More stories

  • in

    Study helps pinpoint areas where microplastics will accumulate

    The accumulation of microplastics in the environment, and within our bodies, is an increasingly worrisome issue. But predicting where these ubiquitous particles will accumulate, and therefore where remediation efforts should be focused, has been difficult because of the many factors that contribute to their dispersal and deposition.New research from MIT shows that one key factor in determining where microparticles are likely to build up has to do with the presence of biofilms. These thin, sticky biopolymer layers are shed by microorganisms and can accumulate on surfaces, including along sandy riverbeds or seashores. The study found that, all other conditions being equal, microparticles are less likely to accumulate in sediment infused with biofilms, because if they land there, they are more likely to be resuspended by flowing water and carried away.The open-access findings appear in the journal Geophysical Research Letters, in a paper by MIT postdoc Hyoungchul Park and professor of civil and environmental engineering Heidi Nepf. “Microplastics are definitely in the news a lot,” Nepf says, “and we don’t fully understand where the hotspots of accumulation are likely to be. This work gives a little bit of guidance” on some of the factors that can cause these particles, and small particles in general, to accumulate in certain locations.Most experiments looking at the ways microparticles are transported and deposited have been conducted over bare sand, Park says. “But in nature, there are a lot of microorganisms, such as bacteria, fungi, and algae, and when they adhere to the stream bed they generate some sticky things.” These substances are known as extracellular polymeric substances, or EPS, and they “can significantly affect the channel bed characteristics,” he says. The new research focused on determining exactly how these substances affected the transport of microparticles, including microplastics.The research involved a flow tank with a bottom lined with fine sand, and sometimes with vertical plastic tubes simulating the presence of mangrove roots. In some experiments the bed consisted of pure sand, and in others the sand was mixed with a biological material to simulate the natural biofilms found in many riverbed and seashore environments.Water mixed with tiny plastic particles was pumped through the tank for three hours, and then the bed surface was photographed under ultraviolet light that caused the plastic particles to fluoresce, allowing a quantitative measurement of their concentration.The results revealed two different phenomena that affected how much of the plastic accumulated on the different surfaces. Immediately around the rods that stood in for above-ground roots, turbulence prevented particle deposition. In addition, as the amount of simulated biofilms in the sediment bed increased, the accumulation of particles also decreased.Nepf and Park concluded that the biofilms filled up the spaces between the sand grains, leaving less room for the microparticles to fit in. The particles were more exposed because they penetrated less deeply in between the sand grains, and as a result they were much more easily resuspended and carried away by the flowing water.“These biological films fill the pore spaces between the sediment grains,” Park explains, “and that makes the deposited particles — the particles that land on the bed — more exposed to the forces generated by the flow, which makes it easier for them to be resuspended. What we found was that in a channel with the same flow conditions and the same vegetation and the same sand bed, if one is without EPS and one is with EPS, then the one without EPS has a much higher deposition rate than the one with EPS.”Nepf adds: “The biofilm is blocking the plastics from accumulating in the bed because they can’t go deep into the bed. They just stay right on the surface, and then they get picked up and moved elsewhere. So, if I spilled a large amount of microplastic in two rivers, and one had a sandy or gravel bottom, and one was muddier with more biofilm, I would expect more of the microplastics to be retained in the sandy or gravelly river.”All of this is complicated by other factors, such as the turbulence of the water or the roughness of the bottom surface, she says. But it provides a “nice lens” to provide some suggestions for people who are trying to study the impacts of microplastics in the field. “They’re trying to determine what kinds of habitats these plastics are in, and this gives a framework for how you might categorize those habitats,” she says. “It gives guidance to where you should go to find more plastics versus less.”As an example, Park suggests, in mangrove ecosystems, microplastics may preferentially accumulate in the outer edges, which tend to be sandy, while the interior zones have sediment with more biofilm. Thus, this work suggests “the sandy outer regions may be potential hotspots for microplastic accumulation,” he says, and can make this a priority zone for monitoring and protection.“This is a highly relevant finding,” says Isabella Schalko, a research scientist at ETH Zurich, who was not associated with this research. “It suggests that restoration measures such as re-vegetation or promoting biofilm growth could help mitigate microplastic accumulation in aquatic systems. It highlights the powerful role of biological and physical features in shaping particle transport processes.”The work was supported by Shell International Exploration and Production through the MIT Energy Initiative. More

