More stories

  • in

    Exploring new sides of climate and sustainability research

    When the MIT Climate and Sustainability Consortium (MCSC) launched its Climate and Sustainability Scholars Program in fall 2022, the goal was to offer undergraduate students a unique way to develop and implement research projects with the strong support of each other and MIT faculty. Now into its second semester, the program is underscoring the value of fostering this kind of network — a community with MIT students at its core, exploring their diverse interests and passions in the climate and sustainability realms.Inspired by MIT’s successful SuperUROP [Undergraduate Research Opportunities Program], the yearlong MCSC Climate and Sustainability Scholars Program includes a classroom component combined with experiential learning opportunities and mentorship, all centered on climate and sustainability topics.“Harnessing the innovation, passion, and expertise of our talented students is critical to MIT’s mission of tackling the climate crisis,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MCSC. “The program is helping train students from a variety of disciplines and backgrounds to be effective leaders in climate and sustainability-focused roles in the future.”

    “What we found inspiring about MIT’s existing SuperUROP program was how it provides students with the guidance, training, and resources they need to investigate the world’s toughest problems,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director. “This incredible level of support and mentorship encourages students to think and explore in creative ways, make new connections, and develop strategies and solutions that propel their work forward.”The first and current cohort of Climate and Sustainability Scholars consists of 19 students, representing MIT’s School of Engineering, MIT Schwarzman College of Computing, School of Science, School of Architecture and Planning, and MIT Sloan School of Management. These students are learning new perspectives, approaches, and angles in climate and sustainability — from each other, MIT faculty, and industry professionals.Projects with real-world applicationsStudents in the program work directly with faculty and principal investigators across MIT to develop their research projects focused on a large scope of sustainability topics.

    “This broad scope is important,” says Desirée Plata, MIT’s Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, “because climate and sustainability solutions are needed in every facet of society. For a long time, people were searching for a ‘silver bullet’ solution to the climate change problems, but we didn’t get to this point with a single technological decision. This problem was created across a spectrum of sociotechnological activities, and fundamentally different thinking across a spectrum of solutions is what’s needed to move us forward. MCSC students are working to provide those solutions.”

    Undergraduate student and physics major M. (MG) Geogdzhayeva is working with Raffaele Ferrari, Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate, on their project “Using Continuous Time Markov Chains to Project Extreme Events under Climate.” Geogdzhayeva’s research supports the Flagship Climate Grand Challenges project that Ferrari is leading along with Professor Noelle Eckley Selin.

    “The project I am working on has a similar approach to the Climate Grand Challenges project entitled “Bringing computation to the climate challenge,” says Geogdzhayeva. “I am designing an emulator for climate extremes. Our goal is to boil down climate information to what is necessary and to create a framework that can deliver specific information — in order to develop valuable forecasts. As someone who comes from a physics background, the Climate and Sustainability Scholars Program has helped me think about how my research fits into the real world, and how it could be implemented.”

    Investigating technology and stakeholders

    Within technology development, Jade Chongsathapornpong, also a physics major, is diving into photo-modulated catalytic reactions for clean energy applications. Chongsathapornpong, who has worked with the MCSC on carbon capture and sequestration through the Undergraduate Research Opportunities Program (UROP), is now working with Harry Tuller, MIT’s R.P. Simmons Professor of Ceramics and Electronic Materials. Louise Anderfaas, majoring in materials science and engineering, is also working with Tuller on her project “Robust and High Sensitivity Detectors for Exploration of Deep Geothermal Wells.”Two other students who have worked with the MCSC through UROP include Paul Irvine, electrical engineering and computer science major, who is now researching American conservatism’s current relation to and views about sustainability and climate change, and Pamela Duke, management major, now investigating the use of simulation tools to empower industrial decision-makers around climate change action.Other projects focusing on technology development include the experimental characterization of poly(arylene ethers) for energy-efficient propane/propylene separations by Duha Syar, who is a chemical engineering major and working with Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering; developing methods to improve sheet steel recycling by Rebecca Lizarde, who is majoring in materials science and engineering; and ion conduction in polymer-ceramic composite electrolytes by Melissa Stok, also majoring in materials science and engineering.

    Melissa Stok, materials science and engineering major, during a classroom discussion.

    Photo: Andrew Okyere

    Previous item
    Next item

    “My project is very closely connected to developing better Li-Ion batteries, which are extremely important in our transition towards clean energy,” explains Stok, who is working with Bilge Yildiz, MIT’s Breene M. Kerr (1951) Professor of Nuclear Science and Engineering. “Currently, electric cars are limited in their range by their battery capacity, so working to create more effective batteries with higher energy densities and better power capacities will help make these cars go farther and faster. In addition, using safer materials that do not have as high of an environmental toll for extraction is also important.” Claire Kim, a chemical engineering major, is focusing on batteries as well, but is honing in on large form factor batteries more relevant for grid-scale energy storage with Fikile Brushett, associate professor of chemical engineering.Some students in the program chose to focus on stakeholders, which, when it comes to climate and sustainability, can range from entities in business and industry to farmers to Indigenous people and their communities. Shivani Konduru, an electrical engineering and computer science major, is exploring the “backfire effects” in climate change communication, focusing on perceptions of climate change and how the messenger may change outcomes, and Einat Gavish, mathematics major, on how different stakeholders perceive information on driving behavior.Two students are researching the impact of technology on local populations. Anushree Chaudhuri, who is majoring in urban studies and planning, is working with Lawrence Susskind, Ford Professor of Urban and Environmental Planning, on community acceptance of renewable energy siting, and Amelia Dogan, also an urban studies and planning major, is working with Danielle Wood, assistant professor of aeronautics and astronautics and media arts and sciences, on Indigenous data sovereignty in environmental contexts.

    “I am interviewing Indigenous environmental activists for my project,” says Dogan. “This course is the first one directly related to sustainability that I have taken, and I am really enjoying it. It has opened me up to other aspects of climate beyond just the humanity side, which is my focus. I did MIT’s SuperUROP program and loved it, so was excited to do this similar opportunity with the climate and sustainability focus.”

