which has been working with policymakers and other stakeholders on strategies to protect tropical forests and advance other nature-based climate solutions in Latin America, was at COP26 to discuss their work and make plans for expanding it.

    Marcela Angel, a research associate at ESI, moderated a panel discussion featuring John Fernández, professor of architecture and ESI’s director, focused on protecting and enhancing natural carbon sinks, particularly tropical forests such as the Amazon that are at risk of deforestation, forest degradation, and biodiversity loss.

    “Deforestation and associated land use change remain one of the main sources of greenhouse gas emissions in most Amazonian countries, such as Brazil, Peru, and Colombia,” says Angel. “Our aim is to support these countries, whose nationally determined contributions depend on the effectiveness of policies to prevent deforestation and promote conservation, with an approach based on the integration of targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities for local communities that depend on forests for their livelihoods.”

    Energy access and renewable energy

    Worldwide, an estimated 800 million people lack access to electricity, and billions more have only limited or erratic electrical service. Providing universal access to energy is one of the UN’s sustainable development goals, creating a dual challenge: how to boost energy access without driving up greenhouse gas emissions.

    Rob Stoner, deputy director for science and technology of the MIT Energy Initiative (MITEI), and Ignacio Pérez-Arriaga, a visiting professor at the Sloan School of Management, attended COP26 to share their work as members of the Global Commission to End Energy Poverty, a collaboration between MITEI and the Rockefeller Foundation. It brings together global energy leaders from industry, the development finance community, academia, and civil society to identify ways to overcome barriers to investment in the energy sectors of countries with low energy access.

    The commission’s work helped to motivate the formation, announced at COP26 on Nov. 2, of the Global Energy Alliance for People and Planet, a multibillion-dollar commitment by the Rockefeller and IKEA foundations and Bezos Earth Fund to support access to renewable energy around the world.

    Another MITEI member of the COP26 delegation, Martha Broad, the initiative’s executive director, spoke about MIT research to inform the U.S. goal of scaling offshore wind energy capacity from approximately 30 megawatts today to 30 gigawatts by 2030, including significant new capacity off the coast of New England.

    Broad described research, funded by MITEI member companies, on a coating that can be applied to the blades of wind turbines to prevent icing that would require the turbines’ shutdown; the use of machine learning to inform preventative turbine maintenance; and methodologies for incorporating the effects of climate change into projections of future wind conditions to guide wind farm siting decisions today. She also spoke broadly about the need for public and private support to scale promising innovations.

    “Clearly, both the public sector and the private sector have a role to play in getting these technologies to the point where we can use them in New England, and also where we can deploy them affordably for the developing world,” Broad said at an event sponsored by America Is All In, a coalition of nonprofit and business organizations.

    Food and climate alliance

    Food systems around the world are increasingly at risk from the impacts of climate change. At the same time, these systems, which include all activities from food production to consumption and food waste, are responsible for about one-third of the human-caused greenhouse gas emissions warming the planet.

    At COP26, MIT’s Abdul Latif Jameel Water and Food Systems Lab announced the launch of a new alliance to drive research-based innovation that will make food systems more resilient and sustainable, called the Food and Climate Systems Transformation (FACT) Alliance. With 16 member institutions, the FACT Alliance will better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders around the world.

    Looking ahead

    By the end of 2022, the Glasgow pact asks countries to revisit their nationally determined contributions and strengthen them to bring them in line with the temperature goals of the Paris Agreement. The pact also “notes with deep regret” the failure of wealthier countries to collectively provide poorer countries $100 billion per year in climate financing that they pledged in 2009 to begin in 2020.

    These and other issues will be on the agenda for COP27, to be held in Sharm El-Sheikh, Egypt, next year.

    “Limiting warming to 1.5 degrees is broadly accepted as a critical goal to avoiding worsening climate consequences, but it’s clear that current national commitments will not get us there,” says ESI’s Fernández. “We will need stronger emissions reductions pledges, especially from the largest greenhouse gas emitters. At the same time, expanding creativity, innovation, and determination from every sector of society, including research universities, to get on with real-world solutions is essential. At Glasgow, MIT was front and center in energy systems, cities, nature-based solutions, and more. The year 2030 is right around the corner so we can’t afford to let up for one minute.” More

  • in

    J-WAFS launches Food and Climate Systems Transformation Alliance

    Food systems around the world are increasingly at risk from the impacts of climate change. At the same time, these systems, which include all activities from food production to consumption and food waste, are responsible for about one-third of the human-caused greenhouse gas emissions warming the planet. 

