More stories

  • in

    Is there enough land on Earth to fight climate change and feed the world?

    Capping global warming at 1.5 degrees Celsius is a tall order. Achieving that goal will not only require a massive reduction in greenhouse gas emissions from human activities, but also a substantial reallocation of land to support that effort and sustain the biosphere, including humans. More land will be needed to accommodate a growing demand for bioenergy and nature-based carbon sequestration while ensuring sufficient acreage for food production and ecological sustainability.The expanding role of land in a 1.5 C world will be twofold — to remove carbon dioxide from the atmosphere and to produce clean energy. Land-based carbon dioxide removal strategies include bioenergy with carbon capture and storage; direct air capture; and afforestation/reforestation and other nature-based solutions. Land-based clean energy production includes wind and solar farms and sustainable bioenergy cropland. Any decision to allocate more land for climate mitigation must also address competing needs for long-term food security and ecosystem health.Land-based climate mitigation choices vary in terms of costs — amount of land required, implications for food security, impact on biodiversity and other ecosystem services — and benefits — potential for sequestering greenhouse gases and producing clean energy.Now a study in the journal Frontiers in Environmental Science provides the most comprehensive analysis to date of competing land-use and technology options to limit global warming to 1.5 C. Led by researchers at the MIT Center for Sustainability Science and Strategy (CS3), the study applies the MIT Integrated Global System Modeling (IGSM) framework to evaluate costs and benefits of different land-based climate mitigation options in Sky2050, a 1.5 C climate-stabilization scenario developed by Shell.Under this scenario, demand for bioenergy and natural carbon sinks increase along with the need for sustainable farming and food production. To determine if there’s enough land to meet all these growing demands, the research team uses the global hectare (gha) — an area of 10,000 square meters, or 2.471 acres — as the standard unit of measurement, and current estimates of the Earth’s total habitable land area (about 10 gha) and land area used for food production and bioenergy (5 gha).The team finds that with transformative changes in policy, land management practices, and consumption patterns, global land is sufficient to provide a sustainable supply of food and ecosystem services throughout this century while also reducing greenhouse gas emissions in alignment with the 1.5 C goal. These transformative changes include policies to protect natural ecosystems; stop deforestation and accelerate reforestation and afforestation; promote advances in sustainable agriculture technology and practice; reduce agricultural and food waste; and incentivize consumers to purchase sustainably produced goods.If such changes are implemented, 2.5–3.5 gha of land would be used for NBS practices to sequester 3–6 gigatonnes (Gt) of CO2 per year, and 0.4–0.6 gha of land would be allocated for energy production — 0.2–0.3 gha for bioenergy and 0.2–0.35 gha for wind and solar power generation.“Our scenario shows that there is enough land to support a 1.5 degree C future as long as effective policies at national and global levels are in place,” says CS3 Principal Research Scientist Angelo Gurgel, the study’s lead author. “These policies must not only promote efficient use of land for food, energy, and nature, but also be supported by long-term commitments from government and industry decision-makers.” More

  • in

    A vision for U.S. science success

    White House science advisor Arati Prabhakar expressed confidence in U.S. science and technology capacities during a talk on Wednesday about major issues the country must tackle.“Let me start with the purpose of science and technology and innovation, which is to open possibilities so that we can achieve our great aspirations,” said Prabhakar, who is the director of the Office of Science and Technology Policy (OSTP) and a co-chair of the President’s Council of Advisors on Science and Technology (PCAST). “The aspirations that we have as a country today are as great as they have ever been,” she added.Much of Prabhakar’s talk focused on three major issues in science and technology development: cancer prevention, climate change, and AI. In the process, she also emphasized the necessity for the U.S. to sustain its global leadership in research across domains of science and technology, which she called “one of America’s long-time strengths.”“Ever since the end of the Second World War, we said we’re going in on basic research, we’re going to build our universities’ capacity to do it, we have an unparalleled basic research capacity, and we should always have that,” said Prabhakar.“We have gotten better, I think, in recent years at commercializing technology from our basic research,” Prabhakar added, noting, “Capital moves when you can see profit and growth.” The Biden administration, she said, has invested in a variety of new ways for the public and private sector to work together to massively accelerate the movement of technology into the market.Wednesday’s talk drew a capacity audience of nearly 300 people in MIT’s Wong Auditorium and was hosted by the Manufacturing@MIT Working Group. The event included introductory remarks by Suzanne Berger, an Institute Professor and a longtime expert on the innovation economy, and Nergis Mavalvala, dean of the School of Science and an astrophysicist and leader in gravitational-wave detection.Introducing Mavalvala, Berger said the 2015 announcement of the discovery of gravitational waves “was the day I felt proudest and most elated to be a member of the MIT community,” and noted that U.S. government support helped make the research possible. Mavalvala, in turn, said MIT was “especially honored” to hear Prabhakar discuss leading-edge research and acknowledge the role of universities in strengthening the country’s science and technology sectors.Prabhakar has extensive experience in both government and the private sector. She has been OSTP director and co-chair of PCAST since October of 2022. She served as director of the Defense Advanced Research Projects Agency (DARPA) from 2012 to 2017 and director of the National Institute of Standards and Technology (NIST) from 1993 to 1997.She has also held executive positions at Raychem and Interval Research, and spent a decade at the investment firm U.S. Venture Partners. An engineer by training, Prabhakar earned a BS in electrical engineering from Texas Tech University in 1979, an MA in electrical engineering from Caltech in 1980, and a PhD in applied physics from Caltech in 1984.Among other remarks about medicine, Prabhakar touted the Biden administration’s “Cancer Moonshot” program, which aims to cut the cancer death rate in half over the next 25 years through multiple approaches, from better health care provision and cancer detection to limiting public exposure to carcinogens. We should be striving, Prabhakar said, for “a future in which people take good health for granted and can get on with their lives.”On AI, she heralded both the promise and concerns about technology, saying, “I think it’s time for active steps to get on a path to where it actually allows people to do more and earn more.”When it comes to climate change, Prabhakar said, “We all understand that the climate is going to change. But it’s in our hands how severe those changes get. And it’s possible that we can build a better future.” She noted the bipartisan infrastructure bill signed into law in 2021 and the Biden administration’s Inflation Reduction Act as important steps forward in this fight.“Together those are making the single biggest investment anyone anywhere on the planet has ever made in the clean energy transition,” she said. “I used to feel hopeless about our ability to do that, and it gives me tremendous hope.”After her talk, Prabhakar was joined onstage for a group discussion with the three co-presidents of the MIT Energy and Climate Club: Laurentiu Anton, a doctoral candidate in electrical engineering and computer science; Rosie Keller, an MBA candidate at the MIT Sloan School of Management; and Thomas Lee, a doctoral candidate in MIT’s Institute for Data, Systems, and Society.Asked about the seemingly sagging public confidence in science today, Prabhakar offered a few thoughts.“The first thing I would say is, don’t take it personally,” Prabhakar said, noting that any dip in public regard for science is less severe than the diminished public confidence in other institutions.Adding some levity, she observed that in polling about which occupations are regarded as being desirable for a marriage partner to have, “scientist” still ranks highly.“Scientists still do really well on that front, we’ve got that going for us,” she quipped.More seriously, Prabhakar observed, rather than “preaching” at the public, scientists should recognize that “part of the job for us is to continue to be clear about what we know are the facts, and to present them clearly but humbly, and to be clear that we’re going to continue working to learn more.” At the same time, she continued, scientists can always reinforce that “oh, by the way, facts are helpful things that can actually help you make better choices about how the future turns out. I think that would be better in my view.”Prabhakar said that her White House work had been guided, in part, by one of the overarching themes that President Biden has often reinforced.“He thinks about America as a nation that can be described in a single word, and that word is ‘possibilities,’” she said. “And that idea, that is such a big idea, it lights me up. I think of what we do in the world of science and technology and innovation as really part and parcel of creating those possibilities.”Ultimately, Prabhakar said, at all times and all points in American history, scientists and technologists must continue “to prove once more that when people come together and do this work … we do it in a way that builds opportunity and expands opportunity for everyone in our country. I think this is the great privilege we all have in the work we do, and it’s also our responsibility.” More