  • in

    Study: Climate change may make it harder to reduce smog in some regions

    Global warming will likely hinder our future ability to control ground-level ozone, a harmful air pollutant that is a primary component of smog, according to a new MIT study.The results could help scientists and policymakers develop more effective strategies for improving both air quality and human health. Ground-level ozone causes a host of detrimental health impacts, from asthma to heart disease, and contributes to thousands of premature deaths each year.The researchers’ modeling approach reveals that, as the Earth warms due to climate change, ground-level ozone will become less sensitive to reductions in nitrogen oxide emissions in eastern North America and Western Europe. In other words, it will take greater nitrogen oxide emission reductions to get the same air quality benefits.However, the study also shows that the opposite would be true in northeast Asia, where cutting emissions would have a greater impact on reducing ground-level ozone in the future. The researchers combined a climate model that simulates meteorological factors, such as temperature and wind speeds, with a chemical transport model that estimates the movement and composition of chemicals in the atmosphere.By generating a range of possible future outcomes, the researchers’ ensemble approach better captures inherent climate variability, allowing them to paint a fuller picture than many previous studies.“Future air quality planning should consider how climate change affects the chemistry of air pollution. We may need steeper cuts in nitrogen oxide emissions to achieve the same air quality goals,” says Emmie Le Roy, a graduate student in the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS) and lead author of a paper on this study.Her co-authors include Anthony Y.H. Wong, a postdoc in the MIT Center for Sustainability Science and Strategy; Sebastian D. Eastham, principal research scientist in the MIT Center for Sustainability Science and Strategy; Arlene Fiore, the Peter H. Stone and Paola Malanotte Stone Professor of EAPS; and senior author Noelle Selin, a professor in the Institute for Data, Systems, and Society (IDSS) and EAPS. The research appears today in Environmental Science and Technology.Controlling ozoneGround-level ozone differs from the stratospheric ozone layer that protects the Earth from harmful UV radiation. It is a respiratory irritant that is harmful to the health of humans, animals, and plants.Controlling ground-level ozone is particularly challenging because it is a secondary pollutant, formed in the atmosphere by complex reactions involving nitrogen oxides and volatile organic compounds in the presence of sunlight.“That is why you tend to have higher ozone days when it is warm and sunny,” Le Roy explains.Regulators typically try to reduce ground-level ozone by cutting nitrogen oxide emissions from industrial processes. But it is difficult to predict the effects of those policies because ground-level ozone interacts with nitrogen oxide and volatile organic compounds in nonlinear ways.Depending on the chemical environment, reducing nitrogen oxide emissions could cause ground-level ozone to increase instead.“Past research has focused on the role of emissions in forming ozone, but the influence of meteorology is a really important part of Emmie’s work,” Selin says.To conduct their study, the researchers combined a global atmospheric chemistry model with a climate model that simulate future meteorology.They used the climate model to generate meteorological inputs for each future year in their study, simulating factors such as likely temperature and wind speeds, in a way that captures the inherent variability of a region’s climate.Then they fed those inputs to the atmospheric chemistry model, which calculates how the chemical composition of the atmosphere would change because of meteorology and emissions.The researchers focused on Eastern North America, Western Europe, and Northeast China, since those regions have historically high levels of the precursor chemicals that form ozone and well-established monitoring networks to provide data.They chose to model two future scenarios, one with high warming and one with low warming, over a 16-year period between 2080 and 2095. They compared them to a historical scenario capturing 2000 to 2015 to see the effects of a 10 percent reduction in nitrogen oxide emissions.Capturing climate variability“The biggest challenge is that the climate naturally varies from year to year. So, if you want to isolate the effects of climate change, you need to simulate enough years to see past that natural variability,” Le Roy says.They could overcome that challenge due to recent advances in atmospheric chemistry modeling and by taking advantage of parallel computing to simulate multiple years at the same time. They simulated five 16-year realizations, resulting in 80 model years for each scenario.The researchers found that eastern North America and Western Europe are especially sensitive to increases in nitrogen oxide emissions from the soil, which are natural emissions driven by increases in temperature.Due to that sensitivity, as the Earth warms and more nitrogen oxide from soil enters the atmosphere, reducing nitrogen oxide emissions from human activities will have less of an impact on ground-level ozone.“This shows how important it is to improve our representation of the biosphere in these models to better understand how climate change may impact air quality,” Le Roy says.On the other hand, since industrial processes in northeast Asia cause more ozone per unit of nitrogen oxide emitted, cutting emissions there would cause greater reductions in ground-level ozone in future warming scenarios.“But I wouldn’t say that is a good thing because it means that, overall, there are higher levels of ozone,” Le Roy adds.Running detailed meteorology simulations, rather than relying on annual average weather data, gave the researchers a more complete picture of the potential effects on human health.“Average climate isn’t the only thing that matters. One high ozone day, which might be a statistical anomaly, could mean we don’t meet our air quality target and have negative human health impacts that we should care about,” Le Roy says.In the future, the researchers want to continue exploring the intersection of meteorology and air quality. They also want to expand their modeling approach to consider other climate change factors with high variability, like wildfires or biomass burning.“We’ve shown that it is important for air quality scientists to consider the full range of climate variability, even if it is hard to do in your models, because it really does affect the answer that you get,” says Selin.This work is funded, in part, by the MIT Praecis Presidential Fellowship, the J.H. and E.V. Wade Fellowship, and the MIT Martin Family Society of Fellows for Sustainability. More