    To drive research-based innovation that will make food systems more resilient and sustainable, MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced the launch of a new initiative at an event during the UN Climate Change Conference in Glasgow, Scotland, last week. The initiative, called the Food and Climate Systems Transformation (FACT) Alliance, will better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders around the world. 

    “Time is not on our side,” says Greg Sixt, the director of the FACT Alliance and research manager for food and climate systems at J-WAFS. “To date, the research community hasn’t delivered actionable solutions quickly enough or in the policy-relevant form needed if time-critical changes are to be made to our food systems. The FACT Alliance aims to change this.”

    Why, in fact, do our food systems need transformation?

    At COP26 (which stands for “conference of the parties” to the UN Framework Convention on Climate Change, being held for the 26th time this year), a number of countries have pledged to end deforestation, reduce methane emissions, and cease public financing of coal power. In his keynote address at the FACT Alliance event, Professor Pete Smith of the University of Aberdeen, an alliance member institution, noted that food and agriculture also need to be addressed because “there’s an interaction between climate change and the food system.” 

    The UN Intergovernmental Panel on Climate Change warns that a two-degree Celsius increase in average global temperature over preindustrial levels could trigger a worldwide food crisis, and emissions from food systems alone could push us past the two-degree mark even if energy-related emissions could be zeroed out. 

    Smith said dramatic and rapid transformations are needed to deliver safe, nutritious food for all, with reduced environmental impact and increased resilience to climate change. With a global network of leading research institutions and collaborating stakeholder organizations, the FACT Alliance aims to facilitate new, solutions-oriented research for addressing the most challenging aspects of food systems in the era of climate change. 

    How the FACT Alliance works

    Central to the work of the FACT Alliance is the development of new methodologies for aligning data across scales and food systems components, improving data access, integrating research across the diverse disciplines that address aspects of food systems, making stakeholders partners in the research process, and assessing impact in the context of complex and interconnected food and climate systems. 

    The FACT Alliance will conduct what’s known as “convergence research,” which meets complex problems with approaches that embody deep integration across disciplines. This kind of research calls for close association with the stakeholders who both make decisions and are directly affected by how food systems work, be they farmers, extension services (i.e., agricultural advisories), policymakers, international aid organizations, consumers, or others. By inviting stakeholders and collaborators to be part of the research process, the FACT Alliance allows for engagement at the scale, geography, and scope that is most relevant to the needs of each, integrating global and local teams to achieve better outcomes. 

    “Doing research in isolation of all the stakeholders and in isolation of the goals that we want to achieve will not deliver the transformation that we need,” said Smith. “The problem is too big for us to solve in isolation, and we need broad alliances to tackle the issue, and that’s why we developed the FACT Alliance.” 

    Members and collaborators

    Led by MIT’s J-WAFS, the FACT Alliance is currently made up of 16 core members and an associated network of collaborating stakeholder organizations. 

    “As the central convener of MIT research on food systems, J-WAFS catalyzes collaboration across disciplines,” says Maria Zuber, vice president for research at MIT. “Now, by bringing together a world-class group of research institutions and stakeholders from key sectors, the FACT Alliance aims to advance research that will help alleviate climate impacts on food systems and mitigate food system impacts on climate.”

    J-WAFS co-hosted the COP26 event “Bridging the Science-Policy Gap for Impactful, Demand-Driven Food Systems Innovation” with Columbia University, the American University of Beirut, and the CGIAR research program Climate Change, Agriculture and Food Security (CCAFS). The event featured a panel discussion with several FACT Alliance members and the UK Foreign, Commonwealth and Development Office (FCDO). More

  • in

    Q&A: Options for the Diablo Canyon nuclear plant

    The Diablo Canyon nuclear plant in California, the only one still operating in the state, is set to close in 2025. A team of researchers at MIT’s Center for Advanced Nuclear Energy Systems, Abdul Latif Jameel Water and Food Systems Lab, and Center for Energy and Environmental Policy Research; Stanford’s Precourt Energy Institute; and energy analysis firm LucidCatalyst LLC have analyzed the potential benefits the plant could provide if its operation were extended to 2030 or 2045.