  • in

    Catherine Wolfram: High-energy scholar

    In the mid 2000s, Catherine Wolfram PhD ’96 reached what she calls “an inflection point” in her career. After about a decade of studying U.S. electricity markets, she had come to recognize that “you couldn’t study the energy industries without thinking about climate mitigation,” as she puts it.At the same time, Wolfram understood that the trajectory of energy use in the developing world was a massively important part of the climate picture. To get a comprehensive grasp on global dynamics, she says, “I realized I needed to start thinking about the rest of the world.”An accomplished scholar and policy expert, Wolfram has been on the faculty at Harvard University, the University of California at Berkeley — and now MIT, where she is the William Barton Rogers Professor in Energy. She has also served as deputy assistant secretary for climate and energy economics at the U.S. Treasury.Yet even leading experts want to keep learning. So, when she hit that inflection point, Wolfram started carving out a new phase of her research career.“One of the things I love about being an academic is, I could just decide to do that,” Wolfram says. “I didn’t need to check with a boss. I could just pivot my career to being more focused to thinking about energy in the developing world.”Over the last decade, Wolfram has published a wide array of original studies about energy consumption in the developing world. From Kenya to Mexico to South Asia, she has shed light on the dynamics of economics growth and energy consumption — while spending some of that time serving the government too. Last year, Wolfram joined the faculty of the MIT Sloan School of Management, where her work bolsters the Institute’s growing effort to combat climate change.Studying at MITWolfram largely grew up in Minnesota, where her father was a legal scholar, although he moved to Cornell University around the time she started high school. As an undergraduate, she majored in economics at Harvard University, and after graduation she worked first for a consultant, then for the Massachusetts Department of Public Utilities, the agency regulating energy rates. In the latter job, Wolfram kept noticing that people were often citing the research of an MIT scholar named Paul Joskow (who is now the Elizabeth and James Killian Professor of Economics Emeritus in MIT’s Department of Economics) and Richard Schmalensee (a former dean of the MIT Sloan School of Management and now the Howard W. Johnson Professor of Management Emeritus). Seeing how consequential economics research could be for policymaking, Wolfram decided to get a PhD in the field and was accepted into MIT’s doctoral program.“I went into graduate school with an unusually specific view of what I wanted to do,” Wolfram says. “I wanted to work with Paul Joskow and Dick Schmalensee on electricity markets, and that’s how I wound up here.”At MIT, Wolfram also ended up working extensively with Nancy Rose, the Charles P. Kindleberger Professor of Applied Economics and a former head of the Department of Economics, who helped oversee Wolfram’s thesis; Rose has extensively studied market regulation as well.Wolfram’s dissertation research largely focused on price-setting behavior in the U.K.’s newly deregulated electricity markets, which, it turned out, applied handily to the U.S., where a similar process was taking place. “I was fortunate because this was around the time California was thinking about restructuring, as it was known,” Wolfram says. She spent four years on the faculty at Harvard, then moved to UC Berkeley. Wolfram’s studies have shown that deregulation has had some medium-term benefits, for instance in making power plants operate more efficiently.Turning on the ACBy around 2010, though, Wolfram began shifting her scholarly focus in earnest, conducting innovative studies about energy in the developing world. One strand of her research has centered on Kenya, to better understand how more energy access for people without electricity might fit into growth in the developing world.In this case, Wolfram’s perhaps surprising conclusion is that electrification itself is not a magic ticket to prosperity; people without electricity are more eager to adopt it when they have a practical economic need for it. Meanwhile, they have other essential needs that are not necessarily being addressed.“The 800 million people in the world who don’t have electricity also don’t have access to good health care or running water,” Wolfram says. “Giving them better housing infrastructure is important, and harder to tackle. It’s not clear that bringing people electricity alone is the single most useful thing from a development perspective. Although electricity is a super-important component of modern living.”Wolfram has even delved into topics such as air conditioner use in the developing world — an important driver of energy use. As her research shows, many countries, with a combined population far bigger than the U.S., are among the fastest-growing adopters of air conditioners and have an even greater need for them, based on their climates. Adoption of air conditioning within those countries also is characterized by marked economic inequality.From early 2021 until late 2022, Wolfram also served in the administration of President Joe Biden, where her work also centered on global energy issues. Among other things, Wolfram was part of the team working out a price-cap policy for Russian oil exports, a concept that she thinks could be applied to many other products globally. Although, she notes, working with countries heavily dependent on exporting energy materials will always require careful engagement.“We need to be mindful of that dependence and importance as we go through this massive effort to decarbonize the energy sector and shift it to a whole new paradigm,” Wolfram says.At MIT againStill, she notes, the world does need a whole new energy paradigm, and fast. Her arrival at MIT overlaps with the emergence of a new Institute-wide effort, the Climate Project at MIT, that aims to accelerate and scale climate solutions and good climate policy, including through the new Climate Policy Center at MIT Sloan. That kind of effort, Wolfram says, matters to her.“It’s part of why I’ve come to MIT,” Wolfram says. “Technology will be one part of the climate solution, but I do think an innovative mindset, how can we think about doing things better, can be productively applied to climate policy.” On being at MIT, she adds: “It’s great, it’s awesome. One of the things that pleasantly surprised me is how tight-knit and friendly the MIT faculty all are, and how many interactions I’ve had with people from other departments.”Wolfram has also been enjoying her teaching at MIT, and will be offering a large class in spring 2025, 15.016 (Climate and Energy in the Global Economy), that she debuted this past academic year.“It’s super fun to have students from around the world, who have personal stories and knowledge of energy systems in their countries and can contribute to our discussions,” she says.When it comes to tackling climate change, many things seem daunting. But there is still a world of knowledge to be acquired while we try to keep the planet from overheating, and Wolfram has a can-do attitude about learning more and applying those lessons.“We’ve made a lot of progress,” Wolfram says. “But we still have a lot more to do.” More