    Other projects include in-field monitoring of water quality by Dahlia Dry, a physics major; understanding carbon release and accrual in coastal wetlands by Trinity Stallins, an urban studies and planning major; and investigating enzyme synthesis for bioremediation by Delight Nweneka, an electrical engineering and computer science major, each linked to the MCSC’s impact pathway work in nature-based solutions.

    The wide range of research topics underscores the Climate and Sustainability Program’s goal of bringing together diverse interests, backgrounds, and areas of study even within the same major. For example, Helena McDonald is studying pollution impacts of rocket launches, while Aviva Intveld is analyzing the paleoclimate and paleoenvironment background of the first peopling of the Americas. Both students are Earth, atmospheric and planetary sciences majors but are researching climate impacts from very different perspectives. Intveld was recently named a 2023 Gates Cambridge Scholar.

    “There are students represented from several majors in the program, and some people are working on more technical projects, while others are interpersonal. Both approaches are really necessary in the pursuit of climate resilience,” says Grace Harrington, who is majoring in civil and environmental engineering and whose project investigates ways to optimize the power of the wind farm. “I think it’s one of the few classes I’ve taken with such an interdisciplinary nature.”

    Shivani Konduru, electrical engineering and computer science major, during a classroom lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Perspectives and guidance from MIT and industry expertsAs students are developing these projects, they are also taking the program’s course (Climate.UAR), which covers key topics in climate change science, decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts. The course is cross-listed in departments across all five schools and is taught by an experienced and interdisciplinary team. Desirée Plata was central to developing the Climate and Sustainability Scholars Programs and course with Associate Professor Elsa Olivetti, who taught the first semester. Olivetti is now co-teaching the second semester with Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. The course’s writing instructors are Caroline Beimford and David Larson.  

    “I have been introduced to a lot of new angles in the climate space through the weekly guest lecturers, who each shared a different sustainability-related perspective,” says Claire Kim. “As a chemical engineering major, I have mostly looked into the technologies for decarbonization, and how to scale them, so learning about policy, for example, was helpful for me. Professor Black from the Department of History spoke about how we can analyze the effectiveness of past policy to guide future policy, while Professor Selin talked about framing different climate policies as having co-benefits. These perspectives are really useful because no matter how good a technology is, you need to convince other people to adopt it, or have strong policy in place to encourage its use, in order for it to be effective.”

    Bringing the industry perspective, guests have presented from MCSC member companies such as PepsiCo, Holcim, Apple, Cargill, and Boeing. As an example, in one class, climate leaders from three companies presented together on their approaches to setting climate goals, barriers to reaching them, and ways to work together. “When I presented to the class, alongside my counterparts at Apple and Boeing, the student questions pushed us to explain how can collaborate on ways to achieve our climate goals, reflecting the broader opportunity we find within the MCSC,” says Dana Boyer, sustainability manager at Cargill.

    Witnessing the cross-industry dynamics unfold in class was particularly engaging for the students. “The most beneficial part of the program for me is the number of guest lectures who have come in to the class, not only from MIT but also from the industry side,” Grace Harrington adds. “The diverse range of people talking about their own fields has allowed me to make connections between all my classes.”Bringing in perspectives from both academia and industry is a reflection of the MCSC’s larger mission of linking its corporate members with each other and with the MIT community to develop scalable climate solutions.“In addition to focusing on an independent research project and engaging with a peer community, we’ve had the opportunity to hear from speakers across the sustainability space who are also part of or closely connected to the MIT ecosystem,” says Anushree Chaudhuri. “These opportunities have helped me make connections and learn about initiatives at the Institute that are closely related to existing or planned student sustainability projects. These connections — across topics like waste management, survey best practices, and climate communications — have strengthened student projects and opened pathways for future collaborations.

    Basuhi Ravi, MIT PhD candidate, giving a guest lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Having a positive impact as students and after graduation

    At the start of the program, students identified several goals, including developing focused independent research questions, drawing connections and links with real-world challenges, strengthening their critical thinking skills, and reflecting on their future career ambitions. A common thread throughout them all: the commitment to having a meaningful impact on climate and sustainability challenges both as students now, and as working professionals after graduation.“I’ve absolutely loved connecting with like-minded peers through the program. I happened to know most of the students coming in from various other communities on campus, so it’s been a really special experience for all of these people who I couldn’t connect with as a cohesive cohort before to come together. Whenever we have small group discussions in class, I’m always grateful for the time to learn about the interdisciplinary research projects everyone is involved with,” concludes Chaudhuri. “I’m looking forward to staying in touch with this group going forward, since I think most of us are planning on grad school and/or careers related to climate and sustainability.”

    The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research. Learn about how you can get involved. More

  • in

    Benjamin Mangrum receives the 2023 Levitan Prize in the Humanities

    Benjamin Mangrum, assistant professor of literature at MIT, has been awarded the 2023 Levitan Prize in the Humanities. This award, presented each year by a faculty committee, empowers a member of the MIT School of Humanities, Arts, and Social Sciences (SHASS) faculty with funding to enable research in their field. With an award of $30,000, this annual prize continues to power substantial projects among the members of the SHASS community.

    Mangrum will use the award to support research for his upcoming book, which is a cultural and intellectual history of environmental rights. In the book, Mangrum discusses the cultural structures that have helped link rights language to environmental concerns. Mangrum plans to use the funding from the Levitan Prize for research into a chapter involving literary personhood.

    “Assertions of environmental rights are typically the result of pragmatic or strategic alignments between, say, naturalists and labor organizers or indigenous communities and governments,” he writes. “My book examines the compromises and conceptual negotiations that occur for ‘environmental rights’ to be a workable concept.”

    The notion of environmental rights can refer to the right of citizens to live in a healthy environment, but it can also include the attribution of rights to nonhuman entities. Such designation received increased attention when New Zealand gave the Whanganui River a legal identity, bringing the longest-running litigation in New Zealand history to an end. India has named rivers legal entities and Bangladesh has given all its rivers legal rights.

    “Personhood status was a compromise between the government and a group of Māori tribes who demanded recognition for the river based on past treaties,” Mangrum writes. “I’m interested in how these very different kinds of discourse — political rights, environmental science, indigenous culture, public health — have come together during the 20th and 21st centuries.”