    They found that this nuclear plant could simultaneously help to stabilize the state’s electric grid, provide desalinated water to supplement the state’s chronic water shortages, and provide carbon-free hydrogen fuel for transportation. MIT News asked report co-authors Jacopo Buongiorno, the TEPCO Professor of Nuclear Science and Engineering, and John Lienhard, the Jameel Professor of Water and Food, to discuss the group’s findings.

    Q: Your report suggests co-locating a major desalination plant alongside the existing Diablo Canyon power plant. What would be the potential benefits from operating a desalination plant in conjunction with the power plant?

    Lienhard: The cost of desalinated water produced at Diablo Canyon would be lower than for a stand-alone plant because the cost of electricity would be significantly lower and you could take advantage of the existing infrastructure for the intake of seawater and the outfall of brine. Electricity would be cheaper because the location takes advantage of Diablo Canyon’s unique capability to provide low cost, zero-carbon baseload power.

    Depending on the scale at which the desalination plant is built, you could make a very significant impact on the water shortfalls of state and federal projects in the area. In fact, one of the numbers that came out of this study was that an intermediate-sized desalination plant there would produce more fresh water than the highest estimate of the net yield from the proposed Delta Conveyance Project on the Sacramento River. You could get that amount of water at Diablo Canyon for an investment cost less than half as large, and without the associated impacts that would come with the Delta Conveyance Project.

    And the technology envisioned for desalination here, reverse osmosis, is available off the shelf. You can buy this equipment today. In fact, it’s already in use in California and thousands of other places around the world.

    Q: You discuss in the report three potential products from the Diablo Canyon plant:  desalinatinated water, power for the grid, and clean hydrogen. How well can the plant accommodate all of those efforts, and are there advantages to combining them as opposed to doing any one of them separately?

    Buongiorno: California, like many other regions in the world, is facing multiple challenges as it seeks to reduce carbon emissions on a grand scale. First, the wide deployment of intermittent energy sources such as solar and wind creates a great deal of variability on the grid that can be balanced by dispatchable firm power generators like Diablo. So, the first mission for Diablo is to continue to provide reliable, clean electricity to the grid.

    The second challenge is the prolonged drought and water scarcity for the state in general. And one way to address that is water desalination co-located with the nuclear plant at the Diablo site, as John explained.

    The third challenge is related to decarbonization the transportation sector. A possible approach is replacing conventional cars and trucks with vehicles powered by fuel cells which consume hydrogen. Hydrogen has to be produced from a primary energy source. Nuclear power, through a process called electrolysis, can do that quite efficiently and in a manner that is carbon-free.

    Our economic analysis took into account the expected revenue from selling these multiple products — electricity for the grid, hydrogen for the transportation sector, water for farmers or other local users — as well as the costs associated with deploying the new facilities needed to produce desalinated water and hydrogen. We found that, if Diablo’s operating license was extended until 2035, it would cut carbon emissions by an average of 7 million metric tons a year — a more than 11 percent reduction from 2017 levels — and save ratepayers $2.6 billion in power system costs.

    Further delaying the retirement of Diablo to 2045 would spare 90,000 acres of land that would need to be dedicated to renewable energy production to replace the facility’s capacity, and it would save ratepayers up to $21 billion in power system costs.

    Finally, if Diablo was operated as a polygeneration facility that provides electricity, desalinated water, and hydrogen simultaneously, its value, quantified in terms of dollars per unit electricity generated, could increase by 50 percent.

    Lienhard: Most of the desalination scenarios that we considered did not consume the full electrical output of that plant, meaning that under most scenarios you would continue to make electricity and do something with it, beyond just desalination. I think it’s also important to remember that this power plant produces 15 percent of California’s carbon-free electricity today and is responsible for 8 percent of the state’s total electrical production. In other words, Diablo Canyon is a very large factor in California’s decarbonization. When or if this plant goes offline, the near-term outcome is likely to be increased reliance on natural gas to produce electricity, meaning a rise in California’s carbon emissions.

    Q: This plant in particular has been highly controversial since its inception. What’s your assessment of the plant’s safety beyond its scheduled shutdown, and how do you see this report as contributing to the decision-making about that shutdown?