  • in

    Reality check on technologies to remove carbon dioxide from the air

    In 2015, 195 nations plus the European Union signed the Paris Agreement and pledged to undertake plans designed to limit the global temperature increase to 1.5 degrees Celsius. Yet in 2023, the world exceeded that target for most, if not all of, the year — calling into question the long-term feasibility of achieving that target.To do so, the world must reduce the levels of greenhouse gases in the atmosphere, and strategies for achieving levels that will “stabilize the climate” have been both proposed and adopted. Many of those strategies combine dramatic cuts in carbon dioxide (CO2) emissions with the use of direct air capture (DAC), a technology that removes CO2 from the ambient air. As a reality check, a team of researchers in the MIT Energy Initiative (MITEI) examined those strategies, and what they found was alarming: The strategies rely on overly optimistic — indeed, unrealistic — assumptions about how much CO2 could be removed by DAC. As a result, the strategies won’t perform as predicted. Nevertheless, the MITEI team recommends that work to develop the DAC technology continue so that it’s ready to help with the energy transition — even if it’s not the silver bullet that solves the world’s decarbonization challenge.DAC: The promise and the realityIncluding DAC in plans to stabilize the climate makes sense. Much work is now under way to develop DAC systems, and the technology looks promising. While companies may never run their own DAC systems, they can already buy “carbon credits” based on DAC. Today, a multibillion-dollar market exists on which entities or individuals that face high costs or excessive disruptions to reduce their own carbon emissions can pay others to take emissions-reducing actions on their behalf. Those actions can involve undertaking new renewable energy projects or “carbon-removal” initiatives such as DAC or afforestation/reforestation (planting trees in areas that have never been forested or that were forested in the past). DAC-based credits are especially appealing for several reasons, explains Howard Herzog, a senior research engineer at MITEI. With DAC, measuring and verifying the amount of carbon removed is straightforward; the removal is immediate, unlike with planting forests, which may take decades to have an impact; and when DAC is coupled with CO2 storage in geologic formations, the CO2 is kept out of the atmosphere essentially permanently — in contrast to, for example, sequestering it in trees, which may one day burn and release the stored CO2.Will current plans that rely on DAC be effective in stabilizing the climate in the coming years? To find out, Herzog and his colleagues Jennifer Morris and Angelo Gurgel, both MITEI principal research scientists, and Sergey Paltsev, a MITEI senior research scientist — all affiliated with the MIT Center for Sustainability Science and Strategy (CS3) — took a close look at the modeling studies on which those plans are based.Their investigation identified three unavoidable engineering challenges that together lead to a fourth challenge — high costs for removing a single ton of CO2 from the atmosphere. The details of their findings are reported in a paper published in the journal One Earth on Sept. 20.Challenge 1: Scaling upWhen it comes to removing CO2 from the air, nature presents “a major, non-negotiable challenge,” notes the MITEI team: The concentration of CO2 in the air is extremely low — just 420 parts per million, or roughly 0.04 percent. In contrast, the CO2 concentration in flue gases emitted by power plants and industrial processes ranges from 3 percent to 20 percent. Companies now use various carbon capture and sequestration (CCS) technologies to capture CO2 from their flue gases, but capturing CO2 from the air is much more difficult. To explain, the researchers offer the following analogy: “The difference is akin to needing to find 10 red marbles in a jar of 25,000 marbles of which 24,990 are blue [the task representing DAC] versus needing to find about 10 red marbles in a jar of 100 marbles of which 90 are blue [the task for CCS].”Given that low concentration, removing a single metric ton (tonne) of CO2 from air requires processing about 1.8 million cubic meters of air, which is roughly equivalent to the volume of 720 Olympic-sized swimming pools. And all that air must be moved across a CO2-capturing sorbent — a feat requiring large equipment. For example, one recently proposed design for capturing 1 million tonnes of CO2 per year would require an “air contactor” equivalent in size to a structure about three stories high and three miles long.Recent modeling studies project DAC deployment on the scale of 5 to 40 gigatonnes of CO2 removed per year. (A gigatonne equals 1 billion metric tonnes.) But in their paper, the researchers conclude that the likelihood of deploying DAC at the gigatonne scale is “highly uncertain.”Challenge 2: Energy requirementGiven the low concentration of CO2 in the air and the need to move large quantities of air to capture it, it’s no surprise that even the best DAC processes proposed today would consume large amounts of energy — energy that’s generally supplied by a combination of electricity and heat. Including the energy needed to compress the captured CO2 for transportation and storage, most proposed processes require an equivalent of at least 1.2 megawatt-hours of electricity for each tonne of CO2 removed.The source of that electricity is critical. For example, using coal-based electricity to drive an all-electric DAC process would generate 1.2 tonnes of CO2 for each tonne of CO2 captured. The result would be a net increase in emissions, defeating the whole purpose of the DAC. So clearly, the energy requirement must be satisfied using either low-carbon