    For the chapter, Mangrum explores the argument made by legal theorist Christopher Stone in “Should Trees Have Standing?” First published in 1972, Stone’s essay is a foundational argument in environmental law. Stone maintains that natural objects can be given legal personhood, an argument that is often cited in legal framings of environmental rights. Mangrum explores the literary dimensions of legal personhood.

    “I argue that the intellectual and cultural history of legal personhood shares unacknowledged debts to the evolution in theories of literary personhood,” Mangrum writes. “A reader’s attribution of personhood does not serve the same social and moral functions as the attribution of personhood to corporations and other nonhuman entities. However, I argue that modern ideas about literary personhood are cognitively homologous with legal personhood: despite serving different functions, these conceptions of personhood share conceptual structures and intellectual origins.”

    In one recently published article, he examines the language used by Rachel Carson and others in the nascent environmental movement. In 1963, Carson testified before a U.S. Senate subcommittee on the threat of pesticides. It was considered a watershed moment for environmentalism, but notable also for intellectual history. Her use of the vocabulary of rights and her advocacy for environmental regulations in a public forum were significant forces in the institutionalization of environmental rights.

    Mangrum notes Carson’s claim of “the right of the citizen to be secure in his own home against the intrusion of poisons applied by other persons.” Carson uses the language of rights to introduce environmental concerns within the public sphere, but this language also has implications for how we understand our relationship to the nonhuman world.

    Before arriving at MIT in 2022, Mangrum taught at the University of the South, the University of Michigan, and Davidson College. He is the author of “Land of Tomorrow: Postwar Fiction and the Crisis of American Liberalism” (Oxford 2019), which examines 20th-century literary fiction and popular philosophy to understand shifts in American liberalism after World War II. He received his PhD from the University of North Carolina at Chapel Hill. More

  • in

    Helping the cause of environmental resilience

    Haruko Wainwright, the Norman C. Rasmussen Career Development Professor in Nuclear Science and Engineering (NSE) and assistant professor in civil and environmental engineering at MIT, grew up in rural Japan, where many nuclear facilities are located. She remembers worrying about the facilities as a child. Wainwright was only 6 at the time of the Chernobyl accident in 1986, but still recollects it vividly.

    Those early memories have contributed to Wainwright’s determination to research how technologies can mold environmental resilience — the capability of mitigating the consequences of accidents and recovering from contamination.

    Wainwright believes that environmental monitoring can help improve resilience. She co-leads the U.S. Department of Energy (DOE)’s Advanced Long-term Environmental Monitoring Systems (ALTEMIS) project, which integrates technologies such as in situ sensors, geophysics, remote sensing, simulations, and artificial intelligence to establish new paradigms for monitoring. The project focuses on soil and groundwater contamination at more than 100 U.S. sites that were used for nuclear weapons production.

    As part of this research, which was featured last year in Environmental Science & Technology Journal, Wainwright is working on a machine learning framework for improving environmental monitoring strategies. She hopes the ALTEMIS project will enable the rapid detection of anomalies while ensuring the stability of residual contamination and waste disposal facilities.

    Childhood in rural Japan

    Even as a child, Wainwright was interested in physics, history, and a variety of other subjects.

    But growing up in a rural area was not ideal for someone interested in STEM. There were no engineers or scientists in the community and no science museums, either. “It was not so cool to be interested in science, and I never talked about my interest with anyone,” Wainwright recalls.

    Television and books were the only door to the world of science. “I did not study English until middle school and I had never been on a plane until college. I sometimes find it miraculous that I am now working in the U.S. and teaching at MIT,” she says.

    As she grew a little older, Wainwright heard a lot of discussions about nuclear facilities in the region and many stories about Hiroshima and Nagasaki.

    At the same time, giants like Marie Curie inspired her to pursue science. Nuclear physics was particularly fascinating. “At some point during high school, I started wondering ‘what are radiations, what is radioactivity, what is light,’” she recalls. Reading Richard Feynman’s books and trying to understand quantum mechanics made her want to study physics in college.

    Pursuing research in the United States

    Wainwright pursued an undergraduate degree in engineering physics at Kyoto University. After two research internships in the United States, Wainwright was impressed by the dynamic and fast-paced research environment in the country.

    And compared to Japan, there were “more women in science and engineering,” Wainwright says. She enrolled at the University of California at Berkeley in 2005, where she completed her doctorate in nuclear engineering with minors in statistics and civil and environmental engineering.

    Before moving to MIT NSE in 2022, Wainwright was a staff scientist in the Earth and Environmental Area at Lawrence Berkeley National Laboratory (LBNL). She worked on a variety of topics, including radioactive contamination, climate science, CO2 sequestration, precision agriculture, and watershed science. Her time at LBNL helped Wainwright build a solid foundation about a variety of environmental sensors and monitoring and simulation methods across different earth science disciplines.   

    Empowering communities through monitoring

    One of the most compelling takeaways from Wainwright’s early research: People trust actual measurements and data as facts, even though they are skeptical about models and predictions. “I talked with many people living in Fukushima prefecture. Many of them have dosimeters and measure radiation levels on their own. They might not trust the government, but they trust their own data and are then convinced that it is safe to live there and to eat local food,” Wainwright says.

    She has been impressed that area citizens have gained significant knowledge about radiation and radioactivity through these efforts. “But they are often frustrated that people living far away, in cities like Tokyo, still avoid agricultural products from Fukushima,” Wainwright says.

    Wainwright thinks that data derived from environmental monitoring — through proper visualization and communication — can address misconceptions and fake news that often hurt people near contaminated sites.

    Wainwright is now interested in how these technologies — tested with real data at contaminated sites — can be proactively used for existing and future nuclear facilities “before contamination happens,” as she explored for Nuclear News. “I don’t think it is a good idea to simply dismiss someone’s concern as irrational. Showing credible data has been much more effective to provide assurance. Or a proper monitoring network would enable us to minimize contamination or support emergency responses when accidents happen,” she says.