    Buongiorno: The Diablo Canyon Nuclear Power Plant has a very strong safety record. The potential safety concern for Diablo is related to its proximity to several fault lines. Being located in California, the plant was designed to withstand large earthquakes to begin with. Following the Fukushima accident in 2011, the Nuclear Regulatory Commission reviewed the plant’s ability to withstand external events (e.g., earthquakes, tsunamis, floods, tornadoes, wildfires, hurricanes) of exceptionally rare and severe magnitude. After nine years of assessment the NRC’s conclusion is that “existing seismic capacity or effective flood protection [at Diablo Canyon] will address the unbounded reevaluated hazards.” That is, Diablo was designed and built to withstand even the rarest and strongest earthquakes that are physically possible at this site.

    As an additional level of protection, the plant has been retrofitted with special equipment and procedures meant to ensure reliable cooling of the reactor core and spent fuel pool under a hypothetical scenario in which all design-basis safety systems have been disabled by a severe external event.

    Lienhard: As for the potential impact of this report, PG&E [the California utility] has already made the decision to shut down the plant, and we and others hope that decision will be revisited and reversed. We believe that this report gives the relevant stakeholders and policymakers a lot of information about options and value associated with keeping the plant running, and about how California could benefit from clean water and clean power generated at Diablo Canyon. It’s not up to us to make the decision, of course — that is a decision that must be made by the people of California. All we can do is provide information.

    Q: What are the biggest challenges or obstacles to seeing these ideas implemented?

    Lienhard: California has very strict environmental protection regulations, and it’s good that they do. One of the areas of great concern to California is the health of the ocean and protection of the coastal ecosystem. As a result, very strict rules are in place about the intake and outfall of both power plants and desalination plants, to protect marine life. Our analysis suggests that this combined plant can be implemented within the parameters prescribed by the California Ocean Plan and that it can meet the regulatory requirements.

    We believe that deeper analysis would be needed before you could proceed. You would need to do site studies and really get out into the water and look in detail at what’s there. But the preliminary analysis is positive. A second challenge is that the discourse in California around nuclear power has generally not been very supportive, and similarly some groups in California oppose desalination. We expect that that both of those points of view would be part of the conversation about whether or not to procede with this project.

    Q: How particular is this analysis to the specifics of this location? Are there aspects of it that apply to other nuclear plants, domestically or globally?

    Lienhard: Hundreds of nuclear plants around the world are situated along the coast, and many are in water stressed regions. Although our analysis focused on Diablo Canyon, we believe that the general findings are applicable to many other seaside nuclear plants, so that this approach and these conclusions could potentially be applied at hundreds of sites worldwide. More

  • in

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    MIT and Biogen have announced that they will collaborate with the goal to accelerate the science and action on climate change to improve human health. This collaboration is supported by a three-year, $7 million commitment from the company and the Biogen Foundation. The biotechnology company, headquartered in Cambridge, Massachusetts’ Kendall Square, discovers and develops therapies for people living with serious neurological diseases.

    “We have long believed it is imperative for Biogen to make the fight against climate change central to our long-term corporate responsibility commitments. Through this collaboration with MIT, we aim to identify and share innovative climate solutions that will deliver co-benefits for both health and equity,” says Michel Vounatsos, CEO of Biogen. “We are also proud to support the MIT Museum, which promises to make world-class science and education accessible to all, and honor Biogen co-founder Phillip A. Sharp with a dedication inside the museum that recognizes his contributions to its development.”

    Biogen and the Biogen Foundation are supporting research and programs across a range of areas at MIT.

    Advancing climate, health, and equity

    The first such effort involves new work within the MIT Joint Program on the Science and Policy of Global Change to establish a state-of-the-art integrated model of climate and health aimed at identifying targets that deliver climate and health co-benefits.

    “Evidence suggests that not all climate-related actions deliver equal health benefits, yet policymakers, planners, and stakeholders traditionally lack the tools to consider how decisions in one arena impact the other,” says C. Adam Schlosser, deputy director of the MIT Joint Program. “Biogen’s collaboration with the MIT Joint Program — and its support of a new distinguished Biogen Fellow who will develop the new climate/health model — will accelerate our efforts to provide decision-makers with these tools.”