electricity or electricity generated using fossil fuels with CCS. All-electric DAC deployed at large scale — say, 10 gigatonnes of CO2 removed annually — would require 12,000 terawatt-hours of electricity, which is more than 40 percent of total global electricity generation today.Electricity consumption is expected to grow due to increasing overall electrification of the world economy, so low-carbon electricity will be in high demand for many competing uses — for example, in power generation, transportation, industry, and building operations. Using clean electricity for DAC instead of for reducing CO2 emissions in other critical areas raises concerns about the best uses of clean electricity.Many studies assume that a DAC unit could also get energy from “waste heat” generated by some industrial process or facility nearby. In the MITEI researchers’ opinion, “that may be more wishful thinking than reality.” The heat source would need to be within a few miles of the DAC plant for transporting the heat to be economical; given its high capital cost, the DAC plant would need to run nonstop, requiring constant heat delivery; and heat at the temperature required by the DAC plant would have competing uses, for example, for heating buildings. Finally, if DAC is deployed at the gigatonne per year scale, waste heat will likely be able to provide only a small fraction of the needed energy.Challenge 3: SitingSome analysts have asserted that, because air is everywhere, DAC units can be located anywhere. But in reality, siting a DAC plant involves many complex issues. As noted above, DAC plants require significant amounts of energy, so having access to enough low-carbon energy is critical. Likewise, having nearby options for storing the removed CO2 is also critical. If storage sites or pipelines to such sites don’t exist, major new infrastructure will need to be built, and building new infrastructure of any kind is expensive and complicated, involving issues related to permitting, environmental justice, and public acceptability — issues that are, in the words of the researchers, “commonly underestimated in the real world and neglected in models.”Two more siting needs must be considered. First, meteorological conditions must be acceptable. By definition, any DAC unit will be exposed to the elements, and factors like temperature and humidity will affect process performance and process availability. And second, a DAC plant will require some dedicated land — though how much is unclear, as the optimal spacing of units is as yet unresolved. Like wind turbines, DAC units need to be properly spaced to ensure maximum performance such that one unit is not sucking in CO2-depleted air from another unit.Challenge 4: CostConsidering the first three challenges, the final challenge is clear: the cost per tonne of CO2 removed is inevitably high. Recent modeling studies assume DAC costs as low as $100 to $200 per ton of CO2 removed. But the researchers found evidence suggesting far higher costs.To start, they cite typical costs for power plants and industrial sites that now use CCS to remove CO2 from their flue gases. The cost of CCS in such applications is estimated to be in the range of $50 to $150 per ton of CO2 removed. As explained above, the far lower concentration of CO2 in the air will lead to substantially higher costs.As explained under Challenge 1, the DAC units needed to capture the required amount of air are massive. The capital cost of building them will be high, given labor, materials, permitting costs, and so on. Some estimates in the literature exceed $5,000 per tonne captured per year.Then there are the ongoing costs of energy. As noted under Challenge 2, removing 1 tonne of CO2 requires the equivalent of 1.2 megawatt-hours of electricity. If that electricity costs $0.10 per kilowatt-hour, the cost of just the electricity needed to remove 1 tonne of CO2 is $120. The researchers point out that assuming such a low price is “questionable,” given the expected increase in electricity demand, future competition for clean energy, and higher costs on a system dominated by renewable — but intermittent — energy sources.Then there’s the cost of storage, which is ignored in many DAC cost estimates.Clearly, many considerations show that prices of $100 to $200 per tonne are unrealistic, and assuming such low prices will distort assessments of strategies, leading them to underperform going forward.The bottom lineIn their paper, the MITEI team calls DAC a “very seductive concept.” Using DAC to suck CO2 out of the air and generate high-quality carbon-removal credits can offset reduction requirements for industries that have hard-to-abate emissions. By doing so, DAC would minimize disruptions to key parts of the world’s economy, including air travel, certain carbon-intensive industries, and agriculture. However, the world would need to generate billions of tonnes of CO2 credits at an affordable price. That prospect doesn’t look likely. The largest DAC plant in operation today removes just 4,000 tonnes of CO2 per year, and the price to buy the company’s carbon-removal credits on the market today is $1,500 per tonne.The researchers recognize that there is room for energy efficiency improvements in the future, but DAC units will always be subject to higher work requirements than CCS applied to power plant or industrial flue gases, and there is not a clear pathway to reducing work requirements much below the levels of current DAC technologies.Nevertheless, the researchers recommend that work to develop DAC continue “because it may be needed for meeting net-zero emissions goals, especially given the current pace of emissions.” But their paper concludes with this warning: “Given the high stakes of climate change, it is foolhardy to rely on DAC to be the hero that comes to our rescue.” More