  • in

    How J-WAFS Solutions grants bring research to market

    For the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), 2025 marks a decade of translating groundbreaking research into tangible solutions for global challenges. Few examples illustrate that mission better than NONA Technologies. With support from a J-WAFS Solutions grant, MIT electrical engineering and biological engineering Professor Jongyoon Han and his team developed a portable desalination device that transforms seawater into clean drinking water without filters or high-pressure pumps. The device stands apart from traditional systems because conventional desalination technologies, like reverse osmosis, are energy-intensive, prone to fouling, and typically deployed at large, centralized plants. In contrast, the device developed in Han’s lab employs ion concentration polarization technology to remove salts and particles from seawater, producing potable water that exceeds World Health Organization standards. It is compact, solar-powered, and operable at the push of a button — making it an ideal solution for off-grid and disaster-stricken areas.This research laid the foundation for spinning out NONA Technologies along with co-founders Junghyo Yoon PhD ’21 from Han’s lab and Bruce Crawford MBA ’22, to commercialize the technology and address pressing water-scarcity issues worldwide. “This is really the culmination of a 10-year journey that I and my group have been on,” said Han in an earlier MIT News article. “We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean … that was a really meaningful and rewarding experience for me.” You can watch this video showcasing the device in action.Moving breakthrough research out of the lab and into the world is a well-known challenge. While traditional “seed” grants typically support early-stage research at Technology Readiness Level (TRL) 1-2, few funding sources exist to help academic teams navigate to the next phase of technology development. The J-WAFS Solutions Program is strategically designed to address this critical gap by supporting technologies in the high-risk, early-commercialization phase that is often neglected by traditional research, corporate, and venture funding. By supporting technologies at TRLs 3-5, the program increases the likelihood that promising innovations will survive beyond the university setting, advancing sufficiently to attract follow-on funding.Equally important, the program gives academic researchers the time, resources, and flexibility to de-risk their technology, explore customer need and potential real-world applications, and determine whether and how they want to pursue commercialization. For faculty-led teams like Han’s, the J-WAFS Solutions Program provided the critical financial runway and entrepreneurial guidance needed to refine the technology, test assumptions about market fit, and lay the foundation for a startup team. While still in the MIT innovation ecosystem, Nona secured over $200,000 in non-dilutive funding through competitions and accelerators, including the prestigious MIT delta v Educational Accelerator. These early wins laid the groundwork for further investment and technical advancement.Since spinning out of MIT, NONA has made major strides in both technology development and business viability. What started as a device capable of producing just over half-a-liter of clean drinking water per hour has evolved into a system that now delivers 10 times that capacity, at 5 liters per hour. The company successfully raised a $3.5 million seed round to advance its portable desalination device, and entered into a collaboration with the U.S. Army Natick Soldier Systems Center, where it co-developed early prototypes and began generating revenue while validating the technology. Most recently, NONA was awarded two SBIR Phase I grants totaling $575,000, one from the National Science Foundation and another from the National Institute of Environmental Health Sciences.Now operating out of Greentown Labs in Somerville, Massachusetts, NONA has grown to a dedicated team of five and is preparing to launch its nona5 product later this year, with a wait list of over 1,000 customers. It is also kicking off its first industrial pilot, marking a key step toward commercial scale-up. “Starting a business as a postdoc was challenging, especially with limited funding and industry knowledge,” says Yoon, who currently serves as CTO of NONA. “J-WAFS gave me the financial freedom to pursue my venture, and the mentorship pushed me to hit key milestones. Thanks to J-WAFS, I successfully transitioned from an academic researcher to an entrepreneur in the water industry.”NONA is one of several J-WAFS-funded technologies that have moved from the lab to market, part of a growing portfolio of water and food solutions advancing through MIT’s innovation pipeline. As J-WAFS marks a decade of catalyzing innovation in water and food, NONA exemplifies what is possible when mission-driven research is paired with targeted early-stage support and mentorship.To learn more or get involved in supporting startups through the J-WAFS Solutions Program, please contact jwafs@mit.edu. More