    Educating communities and students

    Part of empowering communities involves improving their ability to process science-based information. “Potentially hazardous facilities always end up in rural regions; minorities’ concerns are often ignored. The problem is that these regions don’t produce so many scientists or policymakers; they don’t have a voice,” Wainwright says, “I am determined to dedicate my time to improve STEM education in rural regions and to increase the voice in these regions.”

    In a project funded by DOE, she collaborates with the team of researchers at the University of Alaska — the Alaska Center for Energy and Power and Teaching Through Technology program — aiming to improve STEM education for rural and indigenous communities. “Alaska is an important place for energy transition and environmental justice,” Wainwright says. Micro-nuclear reactors can potentially improve the life of rural communities who bear the brunt of the high cost of fuel and transportation. However, there is a distrust of nuclear technologies, stemming from past nuclear weapon testing. At the same time, Alaska has vast metal mining resources for renewable energy and batteries. And there are concerns about environmental contamination from mining and various sources. The teams’ vision is much broader, she points out. “The focus is on broader environmental monitoring technologies and relevant STEM education, addressing general water and air qualities,” Wainwright says.

    The issues also weave into the courses Wainwright teaches at MIT. “I think it is important for engineering students to be aware of environmental justice related to energy waste and mining as well as past contamination events and their recovery,” she says. “It is not OK just to send waste to, or develop mines in, rural regions, which could be a special place for some people. We need to make sure that these developments will not harm the environment and health of local communities.” Wainwright also hopes that this knowledge will ultimately encourage students to think creatively about engineering designs that minimize waste or recycle material.

    The last question of the final quiz of one of her recent courses was: Assume that you store high-level radioactive waste in your “backyard.” What technical strategies would make you and your family feel safe? “All students thought about this question seriously and many suggested excellent points, including those addressing environmental monitoring,” Wainwright says, “that made me hopeful about the future.” More

  • in

    Minimizing electric vehicles’ impact on the grid

    National and global plans to combat climate change include increasing the electrification of vehicles and the percentage of electricity generated from renewable sources. But some projections show that these trends might require costly new power plants to meet peak loads in the evening when cars are plugged in after the workday. What’s more, overproduction of power from solar farms during the daytime can waste valuable electricity-generation capacity.

    In a new study, MIT researchers have found that it’s possible to mitigate or eliminate both these problems without the need for advanced technological systems of connected devices and real-time communications, which could add to costs and energy consumption. Instead, encouraging the placing of charging stations for electric vehicles (EVs) in strategic ways, rather than letting them spring up anywhere, and setting up systems to initiate car charging at delayed times could potentially make all the difference.

    The study, published today in the journal Cell Reports Physical Science, is by Zachary Needell PhD ’22, postdoc Wei Wei, and Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society.

    In their analysis, the researchers used data collected in two sample cities: New York and Dallas. The data were gathered from, among other sources, anonymized records collected via onboard devices in vehicles, and surveys that carefully sampled populations to cover variable travel behaviors. They showed the times of day cars are used and for how long, and how much time the vehicles spend at different kinds of locations — residential, workplace, shopping, entertainment, and so on.

    The findings, Trancik says, “round out the picture on the question of where to strategically locate chargers to support EV adoption and also support the power grid.”

    Better availability of charging stations at workplaces, for example, could help to soak up peak power being produced at midday from solar power installations, which might otherwise go to waste because it is not economical to build enough battery or other storage capacity to save all of it for later in the day. Thus, workplace chargers can provide a double benefit, helping to reduce the evening peak load from EV charging and also making use of the solar electricity output.

    These effects on the electric power system are considerable, especially if the system must meet charging demands for a fully electrified personal vehicle fleet alongside the peaks in other demand for electricity, for example on the hottest days of the year. If unmitigated, the evening peaks in EV charging demand could require installing upwards of 20 percent more power-generation capacity, the researchers say.

    “Slow workplace charging can be more preferable than faster charging technologies for enabling a higher utilization of midday solar resources,” Wei says.

    Meanwhile, with delayed home charging, each EV charger could be accompanied by a simple app to estimate the time to begin its charging cycle so that it charges just before it is needed the next day. Unlike other proposals that require a centralized control of the charging cycle, such a system needs no interdevice communication of information and can be preprogrammed — and can accomplish a major shift in the demand on the grid caused by increasing EV penetration. The reason it works so well, Trancik says, is because of the natural variability in driving behaviors across individuals in a population.

    By “home charging,” the researchers aren’t only referring to charging equipment in individual garages or parking areas. They say it’s essential to make charging stations available in on-street parking locations and in apartment building parking areas as well.

    Trancik says the findings highlight the value of combining the two measures — workplace charging and delayed home charging — to reduce peak electricity demand, store solar energy, and conveniently meet drivers’ charging needs on all days. As the team showed in earlier research, home charging can be a particularly effective component of a strategic package of charging locations; workplace charging, they have found, is not a good substitute for home charging for meeting drivers’ needs on all days.

    “Given that there’s a lot of public money going into expanding charging infrastructure,” Trancik says, “how do you incentivize the location such that this is going to be efficiently and effectively integrated into the power grid without requiring a lot of additional capacity expansion?” This research offers some guidance to policymakers on where to focus rules and incentives.

    “I think one of the fascinating things about these findings is that by being strategic you can avoid a lot of physical infrastructure that you would otherwise need,” she adds. “Your electric vehicles can displace some of the need for stationary energy storage, and you can also avoid the need to expand the capacity of power plants, by thinking about the location of chargers as a tool for managing demands — where they occur and when they occur.”

    Delayed home charging could make a surprising amount of difference, the team found. “It’s basically incentivizing people to begin charging later. This can be something that is preprogrammed into your chargers. You incentivize people to delay the onset of charging by a bit, so that not everyone is charging at the same time, and that smooths out the peak.”

    Such a program would require some advance commitment on the part of participants. “You would need to have enough people committing to this program in advance to avoid the investment in physical infrastructure,” Trancik says. “So, if you have enough people signing up, then you essentially don’t have to build those extra power plants.”

    It’s not a given that all of this would line up just right, and putting in place the right mix of incentives would be crucial. “If you want electric vehicles to act as an effective storage technology for solar energy, then the [EV] market needs to grow fast enough in order to be able to do that,” Trancik says.