  • in

    Ensuring a durable transition

    To fend off the worst impacts of climate change, “we have to decarbonize, and do it even faster,” said William H. Green, director of the MIT Energy Initiative (MITEI) and Hoyt C. Hottel Professor, MIT Department of Chemical Engineering, at MITEI’s Annual Research Conference.“But how the heck do we actually achieve this goal when the United States is in the middle of a divisive election campaign, and globally, we’re facing all kinds of geopolitical conflicts, trade protectionism, weather disasters, increasing demand from developing countries building a middle class, and data centers in countries like the U.S.?”Researchers, government officials, and business leaders convened in Cambridge, Massachusetts, Sept. 25-26 to wrestle with this vexing question at the conference that was themed, “A durable energy transition: How to stay on track in the face of increasing demand and unpredictable obstacles.”“In this room we have a lot of power,” said Green, “if we work together, convey to all of society what we see as real pathways and policies to solve problems, and take collective action.”The critical role of consensus-building in driving the energy transition arose repeatedly in conference sessions, whether the topic involved developing and adopting new technologies, constructing and siting infrastructure, drafting and passing vital energy policies, or attracting and retaining a skilled workforce.Resolving conflictsThere is “blowback and a social cost” in transitioning away from fossil fuels, said Stephen Ansolabehere, the Frank G. Thompson Professor of Government at Harvard University, in a panel on the social barriers to decarbonization. “Companies need to engage differently and recognize the rights of communities,” he said.Nora DeDontney, director of development at Vineyard Offshore, described her company’s two years of outreach and negotiations to bring large cables from ocean-based wind turbines onshore.“Our motto is, ‘community first,’” she said. Her company works to mitigate any impacts towns might feel because of offshore wind infrastructure construction with projects, such as sewer upgrades; provides workforce training to Tribal Nations; and lays out wind turbines in a manner that provides safe and reliable areas for local fisheries.Elsa A. Olivetti, professor in the Department of Materials Science and Engineering at MIT and the lead of the Decarbonization Mission of MIT’s new Climate Project, discussed the urgent need for rapid scale-up of mineral extraction. “Estimates indicate that to electrify the vehicle fleet by 2050, about six new large copper mines need to come on line each year,” she said. To meet the demand for metals in the United States means pushing into Indigenous lands and environmentally sensitive habitats. “The timeline of permitting is not aligned with the temporal acceleration needed,” she said.Larry Susskind, the Ford Professor of Urban and Environmental Planning in the MIT Department of Urban Studies and Planning, is trying to resolve such tensions with universities playing the role of mediators. He is creating renewable energy clinics where students train to participate in emerging disputes over siting. “Talk to people before decisions are made, conduct joint fact finding, so that facilities reduce harms and share the benefits,” he said.Clean energy boom and pressureA relatively recent and unforeseen increase in demand for energy comes from data centers, which are being built by large technology companies for new offerings, such as artificial intelligence.“General energy demand was flat for 20 years — and now, boom,” said Sean James, Microsoft’s senior director of data center research. “It caught utilities flatfooted.” With the expansion of AI, the rush to provision data centers with upwards of 35 gigawatts of new (and mainly renewable) power in the near future, intensifies pressure on big companies to balance the concerns of stakeholders across multiple domains. Google is pursuing 24/7 carbon-free energy by 2030, said Devon Swezey, the company’s senior manager for global energy and climate.“We’re pursuing this by purchasing more and different types of clean energy locally, and accelerating technological innovation such as next-generation geothermal projects,” he said. Pedro Gómez Lopez, strategy and development director, Ferrovial Digital, which designs and constructs data centers, incorporates renewable energy into their projects, which contributes to decarbonization goals and benefits to locales where they are sited. “We can create a new supply of power, taking the heat generated by a data center to residences or industries in neighborhoods through District Heating initiatives,” he said.The Inflation Reduction Act and other legislation has ramped up employment opportunities in clean energy nationwide, touching every region, including those most tied to fossil fuels. “At the start of 2024 there were about 3.5 million clean energy jobs, with ‘red’ states showing the fastest growth in clean energy jobs,” said David S. Miller, managing partner at Clean Energy Ventures. “The majority (58 percent) of new jobs in energy are now in clean energy — that transition has happened. And one-in-16 new jobs nationwide were in clean energy, with clean energy jobs growing more than three times faster than job growth economy-wide”In this rapid expansion, the U.S. Department of Energy (DoE) is prioritizing economically marginalized places, according to Zoe Lipman, lead for good jobs and labor standards in the Office of Energy Jobs at the DoE. “The community benefit process is integrated into our funding,” she said. “We are creating the foundation of a virtuous circle,” encouraging benefits to flow to disadvantaged and energy communities, spurring workforce training partnerships, and promoting well-paid union jobs. “These policies incentivize proactive community and labor engagement, and deliver community benefits, both of which are key to building support for technological change.”Hydrogen opportunity and challengeWhile engagement with stakeholders helps clear the path for implementation of technology and the spread of infrastructure, there remain enormous policy, scientific, and engineering challenges to solve, said multiple conference participants. In a “fireside chat,” Prasanna V. Joshi, vice president of low-carbon-solutions technology at ExxonMobil, and Ernest J. Moniz, professor of physics and special advisor to the president at MIT, discussed efforts to replace natural gas and coal with zero-carbon hydrogen in order to reduce greenhouse gas emissions in such major industries as steel and fertilizer manufacturing.“We have gone into an era of industrial policy,” said Moniz, citing a new DoE program offering incentives to generate demand for hydrogen — more costly than conventional fossil fuels — in end-use applications. “We are going to have to transition from our current approach, which I would call carrots-and-twigs, to ultimately, carrots-and-sticks,” Moniz warned, in order to create “a self-sustaining, major, scalable, affordable hydrogen economy.”To achieve net zero emissions by 2050, ExxonMobil intends to use carbon capture and sequestration in natural gas-based hydrogen and ammonia production. Ammonia can also serve as a zero-carbon fuel. Industry is exploring burning ammonia directly in coal-fired power plants to extend the hydrogen value chain. But there are challenges. “How do you burn 100 percent ammonia?”, asked Joshi. “That’s one of the key technology breakthroughs that’s needed.” Joshi believes that collaboration with MIT’s “ecosystem of breakthrough innovation” will be essential to breaking logjams around the hydrogen and ammonia-based industries.MIT ingenuity essentialThe energy transition is placing very different demands on different regions around the world. Take India, where today per capita power consumption is one of the lowest. But Indians “are an aspirational people … and with increasing urbanization and industrial activity, the growth in power demand is expected to triple by 2050,” said Praveer Sinha, CEO and managing director of the Tata Power Co. Ltd., in his keynote speech. For that nation, which currently relies on coal, the move to clean energy means bringing another 300 gigawatts of zero-carbon capacity online in the next five years. Sinha sees this power coming from wind, solar, and hydro, supplemented by nuclear energy.“India plans to triple nuclear power generation capacity by 2032, and is focusing on advancing small modular reactors,” said Sinha. “The country also needs the rapid deployment of storage solutions to firm up the intermittent power.” The goal is to provide reliable electricity 24/7 to a population living both in large cities and in geographically remote villages, with the help of long-range transmission lines and local microgrids. “India’s energy transition will require innovative and affordable technology solutions, and there is no better place to go than MIT, where you have the best brains, startups, and technology,” he said.These assets were on full display at the conference. Among them a cluster of young businesses, including:the MIT spinout Form Energy, which has developed a 100-hour iron battery as a backstop to renewable energy sources in case of multi-day interruptions;startup Noya that aims for direct air capture of atmospheric CO2 using carbon-based materials;the firm Active Surfaces, with a lightweight material for putting solar photovoltaics in previously inaccessible places;Copernic Catalysts, with new chemistry for making ammonia and sustainable aviation fuel far more inexpensively than current processes; andSesame Sustainability, a software platform spun out of MITEI that gives industries a full financial analysis of the costs and benefits of decarbonization.The pipeline of research talent extended into the undergraduate ranks, with a conference “slam” competition showcasing students’ summer research projects in areas from carbon capture using enzymes to 3D design for the coils used in fusion energy confinement.“MIT students like me are looking to be the next generation of energy leaders, looking for careers where we can apply our engineering skills to tackle exciting climate problems and make a tangible impact,” said Trent Lee, a junior in mechanical engineering researching improvements in lithium-ion energy storage. “We are stoked by the energy transition, because it’s not just the future, but our chance to build it.” More