  • in

    Study: Burning heavy fuel oil with scrubbers is the best available option for bulk maritime shipping

    When the International Maritime Organization enacted a mandatory cap on the sulfur content of marine fuels in 2020, with an eye toward reducing harmful environmental and health impacts, it left shipping companies with three main options.They could burn low-sulfur fossil fuels, like marine gas oil, or install cleaning systems to remove sulfur from the exhaust gas produced by burning heavy fuel oil. Biofuels with lower sulfur content offer another alternative, though their limited availability makes them a less feasible option.While installing exhaust gas cleaning systems, known as scrubbers, is the most feasible and cost-effective option, there has been a great deal of uncertainty among firms, policymakers, and scientists as to how “green” these scrubbers are.Through a novel lifecycle assessment, researchers from MIT, Georgia Tech, and elsewhere have now found that burning heavy fuel oil with scrubbers in the open ocean can match or surpass using low-sulfur fuels, when a wide variety of environmental factors is considered.The scientists combined data on the production and operation of scrubbers and fuels with emissions measurements taken onboard an oceangoing cargo ship.They found that, when the entire supply chain is considered, burning heavy fuel oil with scrubbers was the least harmful option in terms of nearly all 10 environmental impact factors they studied, such as greenhouse gas emissions, terrestrial acidification, and ozone formation.“In our collaboration with Oldendorff Carriers to broadly explore reducing the environmental impact of shipping, this study of scrubbers turned out to be an unexpectedly deep and important transitional issue,” says Neil Gershenfeld, an MIT professor, director of the Center for Bits and Atoms (CBA), and senior author of the study.“Claims about environmental hazards and policies to mitigate them should be backed by science. You need to see the data, be objective, and design studies that take into account the full picture to be able to compare different options from an apples-to-apples perspective,” adds lead author Patricia Stathatou, an assistant professor at Georgia Tech, who began this study as a postdoc in the CBA.Stathatou is joined on the paper by Michael Triantafyllou, the Henry L. and Grace Doherty and others at the National Technical University of Athens in Greece and the maritime shipping firm Oldendorff Carriers. The research appears today in Environmental Science and Technology.Slashing sulfur emissionsHeavy fuel oil, traditionally burned by bulk carriers that make up about 30 percent of the global maritime fleet, usually has a sulfur content around 2 to 3 percent. This is far higher than the International Maritime Organization’s 2020 cap of 0.5 percent in most areas of the ocean and 0.1 percent in areas near population centers or environmentally sensitive regions.Sulfur oxide emissions contribute to air pollution and acid rain, and can damage the human respiratory system.In 2018, fewer than 1,000 vessels employed scrubbers. After the cap went into place, higher prices of low-sulfur fossil fuels and limited availability of alternative fuels led many firms to install scrubbers so they could keep burning heavy fuel oil.Today, more than 5,800 vessels utilize scrubbers, the majority of which are wet, open-loop scrubbers.“Scrubbers are a very mature technology. They have traditionally been used for decades in land-based applications like power plants to remove pollutants,” Stathatou says.A wet, open-loop marine scrubber is a huge, metal, vertical tank installed in a ship’s exhaust stack, above the engines. Inside, seawater drawn from the ocean is sprayed through a series of nozzles downward to wash the hot exhaust gases as they exit the engines.The seawater interacts with sulfur dioxide in the exhaust, converting it to sulfates — water-soluble, environmentally benign compounds that naturally occur in seawater. The washwater is released back into the ocean, while the cleaned exhaust escapes to the atmosphere with little to no sulfur dioxide