    To best use public funds to help make that happen, she says, “you can incentivize charging installations, which would go through ideally a competitive process — in the private sector, you would have companies bidding for different projects, but you can incentivize installing charging at workplaces, for example, to tap into both of these benefits.” Chargers people can access when they are parked near their residences are also important, Trancik adds, but for other reasons. Home charging is one of the ways to meet charging needs while avoiding inconvenient disruptions to people’s travel activities.

    The study was supported by the European Regional Development Fund Operational Program for Competitiveness and Internationalization, the Lisbon Portugal Regional Operation Program, and the Portuguese Foundation for Science and Technology. More

  • in

    3 Questions: Antje Danielson on energy education and its role in climate action

    The MIT Energy Initiative (MITEI) leads energy education at MIT, developing and implementing a robust educational toolkit for MIT graduate and undergraduate students, online learners around the world, and high school students who want to contribute to the energy transition. As MITEI’s director of education, Antje Danielson manages a team devoted to training the next generation of energy innovators, entrepreneurs, and policymakers. Here, she discusses new initiatives in MITEI’s education program and how they are preparing students to take an active role in climate action.

    Q: What role are MITEI’s education efforts playing in climate action initiatives at MIT, and what more could we be doing?

    A: This is a big question. The carbon emissions from energy are such an important factor in climate mitigation; therefore, what we do in energy education is practically synonymous with climate education. This is well illustrated in a 2018 Nature Energy paper by Fuso Nerini, which outlines that affordable, clean energy is related to many of the United Nations Sustainable Development Goals (SDGs) — not just SDG 7, which specifically calls for “affordable, reliable, sustainable, and modern energy for all” by 2030. There are 17 SDGs containing 169 targets, of which 113 (65 percent) require actions to be taken concerning energy systems.

    Now, can we equate education with action? The answer is yes, but only if it is done correctly. From the behavioral change literature, we know that knowledge alone is not enough to change behavior. So, one important part of our education program is practice and experience through research, internships, stakeholder engagement, and other avenues. At a minimum, education must give the learner the knowledge, skills, and courage to be ready to jump into action, but ideally, practice is a part of the offering. We also want our learners to go out into the world and share what they know and do. If done right, education is an energy transition accelerator.

    At MITEI, our learners are not just MIT students. We are creating online offerings based on residential MIT courses to train global professionals, policymakers, and students in research methods and tools to support and accelerate the energy transition. These are free and open to learners worldwide. We have five courses available now, with more to come.

    Our latest program is a collaboration with MIT’s Center for Energy and Environmental Policy Research (CEEPR): Climate Action through Education, or CATE. This is a teach-the-teacher program for high school curriculum and is a part of the MIT Climate Action Plan. The aim is to develop interdisciplinary, solutions-focused climate change curricula for U.S. high school teachers with components in history/social science, English/language arts, math, science, and computer science.

    We are rapidly expanding our programming. In the online space, for our global learners, we are bundling courses for professional development certificates; for our undergraduates, we are redesigning the energy studies minor to reflect what we have learned over the past 12 years; and for our graduate students, we are adding a new program that allows them to garner industry experience related to the energy transition. Meanwhile, CATE is creating a support network for the teachers who adopt the curriculum. We are also working on creating an energy and climate alliance with other universities around the world.

    On the Institute level, I am a member of the Climate Education Working Group, a subgroup of the Climate Nucleus, where we discuss and will soon recommend further climate action the Institute can take. Stay tuned for that.

    Q: You mentioned that you are leading an effort to create a consortium of energy and climate education programs at universities around the world. How does this effort fit into MITEI’s educational mission?

    A: Yes, we are currently calling it the “Energy and Climate Education Alliance.” The background to this is that the problem we are facing — transitioning the entire global energy system from high carbon emissions to low, no, and negative carbon emissions — is global, huge, and urgent. Following the proverbial “many hands make light work,” we believe that the success of this very complex task is accomplished quicker with more participants. There is, of course, more to this as well. The complexity of the problem is such that (1) MIT doesn’t have all the expertise needed to accomplish the educational needs of the climate and energy crisis, (2) there is a definite local and regional component to capacity building, and (3) collaborations with universities around the world will make our mission-driven work more efficient. Finally, these collaborations will be advantageous for our students as they will be able to learn from real-world case studies that are not U.S.-based and maybe even visit other universities abroad, do internships, and engage in collaborative research projects. Also, students from those universities will be able to come here and experience MIT’s unique intellectual environment.

    Right now, we are very much in the beginning stages of creating the alliance. We have signed a collaboration agreement with the Technical University of Berlin, Germany, and are engaged in talks with other European and Southeast Asian universities. Some of the collaborations we are envisioning relate to course development, student exchange, collaborative research, and course promotion. We are very excited about this collaboration. It fits well into MIT’s ambition to take climate action outside of the university, while still staying within our educational mission.

    Q: It is clear to me from this conversation that MITEI’s education program is undertaking a number of initiatives to prepare MIT students and interested learners outside of the Institute to take an active role in climate action. But, the reality is that despite our rapidly changing climate and the immediate need to decarbonize our global economy, climate denialism and a lack of climate and energy understanding persist in the greater global population. What do you think must be done, and what can MITEI do, to increase climate and energy literacy broadly?

    A: I think the basic problem is not necessarily a lack of understanding but an abundance of competing issues that people are dealing with every day. Poverty, personal health, unemployment, inflation, pandemics, housing, wars — all are very immediate problems people have. And climate change is perceived to be in the future.

    The United States is a very bottom-up country, where corporations offer what people buy, and politicians advocate for what voters want and what money buys. Of course, this is overly simplified, but as long as we don’t come up with mechanisms to achieve a monumental shift in consumer and voter behavior, we are up against these immediate pressures. However, we are seeing some movement in this area due to rising gas and heating oil prices and the many natural disasters we are encountering now. People are starting to understand that climate change will hit their pocketbook, whether or not we have a carbon tax. The recent Florida hurricane damage, wildfires in the west, extreme summer temperatures, frequent droughts, increasing numbers of poisonous and disease-carrying insects — they all illustrate the relationship between climate change, health, and financial damage. Fewer and fewer people will be able to deny the existence of climate change because they will either be directly affected or know someone who is.