  • in

    J-PAL North America announces new evaluation incubator collaborators from state and local governments

    J-PAL North America recently selected government partners for the 2024-25 Leveraging Evaluation and Evidence for Equitable Recovery (LEVER) Evaluation Incubator cohort. Selected collaborators will receive funding and technical assistance to develop or launch a randomized evaluation for one of their programs. These collaborations represent jurisdictions across the United States and demonstrate the growing enthusiasm for evidence-based policymaking.Launched in 2023, LEVER is a joint venture between J-PAL North America and Results for America. Through the Evaluation Incubator, trainings, and other program offerings, LEVER seeks to address the barriers many state and local governments face around finding and generating evidence to inform program design. LEVER offers government leaders the opportunity to learn best practices for policy evaluations and how to integrate evidence into decision-making. Since the program’s inception, more than 80 government jurisdictions have participated in LEVER offerings.J-PAL North America’s Evaluation Incubator helps collaborators turn policy-relevant research questions into well-designed randomized evaluations, generating rigorous evidence to inform pressing programmatic and policy decisions. The program also aims to build a culture of evidence use and give government partners the tools to continue generating and utilizing evidence in their day-to-day operations.In addition to funding and technical assistance, the selected state and local government collaborators will be connected with researchers from J-PAL’s network to help advance their evaluation ideas. Evaluation support will also be centered on community-engaged research practices, which emphasize collaborating with and learning from the groups most affected by the program being evaluated.Evaluation Incubator selected projectsPierce County Human Services (PCHS) in the state of Washington will evaluate two programs as part of the Evaluation Incubator. The first will examine how extending stays in a fentanyl detox program affects the successful completion of inpatient treatment and hospital utilization for individuals. “PCHS is interested in evaluating longer fentanyl detox stays to inform our funding decisions, streamline our resource utilization, and encourage additional financial commitments to address the unmet needs of individuals dealing with opioid use disorder,” says Trish Crocker, grant coordinator.The second PCHS program will evaluate the impact of providing medication and outreach services via a mobile distribution unit to individuals with opioid use disorders on program take-up and substance usage. Margo Burnison, a behavioral health manager with PCHS, says that the team is “thrilled to be partnering with J-PAL North America to dive deep into the data to inform our elected leaders on the best way to utilize available resources.”The City of Los Angeles Youth Development Department (YDD) seeks to evaluate a research-informed program: Student Engagement, Exploration, and Development in STEM (SEEDS). This intergenerational STEM mentorship program supports underrepresented middle school and college students in STEM by providing culturally responsive mentorship. The program seeks to foster these students’ STEM identity and degree attainment in higher education. YDD has been working with researchers at the University of Southern California to measure the SEEDS program’s impact, but is interested in developing a randomized evaluation to generate further evidence. Darnell Cole, professor and co-director of the Research Center for Education, Identity and Social Justice, shares his excitement about the collaboration with J-PAL: “We welcome the opportunity to measure the impact of the SEEDS program on our students’ educational experience. Rigorously testing the SEEDS program will help us improve support for STEM students, ultimately enhancing their persistence and success.”The Fort Wayne Police Department’s Hope and Recovery Team in Indiana will evaluate the impact of two programs that connect social workers with people who have experienced an overdose, or who have a mental health illness, to treatment and resources. “We believe we are on the right track in the work we are doing with the crisis intervention social worker and the recovery coach, but having an outside evaluation of both programs would be extremely helpful in understanding whether and what aspects of these programs are most effective,” says Police Captain Kevin Hunter.The County of San Diego’s Office of Evaluation, Performance and Analytics, and Planning & Development Services will engage with J-PAL staff to explore evaluation opportunities for two programs that are a part of the county’s Climate Action Plan. The Equity-Driven Tree Planting Program seeks to increase tree canopy coverage, and the Climate Smart Land Stewardship Program will encourage climate-smart agricultural practices. Ricardo Basurto-Davila, chief evaluation officer, says that “the county is dedicated to evidence-based policymaking and taking decisive action against climate change. The work with J-PAL will support us in combining these commitments to maximize the effectiveness in decreasing emissions through these programs.”J-PAL North America looks forward to working with the selected collaborators in the coming months to learn more about these promising programs, clarify our partner’s evidence goals, and design randomized evaluations to measure their impact. More