emissions.But the acidic washwater can contain other combustion byproducts like heavy metals, so scientists wondered if scrubbers were comparable, from a holistic environmental point of view, to burning low-sulfur fuels.Several studies explored toxicity of washwater and fuel system pollution, but none painted a full picture.The researchers set out to fill that scientific gap.A “well-to-wake” analysisThe team conducted a lifecycle assessment using a global environmental database on production and transport of fossil fuels, such as heavy fuel oil, marine gas oil, and very-low sulfur fuel oil. Considering the entire lifecycle of each fuel is key, since producing low-sulfur fuel requires extra processing steps in the refinery, causing additional emissions of greenhouse gases and particulate matter.“If we just look at everything that happens before the fuel is bunkered onboard the vessel, heavy fuel oil is significantly more low-impact, environmentally, than low-sulfur fuels,” she says.The researchers also collaborated with a scrubber manufacturer to obtain detailed information on all materials, production processes, and transportation steps involved in marine scrubber fabrication and installation.“If you consider that the scrubber has a lifetime of about 20 years, the environmental impacts of producing the scrubber over its lifetime are negligible compared to producing heavy fuel oil,” she adds.For the final piece, Stathatou spent a week onboard a bulk carrier vessel in China to measure emissions and gather seawater and washwater samples. The ship burned heavy fuel oil with a scrubber and low-sulfur fuels under similar ocean conditions and engine settings.Collecting these onboard data was the most challenging part of the study.“All the safety gear, combined with the heat and the noise from the engines on a moving ship, was very overwhelming,” she says.Their results showed that scrubbers reduce sulfur dioxide emissions by 97 percent, putting heavy fuel oil on par with low-sulfur fuels according to that measure. The researchers saw similar trends for emissions of other pollutants like carbon monoxide and nitrous oxide.In addition, they tested washwater samples for more than 60 chemical parameters, including nitrogen, phosphorus, polycyclic aromatic hydrocarbons, and 23 metals.The concentrations of chemicals regulated by the IMO were far below the organization’s requirements. For unregulated chemicals, the researchers compared the concentrations to the strictest limits for industrial effluents from the U.S. Environmental Protection Agency and European Union.Most chemical concentrations were at least an order of magnitude below these requirements.In addition, since washwater is diluted thousands of times as it is dispersed by a moving vessel, the concentrations of such chemicals would be even lower in the open ocean.These findings suggest that the use of scrubbers with heavy fuel oil can be considered as equal to or more environmentally friendly than low-sulfur fuels across many of the impact categories the researchers studied.“This study demonstrates the scientific complexity of the waste stream of scrubbers. Having finally conducted a multiyear, comprehensive, and peer-reviewed study, commonly held fears and assumptions are now put to rest,” says Scott Bergeron, managing director at Oldendorff Carriers and co-author of the study.“This first-of-its-kind study on a well-to-wake basis provides very valuable input to ongoing discussion at the IMO,” adds Thomas Klenum, executive vice president of innovation and regulatory affairs at the Liberian Registry, emphasizing the need “for regulatory decisions to be made based on scientific studies providing factual data and conclusions.”Ultimately, this study shows the importance of incorporating lifecycle assessments into future environmental impact reduction policies, Stathatou says.“There is all this discussion about switching to alternative fuels in the future, but how green are these fuels? We must do our due diligence to compare them equally with existing solutions to see the costs and benefits,” she adds.This study was supported, in part, by Oldendorff Carriers. More