    The question is one of speed and scale. The more we can help to make the connections even more visible and understood, the faster we get to the general acceptance that this is real. Research projects like CEEPR’s Roosevelt Project, which develops action plans to help communities deal with industrial upheaval in the context of the energy transition, are contributing to this effect, as are studies related to climate change and national security. This is a fast-moving world, and our research findings need to be translated as we speak. A real problem in education is that we have the tendency to teach the tried and true. Our education programs have to become much nimbler, which means curricula have to be updated frequently, and that is expensive. And of course, the speed and magnitude of our efforts are dependent on the funding we can attract, and fundraising for education is more difficult than fundraising for research.

    However, let me pivot: You alluded to the fact that this is a global problem. The immediate pressures of poverty and hunger are a matter of survival in many parts of the world, and when it comes to surviving another day, who cares if climate change will render your fields unproductive in 20 years? Or if the weather turns your homeland into a lake, will you think about lobbying your government to reduce carbon emissions, or will you ask for help to rebuild your existence? On the flip side, politicians and government authorities in those areas have to deal with extremely complex situations, balancing local needs with global demands. We should learn from them. What we need is to listen. What do these areas of the world need most, and how can climate action be included in the calculations? The Global Commission to End Energy Poverty, a collaboration between MITEI and the Rockefeller Foundation to bring electricity to the billion people across the globe who currently live without it, is a good example of what we are already doing. Both our online education program and the Energy and Climate Education Alliance aim to go in this direction.

    The struggle and challenge to solve climate change can be pretty depressing, and there are many days when I feel despondent about the speed and progress we are making in saving the future of humanity. But, the prospect of contributing to such a large mission, even if the education team can only nudge us a tiny bit away from the business-as-usual scenario, is exciting. In particular, working on an issue like this at MIT is amazing. So much is happening here, and there don’t seem to be intellectual limits; in fact, thinking big is encouraged. It is very refreshing when one has encountered the old “you can’t do this” too often in the past. I want our students to take this attitude with them and go out there and think big. More

  • in

    Food for thought, thought for food

    According to the Food and Agriculture Organization of the United Nations, approximately 3.1 billion people worldwide were unable to afford a healthy diet in 2020. Meanwhile, in 2021 close to 2.3 billion people were moderately or severely food insecure. Given the strong link between malnutrition and income disparity, the numbers paint a grim picture representing one of the grand challenges of our time.

    “I’m probably an idealist,” says MIT Research Scientist Christopher Mejía Argueta, “but I really believe that if we change our diets and think about ways to help others, we can make a difference — that’s my motivation.”

    Mejía Argueta is the founder and director of the MIT Food and Retail Operations Lab (FaROL). He has more than a decade of experience in supply chain management, optimization, and effective data-driven decision-making on pressing issues like the evolution of end consumers for retail and e-tail supply chains, food waste, and equitable access to nutrition.  

    Supply chain network designs typically focus on minimizing costs without considering the implications (e.g., cost) of changes in consumer behavior. Mejía Argueta and his colleagues at the FaROL, however, are working to understand and design optimal supply chains to create high-performance operations based on consumer choice. “Understanding the significant factors of consumer choice and analyzing their evolution over time becomes critical to designing forward-looking retail operations with data-driven and customer-centric supply chains, inventory management, and distribution systems,” explains Mejía Argueta. 

    Play video

    One of his recent projects examined the challenges of small retailers worldwide. These mom-and-pop outlets, or nanostores, account for 50 percent of the global market share and are the primary source of consumer packaged goods for people in urban areas. Worldwide there are nearly 50 million nanostores, each serving between 100-200 households in a community. In India alone, there are 14 million nanostores known as kiranas. And while these retailers are more prevalent in emerging markets, they play an important role in developed markets, particularly in under-resourced communities, and are frequently located in “food deserts,” where they are the only source of essential goods for the community.  

    These small retailers thrive thanks, partly, to their ability to offer the right combination of affordability and convenience while fostering trust with local customers, who often lack access to a supermarket or a grocery store. They often exist in fragmented, densely populated areas where infrastructure and public transportation services are poor and consumers have limited purchasing power. But nanostore shopkeepers and owners are intimately familiar with their customers and their consumption patterns, which means they can connect those consumption patterns or information to the larger supply chain. According to Mejía Argueta, when it comes to the future of retail, nanostores will be the cornerstones of growth in emerging economies. 

    But it’s a complicated scenario. Mom-and-pop shops don’t have the capacity to offer a broad range of products to their customers, and often, they lack access to nutritious food options. Logistically speaking, it is expensive to supply them, and the cost-to-serve (i.e., the logistics cost) is between 10 to 30 percent more expensive than other retailers. According to Mejía Argueta, this has a significant ripple effect, impacting education, productivity, and, eventually, the economic performance of an entire nation.  

    “The high fragmentation of nanostores causes substantial distribution inefficiencies, especially in congested megacities,” he says. “At my lab, we study how to make nanostores more efficient and effective by considering various commercial and logistics strategies while considering inherent technical challenges. We need to serve these small retailers better to help them survive and thrive, to provide a greater impact for underserved communities and the entire economic ecosystem.”

    Play video

    Mejía Argueta and his team recently collaborated with Tufts University and the City of Somerville, Massachusetts, to conduct research on food access models in underserved communities. The Somerville Project explored various interventions to supply fresh produce in food desert neighborhoods.

    “A lack of nutrition does not simply mean a lack of food,” Mejía Argueta says. “It can also be caused by an overabundance of unhealthy foods in a given market, which is particularly troublesome for U.S. cities where people in underserved communities don’t have access to healthy food options. We believe that one way to combat the problem of food deserts is to supply these areas with healthy food options affordably and create awareness programs.”  