    Biogen is also supporting the MIT Technology and Policy Program’s Research to Policy Engagement Initiative to infuse human health as a key new consideration in decision-making on the best pathways forward to address the global climate crisis, and bridge the knowledge-to-action gap by connecting policymakers, researchers, and diverse stakeholders. As part of this work, Biogen is underwriting a distinguished Biogen Fellow to advance new research on climate, health, and equity.

    “Our work with Biogen has allowed us to make progress on key questions that matter to human health and well-being under climate change,” says Noelle Eckley Selin, who directs the MIT Technology and Policy Program and is a professor in the MIT Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences. “Further, their support of the Research to Policy Engagement Initiative helps all of our research become more effective in making change.”

    In addition, Biogen has joined 13 other companies in the MIT Climate and Sustainability Consortium (MCSC), which is supporting faculty and student research and developing impact pathways that present a range of actionable steps that companies can take — within and across industries — to advance progress toward climate targets.

    “Biogen joining the MIT Climate and Sustainability Consortium represents our commitment to working with member companies across a diverse range of industries, an approach that aims to drive changes swift and broad enough to match the scale of the climate challenge,” says Jeremy Gregory, executive director of the MCSC. “We are excited to welcome a member from the biotechnology space and look forward to harnessing Biogen’s perspectives as we continue to collaborate and work together with the MIT community in exciting and meaningful ways.”

    Making world-class science and education available to MIT Museum visitors

    Support from Biogen will honor Nobel laureate, MIT Institute professor, and Biogen co-founder Phillip A. Sharp with a named space inside the new Kendall Square location of the MIT Museum, set to open in spring 2022. Biogen also is supporting one of the museum’s opening exhibitions, “Essential MIT,” with a section focused on solving real-world problems such as climate change. It is also providing programmatic support for the museum’s Life Sciences Maker Engagement Program.

    “Phil has provided fantastic support to the MIT Museum for more than a decade as an advisory board member and now as board chair, and he has been deeply involved in plans for the new museum at Kendall Square,” says John Durant, the Mark R. Epstein (Class of 1963) Director of the museum. “Seeing his name on the wall will be a constant reminder of his key role in this development, as well as a mark of our gratitude.”

    Inspiring and empowering the next generation of scientists

    Biogen funding is also being directed to engage the next generation of scientists through support for the Biogen-MIT Biotech in Action: Virtual Lab, a program designed to foster a love of science among diverse and under-served student populations.

    Biogen’s support is part of its Healthy Climate, Healthy Lives initiative, a $250 million, 20-year commitment to eliminate fossil fuels across its operations and collaborate with renowned institutions to advance the science of climate and health and support under-served communities. Additional support is provided by the Biogen Foundation to further its long-standing focus on providing students with equitable access to outstanding science education. More

  • in

    New “risk triage” platform pinpoints compounding threats to US infrastructure

    Over a 36-hour period in August, Hurricane Henri delivered record rainfall in New York City, where an aging storm-sewer system was not built to handle the deluge, resulting in street flooding. Meanwhile, an ongoing drought in California continued to overburden aquifers and extend statewide water restrictions. As climate change amplifies the frequency and intensity of extreme events in the United States and around the world, and the populations and economies they threaten grow and change, there is a critical need to make infrastructure more resilient. But how can this be done in a timely, cost-effective way?

    An emerging discipline called multi-sector dynamics (MSD) offers a promising solution. MSD homes in on compounding risks and potential tipping points across interconnected natural and human systems. Tipping points occur when these systems can no longer sustain multiple, co-evolving stresses, such as extreme events, population growth, land degradation, drinkable water shortages, air pollution, aging infrastructure, and increased human demands. MSD researchers use observations and computer models to identify key precursory indicators of such tipping points, providing decision-makers with critical information that can be applied to mitigate risks and boost resilience in infrastructure and managed resources.

    At MIT, the Joint Program on the Science and Policy of Global Change has since 2018 been developing MSD expertise and modeling tools and using them to explore compounding risks and potential tipping points in selected regions of the United States. In a two-hour webinar on Sept. 15, MIT Joint Program researchers presented an overview of the program’s MSD research tool set and its applications.  

    MSD and the risk triage platform

    “Multi-sector dynamics explores interactions and interdependencies among human and natural systems, and how these systems may adapt, interact, and co-evolve in response to short-term shocks and long-term influences and stresses,” says MIT Joint Program Deputy Director C. Adam Schlosser, noting that such analysis can reveal and quantify potential risks that would likely evade detection in siloed investigations. “These systems can experience cascading effects or failures after crossing tipping points. The real question is not just where these tipping points are in each system, but how they manifest and interact across all systems.”