  • in

    Preparing Taiwan for a decarbonized economy

    The operations of Taiwan’s electronics, manufacturing, and financial firms vary widely, but their leaders all have at least one thing in common: They recognize the role that a changing energy landscape will play in their future success, and they’re actively planning for that transition.“They’re all interested in how Taiwan can supply energy for its economy going forward — energy that meets global goals for decarbonization,” says Robert C. Armstrong, the Chevron Professor of Chemical Engineering Emeritus at MIT, as well as a principal investigator for the Taiwan Innovative Green Economy Roadmap (TIGER) program. “Each company is going to have its own particular needs. For example, financial companies have data centers that need energy 24/7, with no interruptions. But the need for a robust, reliable, resilient energy system is shared among all of them.”Ten Taiwanese companies are participating in TIGER, a two-year program with the MIT Energy Initiative (MITEI) to explore various ways that industry and government can promote and adopt technologies, practices, and policies that will keep Taiwan competitive amid a quickly changing energy landscape. MIT research teams are exploring a set of six topics during the first year of the program, with plans to tackle a second set of topics during the second year, eventually leading to a roadmap to green energy security for Taiwan.“We are helping them to understand green energy technologies, we are helping them to understand how policies around the world might affect supply chains, and we are helping them to understand different pathways for their domestic policies,” says Sergey Paltsev, a principal investigator for the TIGER program, as well as a deputy director of the MIT Center for Sustainability Science and Strategy and a senior research scientist at MITEI. “We are looking at how Taiwan will be affected in terms of the cost of doing business and how to preserve the competitive advantage of its export-oriented industries.”“The biggest question,” Paltsev adds, “is how Taiwanese companies can decarbonize their energy in a sustainable manner.”Why Taiwan?Paul Hsu, founding partner of the Taiwanese business consultancy Paul Hsu and Partners (one of the 10 participating TIGER companies), as well as founding chair and current board member of the Epoch Foundation, has been working for more than 30 years to forge collaborations between business leaders in Taiwan and MIT researchers. The energy challenges facing Taiwanese businesses, as well as their place in the global supply chain, make the TIGER program critical not only to improve environmental sustainability, but also to ensure future competitiveness, he says. “The energy field is facing revolution,” Hsu says. “Taiwanese companies are not operating in Taiwan alone, but also operating worldwide, and we are affected by the global supply chain. We need to diversify our businesses and our energy resources, and the first thing we’re looking for in this partnership is education — an understanding about how to orient Taiwanese industry toward the future of energy.”Wendy Duan, the program director of the Asia Pacific program at MITEI, notes that Taiwan has a number of similarities to places such as Singapore and Japan. The lessons learned through the TIGER program, she says, will likely be applicable — at least on some level — to other markets throughout Asia, and even around the world.“Taiwan is very much dependent on imported energy,” Duan notes. “Many countries in East Asia are facing similar challenges, and if Taiwan has a good roadmap for the future of energy, it can be a good role model.”“Taiwan is a great place for this sort of collaboration,” Armstrong says. “Their industry is very innovative, and it’s a place where businesses are willing to implement new, important ideas. At the same time, their economy is highly dependent on trade, and they import a lot of fossil fuels today. To compete in a decarbonized global economy, they’re going to have to find alternatives to that. If you can develop a path from today’s economy in Taiwan to a future manufacturing economy that is decarbonized, then that gives you a lot of interesting tools you could bring to bear in other economies.”Uncovering solutionsStakeholders from MIT and the participating companies meet for monthly webinars and biannual in-person workshops (alternating between Cambridge, Massachusetts, and Taipei) to discuss progress. The research addresses options for Taiwan to increase its supply of green energy, methods for storing and distributing that energy more efficiently, policy levers for implementing these changes, and Taiwan’s place in the global energy economy.“The project on the electric grid, the project on storage, and the project on hydrogen — all three of those are related to the issue of how to decarbonize power generation and delivery,” notes Paltsev. “But we also need to understand how things in other parts of the world are going to affect demand for the products that are produced in Taiwan. If there is a huge change in demand for certain products due to decarbonization, Taiwanese companies are going to feel it. Therefore, the companies want to understand where the demand is going to be coming from, and how to adjust their business strategies.”One of the research projects is looking closely at advanced nuclear power. There are significant political roadblocks standing in the way, but business leaders are intrigued by the prospect of nuclear energy in Taiwan, where available land for wind and solar power generation is sparse.“So far, Taiwan government policy is anti-nuclear,” Hsu says. “The current ruling party is against it. They are still thinking about what happened in the 1960s and 1970s, and they think nuclear is very dangerous. But if you look into it, nuclear generation technology has really improved.”Implementing a green economy roadmapTIGER participants’ interest in green energy solutions is, of course, not merely academic. Ultimately, the success of the program will be determined not only by the insights from the research produced over these two years, but by how these findings constructively inform both the private and public sectors.“MIT and TIGER participants are united in their commitment to advancing regional industrial and economic development, while championing decarbonization and sustainability efforts in Taiwan,” Duan says. “MIT researchers are informed by insights and domain expertise contributed by TIGER participants, believing that their collaborative efforts can help other nations facing similar geo-economic challenges.”“We are helping the companies understand how to stay leaders in this changing world,” says Paltsev. “We want to make sure that we are not painting an unrealistically rosy picture, or conveying that it will be easy to decarbonize. On the contrary, we want to stay realistic and try to show them both where they can make advances and where we see challenges.”The goal, Armstrong says, is not energy independence for Taiwan, but rather energy security. “Energy security requires diversity of supply,” he says. “So, you have a diverse set of suppliers, who are trusted trading partners, but it doesn’t mean you’re on your own. That’s the goal for Taiwan.”What will that mean, more specifically? Well, that’s what TIGER researchers aim to learn. “It probably means a mix of energy sources,” Armstrong says. “It could be that nuclear fission provides a core of energy that companies need for their industrial operations, it could be that they can import hydrogen in the form of ammonia or another carrier, and it could be that they leverage the renewable resources they have, together with storage technologies, to provide some pretty inexpensive energy for their manufacturing sector.”“We don’t know,” Armstrong adds. “But that’s what we’re looking at, to see if we can figure out a pathway that gets them to their goals. We are optimistic that we can get there.”The companies participating in the TIGER program include AcBel Polytech Inc., CDIB Capital Group / KGI Bank Co., Ltd.; Delta Electronics, Inc.; Fubon Financial Holding Co., Ltd.; Paul Hsu and Partners Co., Ltd.; Ta Ya Electric Wire & Cable Co., Ltd.; TCC Group Holdings Co. Ltd.; Walsin Lihwa Corporation; Wistron Corporation; and Zhen Ding Technology Holding, Ltd. More