    The collaborative project saw Mejía Argueta and his colleagues assessing the impact of several intervention schemes designed to empower the end consumer. For example, they implemented a low-cost grocery delivery model similar to Instacart as well as a ride sharing system to transport people from their homes to grocery stores and back. They also collaborated with a nonprofit organization, Partnership for a Healthier America, and began working with retailers to deliver “veggie boxes” in underserved communities. Models like these provide low-income people access to food while providing dignity of choice, Mejía Argueta explains.  

    When it comes to supply chain management research, sustainability and societal impact often fall by the wayside, but Mejía Argueta’s bottom-up approach shirks tradition. “We’re trying to build a community, employing a socially driven perspective because if you work with the community, you gain their trust. If you want to make something sustainable in the long term, people need to trust in these solutions and engage with the ecosystem as a whole.”  

    And to achieve real-world impact, collaboration is key. Mejía Argueta says that government has an important role to play, developing policy to connect the models he and his colleagues develop in academia to societal challenges. Meanwhile, he believes startups and entrepreneurs can function as bridge-builders to link the flows of information, the flows of goods and cash, and even knowledge and security in an ecosystem that suffers from fragmentation and siloed thinking among stakeholders.

    Finally, Mejía Argueta reflects on the role of corporations and his belief that the MIT Industrial Liaison Program is essential to getting his research to the frontline of business challenges. “The Industrial Liaison Program does a fantastic job of connecting our research to real-world scenarios,” he says. “It creates opportunities for us to have meaningful interactions with corporates for real-world impact. I believe strongly in the MIT motto ‘mens et manus,’ and ILP helps drive our research into practice.” More

  • in

    Decarbonization amid global crises

    A global pandemic. Russia’s invasion of Ukraine. Inflation. The first-ever serious challenge to the peaceful transfer of power in the United States.

    Forced to face a seemingly unending series of once-in-a-generation crises, how can the world continue to focus attention on goals around carbon emissions and climate change? That was the question posed by Philip R. Sharp, the former president of Resources for the Future and a former 10-term member of the U.S. House of Representatives from Indiana, during his MIT Energy Initiative Fall Colloquium address, entitled “The prospects for decarbonization in America: Will global and domestic crises disrupt our plans?”

    Perhaps surprisingly, Sharp sounded an optimistic note in his answer. Despite deep political divisions in the United States, he noted, Congress has passed five major pieces of legislation — under both presidents Donald Trump and Joseph Biden — aimed at accelerating decarbonization efforts. Rather than hampering movement to combat climate change, Sharp said, domestic and global crises have seemed to galvanize support, create new incentives for action, and even unify political rivals around the cause.

    “Almost everybody is dealing with, to some degree, the absolutely profound, churning events that we are amidst now. Most of them are unexpected, and therefore [we’re] not prepared for [them], and they have had a profound shaking of our thinking,” Sharp said. “The conventional wisdom has not held up in almost all of these areas, and therefore it makes it much more difficult for us to think we know how to predict an uncertain future, and [it causes us to] question our own ability as a nation — or anywhere — to actually take on these challenges. And obviously, climate change is one of the most important.”

    However, Sharp continued, these challenges have, in some instances, spurred action. The war in Ukraine, he noted, has upset European energy markets, but it has also highlighted the importance of countries achieving a more energy-independent posture through renewables. “In America,” he added, “we’ve actually seen absolutely stunning … behavior by the United States Congress, of all places.”

    “What we’ve witnessed is, [Congress] put out incredible … sums of money under the previous administration, and then under this administration, to deal with the Covid crisis,” Sharp added later in his talk. “And then the United States government came together — red and blue — to support the Ukrainians against Russia. It saddens me to say, it seems to take a Russian invasion or the Chinese probing us economically to get us moving. But we are moving, and these things are happening.”

    Congressional action

    Sharp cautioned against getting “caught up” in the familiar viewpoint that Congress, in its current incarnation, is fundamentally incapable of passing meaningful legislation. He pointed, in particular, to the passage of five laws over the previous two years:

    The 2020 Energy Act, which has been characterized as a “down payment on fighting climate change.”
    The Infrastructure Investment and Jobs Act (sometimes called the “bipartisan infrastructure bill”), which calls for investments in passenger rail, electric vehicle infrastructure, electric school buses, and other clean-energy measures;
    The CHIPS and Science Act, a $280 billion effort to revitalize the American semiconductor industry, which some analysts say could direct roughly one-quarter of its funding toward accelerating zero-carbon industries and conducting climate research;
    The Inflation Reduction Act (called by some “the largest climate legislation in U.S. history”), which includes tax credits, incentives, and other provisions to help private companies tackle climate change, increase investments in renewable energy, and enhance energy efficiency; and
    The Kigali Amendment to the Montreal Protocol, ratified by the Senate to little fanfare in September, under which the United States agreed to reduce the consumption and production of hydrofluorocarbons (HFCs).
    “It is a big deal,” Sharp said of the dramatic increase in federal climate action. “It is very significant actions that are being taken — more than what we would expect, or I would expect, out of the Congress at any one time.”

    Along with the many billions of dollars of climate-related investments included in the legislation, Sharp said, these new laws will have a number of positive “spillover” effects.

    “This enables state governments, in their policies, to be more aggressive,” Sharp said. “Why? Because it makes it cheaper for some of the investments that they will try to force within their state.” Another “pretty obvious” spillover effect, Sharp said, is that the new laws will enhance U.S. credibility in international negotiations. Finally, he said, these public investments will make the U.S. economy more competitive in international markets for clean-energy technology — particularly as the United States seeks to compete against China in the space.

    “[Competition with China] has become a motivator in American politics, like it or not,” Sharp said. “There is no question that it is causing and bringing together [politicians] across blue [states] and red [states].”

    Holding onto progress

    Even in an uncertain political climate in which Democrats and Republicans seem unable to agree on basic facts, recent funding commitments are likely to survive, no matter which party controls Congress and the presidency, Sharp said. That’s because most of the legislation relies on broadly popular “carrots” that reward investments in decarbonization, rather than less popular “sticks” that create new restrictions or punishments for companies that fail to decarbonize.

    “Politically, the impact of this is very significant,” Sharp said. “It is so much easier in politics to give away tax [credits] than it is to penalize or put requirements onto people. The fact is that these tax credits are more likely to be politically sustained than other forms of government intervention. That, at least, has been the history.”