  • in

    Technology developed by MIT engineers makes pesticides stick to plant leaves

    Reducing the amount of agricultural sprays used by farmers — including fertilizers, pesticides and herbicides — could cut down the amount of polluting runoff that ends up in the environment while at the same time reducing farmers’ costs and perhaps even enhancing their productivity. A classic win-win-win.A team of researchers at MIT and a spinoff company they launched has developed a system to do just that. Their technology adds a thin coating around droplets as they are being sprayed onto a field, greatly reducing their tendency to bounce off leaves and end up wasted on the ground. Instead, the coated droplets stick to the leaves as intended.The research is described today in the journal Soft Matter, in a paper by recent MIT alumni Vishnu Jayaprakash PhD ’22 and Sreedath Panat PhD ’23, graduate student Simon Rufer, and MIT professor of mechanical engineering Kripa Varanasi.A recent study found that if farmers didn’t use pesticides, they would lose 78 percent of fruit, 54 percent of vegetable, and 32 percent of cereal production. Despite their importance, a lack of technology that monitors and optimizes sprays has forced farmers to rely on personal experience and rules of thumb to decide how to apply these chemicals. As a result, these chemicals tend to be over-sprayed, leading to runoff and chemicals ending up in waterways or building up in the soil.Pesticides take a significant toll on global health and the environment, the researchers point out. A recent study found that 31 percent of agricultural soils around the world were at high risk from pesticide pollution. And agricultural chemicals are a major expense for farmers: In the U.S., they spend $16 billion a year just on pesticides.Making spraying more efficient is one of the best ways to make food production more sustainable and economical. Agricultural spraying essentially boils down to mixing chemicals into water and spraying water droplets onto plant leaves, which are often inherently water-repellent. “Over more than a decade of research in my lab at MIT, we have developed fundamental understandings of spraying and the interaction between droplets and plants — studying when they bounce and all the ways we have to make them stick better and enhance coverage,” Varanasi says.The team had previously found a way to reduce the amount of sprayed liquid that bounces away from the leaves it strikes, which involved using two spray nozzles instead of one and spraying mixtures with opposite electrical charges. But they found that farmers were reluctant to take on the expense and effort of converting their spraying equipment to a two-nozzle system. So, the team looked for a simpler alternative.They discovered they could achieve the same improvement in droplet retention using a single-nozzle system that can be easily adapted to existing sprayers. Instead of giving the droplets of pesticide an electric charge, they coat each droplet with a vanishingly thin layer of an oily material.In their new study, they conducted lab experiments with high-speed cameras. When they sprayed droplets with no special treatment onto a water-repelling (hydrophobic) surface similar to that of many plant leaves, the droplets initially spread out into a pancake-like disk, then rebounded back into a ball and bounced away. But when the researchers coated the surface of the droplets with a tiny amount of oil — making up less than 1 percent of the droplet’s liquid — the droplets spread out and then stayed put. The treatment improved the droplets’ “stickiness” by as much as a hundredfold.“When these droplets are hitting the surface and as they expand, they form this oil ring that essentially pins the droplet to the surface,” Rufer says. The researchers tried a wide variety of conditions, he says, explaining that they conducted hundreds of experiments, “with different impact velocities, different droplet sizes, different angles of inclination, all the things that fully characterize this phenomenon.” Though different oils varied in their effectiveness, all of them were effective. “Regardless of the impact velocity and the oils, we saw that the rebound height was significantly lower,” he says.The effect works with remarkably small amounts of oil. In their initial tests they used 1 percent oil compared to the water, then they tried a 0.1 percent, and even .01. The improvement in droplets sticking to the surface continued at a 0.1 percent, but began to break down beyond that. “Basically, this oil film acts as a way to trap that droplet on the surface, because oil is very attracted to the surface and sort of holds the water in place,” Rufer says.In the researchers’ initial tests they used soybean oil for the coating, figuring this would be a familiar material for the farmers they were working with, many of whom were growing soybeans. But it turned out that though they were producing the beans, the oil was not part of their usual supply chain for use on the farm. In further tests, the researchers found that several chemicals that farmers were already routinely using in their spraying, called surfactants and adjuvants, could be used instead, and that some of these provided the same benefits in keeping the droplets stuck on the leaves.“That way,” Varanasi says, “we’re not introducing a new chemical or changed chemistries into their field, but they’re using things they’ve known for a long time.”Varanasi and Jayaprakash formed a company called AgZen to commercialize the system. In order to prove how much their coating system improves the amount of spray that stays on the plant, they first had to develop a system to monitor spraying in real time. That system, which they call RealCoverage, has been deployed on farms ranging in size from a few dozen acres to hundreds of thousands of acres, and many different crop types, and has saved farmers 30 to 50 percent on their pesticide expenditures, just by improving the controls on the existing sprays. That system is being deployed to 920,000 acres of crops in 2025, the company says, including some in California, Texas, the Midwest, France and Italy. Adding the cloaking system using new nozzles, the researchers say, should yield at least another doubling of efficiency.“You could give back a billion dollars to U.S. growers if you just saved 6 percent of their pesticide budget,” says Jayaprakash, lead author of the research paper and CEO of AgZen. “In the lab we got 300 percent of extra product on the plant. So that means we could get orders of magnitude reductions in the amount of pesticides that farmers are spraying.”Farmers had already been using these surfactant and adjuvant chemicals as a way to enhance spraying effectiveness, but they were mixing it with a water solution. For it to have any effect, they had to use much more of these materials, risking causing burns to the plants. The new coating system reduces the amount of these materials needed, while improving their effectiveness.In field tests conducted by AgZen, “we doubled the amount of product on kale and soybeans just by changing where the adjuvant was,” from mixed in to being a coating, Jayaprakash says. It’s convenient for farmers because “all they’re doing is changing their nozzle. They’re getting all their existing chemicals to work better, and they’re getting more product on the plant.”And it’s not just for pesticides. “The really cool thing is this is useful for every chemistry that’s going on the leaf, be it an insecticide, a herbicide, a fungicide, or foliar nutrition,” Varanasi says. This year, they plan to introduce the new spray system on about 30,000 acres of cropland.Varanasi says that with projected world population growth, “the amount of food production has got to double, and we are limited in so many resources, for example we cannot double the arable land. … This means that every acre we currently farm must become more efficient and able to do more with less.” These improved spraying technologies, for both monitoring the spraying and coating the droplets, Varanasi says, “I think is fundamentally changing agriculture.”AgZen has recently raised $10 million in venture financing to support rapid commercial deployment of these technologies that can improve the control of chemical inputs into agriculture. “The knowledge we are gathering from every leaf, combined with our expertise in interfacial science and fluid mechanics, is giving us unparalleled insights into how chemicals are used and developed — and it’s clear that we can deliver value across the entire agrochemical supply chain,” Varanasi says  “Our mission is to use these technologies to deliver improved outcomes and reduced costs for the ag industry.”  More