    To address that question, the program’s MSD researchers have developed the MIT Socio-Environmental Triage (MST) platform, now publicly available for the first time. Focused on the continental United States, the first version of the platform analyzes present-day risks related to water, land, climate, the economy, energy, demographics, health, and infrastructure, and where these compound to create risk hot spots. It’s essentially a screening-level visualization tool that allows users to examine risks, identify hot spots when combining risks, and make decisions about how to deploy more in-depth analysis to solve complex problems at regional and local levels. For example, MST can identify hot spots for combined flood and poverty risks in the lower Mississippi River basin, and thereby alert decision-makers as to where more concentrated flood-control resources are needed.

    Successive versions of the platform will incorporate projections based on the MIT Joint Program’s Integrated Global System Modeling (IGSM) framework of how different systems and stressors may co-evolve into the future and thereby change the risk landscape. This enhanced capability could help uncover cost-effective pathways for mitigating and adapting to a wide range of environmental and economic risks.  

    MSD applications

    Five webinar presentations explored how MIT Joint Program researchers are applying the program’s risk triage platform and other MSD modeling tools to identify potential tipping points and risks in five key domains: water quality, land use, economics and energy, health, and infrastructure. 

    Joint Program Principal Research Scientist Xiang Gao described her efforts to apply a high-resolution U.S. water-quality model to calculate a location-specific, water-quality index over more than 2,000 river basins in the country. By accounting for interactions among climate, agriculture, and socioeconomic systems, various water-quality measures can be obtained ranging from nitrate and phosphate levels to phytoplankton concentrations. This modeling approach advances a unique capability to identify potential water-quality risk hot spots for freshwater resources.

    Joint Program Research Scientist Angelo Gurgel discussed his MSD-based analysis of how climate change, population growth, changing diets, crop-yield improvements and other forces that drive land-use change at the global level may ultimately impact how land is used in the United States. Drawing upon national observational data and the IGSM framework, the analysis shows that while current U.S. land-use trends are projected to persist or intensify between now and 2050, there is no evidence of any concerning tipping points arising throughout this period.  

    MIT Joint Program Research Scientist Jennifer Morris presented several examples of how the risk triage platform can be used to combine existing U.S. datasets and the IGSM framework to assess energy and economic risks at the regional level. For example, by aggregating separate data streams on fossil-fuel employment and poverty, one can target selected counties for clean energy job training programs as the nation moves toward a low-carbon future. 

    “Our modeling and risk triage frameworks can provide pictures of current and projected future economic and energy landscapes,” says Morris. “They can also highlight interactions among different human, built, and natural systems, including compounding risks that occur in the same location.”  

    MIT Joint Program research affiliate Sebastian Eastham, a research scientist at the MIT Laboratory for Aviation and the Environment, described an MSD approach to the study of air pollution and public health. Linking the IGSM with an atmospheric chemistry model, Eastham ultimately aims to better understand where the greatest health risks are in the United States and how they may compound throughout this century under different policy scenarios. Using the risk triage tool to combine current risk metrics for air quality and poverty in a selected county based on current population and air-quality data, he showed how one can rapidly identify cardiovascular and other air-pollution-induced disease risk hot spots.

    Finally, MIT Joint Program research affiliate Alyssa McCluskey, a lecturer at the University of Colorado at Boulder, showed how the risk triage tool can be used to pinpoint potential risks to roadways, waterways, and power distribution lines from flooding, extreme temperatures, population growth, and other stressors. In addition, McCluskey described how transportation and energy infrastructure development and expansion can threaten critical wildlife habitats.

    Enabling comprehensive, location-specific analyses of risks and hot spots within and among multiple domains, the Joint Program’s MSD modeling tools can be used to inform policymaking and investment from the municipal to the global level.

    “MSD takes on the challenge of linking human, natural, and infrastructure systems in order to inform risk analysis and decision-making,” says Schlosser. “Through our risk triage platform and other MSD models, we plan to assess important interactions and tipping points, and to provide foresight that supports action toward a sustainable, resilient, and prosperous world.”

    This research is funded by the U.S. Department of Energy’s Office of Science as an ongoing project. More