    Sharp stressed the importance of what he called “civil society” — institutions such as universities, nonprofits, churches, and other organizations that are apart from government and business — in promoting decarbonization efforts. “[Those groups] can act highly independently, and therefore, they can drive for things that others are not willing to do. Now this does not always work to good purposes. Partly, this diversity and this decentralization in civil society … led to deniers and others being able to stop some climate action. But now my view is, this is starting to all move in the right direction, in a very dynamic and a very important way. What we have seen over the last few years is a big uptick in philanthropy related to climate.”

    Looking ahead

    Sharp’s optimism even extended to the role of social media. He suggested that the “Wild West” era of social platforms may be ending, pointing to the celebrities who have recently lost valuable business partnerships for spreading hate speech and disinformation. “We’re now a lot more alert to the dangers,” he said.

    Some in the audience questioned Sharp about specific paths toward decarbonization, but Sharp said that progress will require a number of disparate approaches — some of which will inevitably have a greater impact than others. “The current policy, and the policy embedded in this [new] legislation … is all about doing both,” he said. “It’s all about advancing [current] technologies into the marketplace, and at the same time driving for breakthroughs.”

    Above all, Sharp stressed the need for continued collective action around climate change. “The fact is, we’re all contributors to some degree,” he said. “But we also all can do something. In my view, this is clearly not a time for hand-wringing. This is a time for action. People have to roll up their sleeves, and go to work, and not roll them down anytime soon.” More

  • in

    Mining for the clean energy transition

    In a world powered increasingly by clean energy, drilling for oil and gas will gradually give way to digging for metals and minerals. Today, the “critical minerals” used to make electric cars, solar panels, wind turbines, and grid-scale battery storage are facing soaring demand — and some acute bottlenecks as miners race to catch up.

    According to a report from the International Energy Agency, by 2040, the worldwide demand for copper is expected to roughly double; demand for nickel and cobalt will grow at least sixfold; and the world’s hunger for lithium could reach 40 times what we use today.

    “Society is looking to the clean energy transition as a way to solve the environmental and social harms of climate change,” says Scott Odell, a visiting scientist at the MIT Environmental Solutions Initiative (ESI), where he helps run the ESI Mining, Environment, and Society Program, who is also a visiting assistant professor at George Washington University. “Yet mining the materials needed for that transition would also cause social and environmental impacts. So we need to look for ways to reduce our demand for minerals, while also improving current mining practices to minimize social and environmental impacts.”

    ESI recently hosted the inaugural MIT Conference on Mining, Environment, and Society to discuss how the clean energy transition may affect mining and the people and environments in mining areas. The conference convened representatives of mining companies, environmental and human rights groups, policymakers, and social and natural scientists to identify key concerns and possible collaborative solutions.

    “We can’t replace an abusive fossil fuel industry with an abusive mining industry that expands as we move through the energy transition,” said Jim Wormington, a senior researcher at Human Rights Watch, in a panel on the first day of the conference. “There’s a recognition from governments, civil society, and companies that this transition potentially has a really significant human rights and social cost, both in terms of emissions […] but also for communities and workers who are on the front lines of mining.”

    That focus on communities and workers was consistent throughout the three-day conference, as participants outlined the economic and social dimensions of standing up large numbers of new mines. Corporate mines can bring large influxes of government revenue and local investment, but the income is volatile and can leave policymakers and communities stranded when production declines or mineral prices fall. On the other hand, “artisanal” mining operations are an important source of critical minerals, but are hard to regulate and subject to abuses from brokers. And large reserves of minerals are found in conservation areas, regions with fragile ecosystems and experiencing water shortages that can be exacerbated by mining, in particular on Indigenous-controlled lands and other places where mine openings are deeply fraught.

    “One of the real triggers of conflict is a dissatisfaction with the current model of resource extraction,” said Jocelyn Fraser of the University of British Columbia in a panel discussion. “One that’s failed to support the long-term sustainable development of regions that host mining operations, and yet imposes significant local social and environmental impacts.”

    All these challenges point toward solutions in policy and in mining companies’ relationships with the communities where they work. Participants highlighted newer models of mining governance that can create better incentives for the ways mines operate — from full community ownership of mines to recognizing community rights to the benefits of mining to end-of-life planning for mines at the time they open.

    Many of the conference speakers also shared technological innovations that may help reduce mining challenges. Some operations are investing in desalination as alternative water sources in water-scarce regions; low-carbon alternatives are emerging to many of the fossil fuel-powered heavy machines that are mainstays of the industry; and work is being done to reclaim valuable minerals from mine tailings, helping to minimize both waste and the need to open new extraction sites.

    Increasingly, the mining industry itself is recognizing that reforms will allow it to thrive in a rapid clean-energy transition. “Decarbonization is really a profitability imperative,” said Kareemah Mohammed, managing director for sustainability services at the technology consultancy Accenture, on the conference’s second day. “It’s about securing a low-cost and steady supply of either minerals or metals, but it’s also doing so in an optimal way.”

    The three-day conference attracted over 350 attendees, from large mining companies, industry groups, consultancies, multilateral institutions, universities, nongovernmental organizations (NGOs), government, and more. It was held entirely virtually, a choice that helped make the conference not only truly international — participants joined from over 27 countries on six continents — but also accessible to members of nonprofits and professionals in the developing world.

    “Many people are concerned about the environmental and social challenges of supplying the clean energy revolution, and we’d heard repeatedly that there wasn’t a forum for government, industry, academia, NGOs, and communities to all sit at the same table and explore collaborative solutions,” says Christopher Noble, ESI’s director of corporate engagement. “Convening, and researching best practices, are roles that universities can play. The conversations at this conference have generated valuable ideas and consensus to pursue three parallel programs: best-in-class models for community engagement, improving ESG metrics and their use, and civil-society contributions to government/industry relations. We are developing these programs to keep the momentum going.”

    The MIT Conference on Mining, Environment, and Society was funded, in part, by Accenture, as part of the MIT/Accenture Convergence Initiative. Additional funding was provided by the Inter-American Development Bank. More