  • in

    Study: Climate change will reduce the number of satellites that can safely orbit in space

    MIT aerospace engineers have found that greenhouse gas emissions are changing the environment of near-Earth space in ways that, over time, will reduce the number of satellites that can sustainably operate there.In a study appearing today in Nature Sustainability, the researchers report that carbon dioxide and other greenhouse gases can cause the upper atmosphere to shrink. An atmospheric layer of special interest is the thermosphere, where the International Space Station and most satellites orbit today. When the thermosphere contracts, the decreasing density reduces atmospheric drag — a force that pulls old satellites and other debris down to altitudes where they will encounter air molecules and burn up.Less drag therefore means extended lifetimes for space junk, which will litter sought-after regions for decades and increase the potential for collisions in orbit.The team carried out simulations of how carbon emissions affect the upper atmosphere and orbital dynamics, in order to estimate the “satellite carrying capacity” of low Earth orbit. These simulations predict that by the year 2100, the carrying capacity of the most popular regions could be reduced by 50-66 percent due to the effects of greenhouse gases.“Our behavior with greenhouse gases here on Earth over the past 100 years is having an effect on how we operate satellites over the next 100 years,” says study author Richard Linares, associate professor in MIT’s Department of Aeronautics and Astronautics (AeroAstro).“The upper atmosphere is in a fragile state as climate change disrupts the status quo,” adds lead author William Parker, a graduate student in AeroAstro. “At the same time, there’s been a massive increase in the number of satellites launched, especially for delivering broadband internet from space. If we don’t manage this activity carefully and work to reduce our emissions, space could become too crowded, leading to more collisions and debris.”The study includes co-author Matthew Brown of the University of Birmingham.Sky fallThe thermosphere naturally contracts and expands every 11 years in response to the sun’s regular activity cycle. When the sun’s activity is low, the Earth receives less radiation, and its outermost atmosphere temporarily cools and contracts before expanding again during solar maximum.In the 1990s, scientists wondered what response the thermosphere might have to greenhouse gases. Their preliminary modeling showed that, while the gases trap heat in the lower atmosphere, where we experience global warming and weather, the same gases radiate heat at much higher altitudes, effectively cooling the thermosphere. With this cooling, the researchers predicted that the thermosphere should shrink, reducing atmospheric density at high altitudes.In the last decade, scientists have been able to measure changes in drag on satellites, which has provided some evidence that the thermosphere is contracting in response to something more than the sun’s natural, 11-year cycle.“The sky is quite literally falling — just at a rate that’s on the scale of decades,” Parker says. “And we can see this by how the drag on our satellites is changing.”The MIT team wondered how that response will affect the number of satellites that can safely operate in Earth’s orbit. Today, there are over 10,000 satellites drifting through low Earth orbit, which describes the region of space up to 1,200 miles (2,000 kilometers), from Earth’s surface. These satellites deliver essential services, including internet, communications, navigation, weather forecasting, and banking. The satellite population has ballooned in recent years, requiring operators to perform regular collision-avoidance maneuvers to keep safe. Any collisions that do occur can generate debris that remains in orbit for decades or centuries, increasing the chance for follow-on collisions with satellites, both old and new.“More satellites have been launched in the last five years than in the preceding 60 years combined,” Parker says. “One of key things we’re trying to understand is whether the path we’re on today is sustainable.”Crowded shellsIn their new study, the researchers simulated different greenhouse gas emissions scenarios over the next century to investigate impacts on atmospheric density and drag. For each “shell,” or altitude range of interest, they then modeled the orbital dynamics and the risk of satellite collisions based on the number of objects within the shell. They used this approach to identify each shell’s “carrying capacity” — a term that is typically used in studies of ecology to describe the number of individuals that an ecosystem can support.“We’re taking that carrying capacity idea and translating it to this space sustainability problem, to understand how many satellites low Earth orbit can sustain,” Parker explains.The team compared several scenarios: one in which greenhouse gas concentrations remain at their level from the year 2000 and others where emissions change according to the Intergovernmental Panel on Climate Change (IPCC) Shared Socioeconomic Pathways (SSPs). They found that scenarios with continuing increases in emissions would lead to a significantly reduced carrying capacity throughout low Earth orbit.In particular, the team estimates that by the end of this century, the number of satellites safely accommodated within the altitudes of 200 and 1,000 kilometers could be reduced by 50 to 66 percent compared with a scenario in which emissions remain at year-2000 levels. If satellite capacity is exceeded, even in a local region, the researchers predict that the region will experience a “runaway instability,” or a cascade of collisions that would create so much debris that satellites could no longer safely operate there.Their predictions forecast out to the year 2100, but the team says that certain shells in the atmosphere today are already crowding up with satellites, particularly from recent “megaconstellations” such as SpaceX’s Starlink, which comprises fleets of thousands of small internet satellites.“The megaconstellation is a new trend, and we’re showing that because of climate change, we’re going to have a reduced capacity in orbit,” Linares says. “And in local regions, we’re close to approaching this capacity value today.”“We rely on the atmosphere to clean up our debris. If the atmosphere is changing, then the debris environment will change too,” Parker adds. “We show the long-term outlook on orbital debris is critically dependent on curbing our greenhouse gas emissions.”This research is supported, in part, by the U.S. National Science Foundation, the U.S. Air Force, and the U.K. Natural Environment Research Council. More