  • in

    3 Questions: Can we secure a sustainable supply of nickel?

    As the world strives to cut back on carbon emissions, demand for minerals and metals needed for clean energy technologies is growing rapidly, sometimes straining existing supply chains and harming local environments. In a new study published today in Joule, Elsa Olivetti, a professor of materials science and engineering and director of the Decarbonizing Energy and Industry mission within MIT’s Climate Project, along with recent graduates Basuhi Ravi PhD ’23 and Karan Bhuwalka PhD ’24 and nine others, examine the case of nickel, which is an essential element for some electric vehicle batteries and parts of some solar panels and wind turbines.How robust is the supply of this vital metal, and what are the implications of its extraction for the local environments, economies, and communities in the places where it is mined? MIT News asked Olivetti, Ravi, and Bhuwalka to explain their findings.Q: Why is nickel becoming more important in the clean energy economy, and what are some of the potential issues in its supply chain?Olivetti: Nickel is increasingly important for its role in EV batteries, as well as other technologies such as wind and solar. For batteries, high-purity nickel sulfate is a key input to the cathodes of EV batteries, which enables high energy density in batteries and increased driving range for EVs. As the world transitions away from fossil fuels, the demand for EVs, and consequently for nickel, has increased dramatically and is projected to continue to do so.The nickel supply chain for battery-grade nickel sulfate includes mining nickel from ore deposits, processing it to a suitable nickel intermediary, and refining it to nickel sulfate. The potential issues in the supply chain can be broadly described as land use concerns in the mining stage, and emissions concerns in the processing stage. This is obviously oversimplified, but as a basic structure for our inquiry we thought about it this way. Nickel mining is land-intensive, leading to deforestation, displacement of communities, and potential contamination of soil and water resources from mining waste. In the processing step, the use of fossil fuels leads to direct emissions including particulate matter and sulfur oxides. In addition, some emerging processing pathways are particularly energy-intensive, which can double the carbon footprint of nickel-rich batteries compared to the current average.Q: What is Indonesia’s role in the global nickel supply, and what are the consequences of nickel extraction there and in other major supply countries?Ravi: Indonesia plays a critical role in nickel supply, holding the world’s largest nickel reserves and supplying nearly half of the globally mined nickel in 2023. The country’s nickel production has seen a remarkable tenfold increase since 2016. This production surge has fueled economic growth in some regions, but also brought notable environmental and social impacts to nickel mining and processing areas.Nickel mining expansion in Indonesia has been linked to health impacts due to air pollution in the islands where nickel processing is prominent, as well as deforestation in some of the most biodiversity-rich locations on the planet. Reports of displacement of indigenous communities, land grabbing, water rights issues, and inadequate job quality in and around mines further highlight the social concerns and unequal distribution of burdens and benefits in Indonesia. Similar concerns exist in other major nickel-producing countries, where mining activities can negatively impact the environment, disrupt livelihoods, and exacerbate inequalities.On a global scale, Indonesia’s reliance on coal-based energy for nickel processing, particularly in energy-intensive smelting and leaching of a clay-like material called laterite, results in a high carbon intensity for nickel produced in the region, compared to other major producing regions such as Australia.Q: What role can industry and policymakers play in helping to meet growing demand while improving environmental safety?Bhuwalka: In consuming countries, policies can foster “discerning demand,” which means creating incentives for companies to source nickel from producers that prioritize sustainability. This can be achieved through regulations that establish acceptable environmental footprints for imported materials, such as limits on carbon emissions from nickel production. For example, the EU’s Critical Raw Materials Act and the U.S. Inflation Reduction Act could be leveraged to promote responsible sourcing. Additionally, governments can use their purchasing power to favor sustainably produced nickel in public procurement, which could influence industry practices and encourage the adoption of sustainability standards.On the supply side, nickel-producing countries like Indonesia can implement policies to mitigate the adverse environmental and social impacts of nickel extraction. This includes strengthening environmental regulations and enforcement to reduce the footprint of mining and processing, potentially through stricter pollution limits and responsible mine waste management. In addition, supporting community engagement, implementing benefit-sharing mechanisms, and investing in cleaner nickel processing technologies are also crucial.Internationally, harmonizing sustainability standards and facilitating capacity building and technology transfer between developed and developing countries can create a level playing field and prevent unsustainable practices. Responsible investment practices by international financial institutions, favoring projects that meet high environmental and social standards, can also contribute to a stable and sustainable nickel supply chain. More