  • in

    Study: The ozone hole is healing, thanks to global reduction of CFCs

    A new MIT-led study confirms that the Antarctic ozone layer is healing, as a direct result of global efforts to reduce ozone-depleting substances.Scientists including the MIT team have observed signs of ozone recovery in the past. But the new study is the first to show, with high statistical confidence, that this recovery is due primarily to the reduction of ozone-depleting substances, versus other influences such as natural weather variability or increased greenhouse gas emissions to the stratosphere.“There’s been a lot of qualitative evidence showing that the Antarctic ozone hole is getting better. This is really the first study that has quantified confidence in the recovery of the ozone hole,” says study author Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies and Chemistry. “The conclusion is, with 95 percent confidence, it is recovering. Which is awesome. And it shows we can actually solve environmental problems.”The new study appears today in the journal Nature. Graduate student Peidong Wang from the Solomon group in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) is the lead author. His co-authors include Solomon and EAPS Research Scientist Kane Stone, along with collaborators from multiple other institutions.Roots of ozone recoveryWithin the Earth’s stratosphere, ozone is a naturally occurring gas that acts as a sort of sunscreen, protecting the planet from the sun’s harmful ultraviolet radiation. In 1985, scientists discovered a “hole” in the ozone layer over Antarctica that opened up during the austral spring, between September and December. This seasonal ozone depletion was suddenly allowing UV rays to filter down to the surface, leading to skin cancer and other adverse health effects.In 1986, Solomon, who was then working at the National Oceanic and Atmospheric Administration (NOAA), led expeditions to the Antarctic, where she and her colleagues gathered evidence that quickly confirmed the ozone hole’s cause: chlorofluorocarbons, or CFCs — chemicals that were then used in refrigeration, air conditioning, insulation, and aerosol propellants. When CFCs drift up into the stratosphere, they can break down ozone under certain seasonal conditions.The following year, those relevations led to the drafting of the Montreal Protocol — an international treaty that aimed to phase out the production of CFCs and other ozone-depleting substances, in hopes of healing the ozone hole.In 2016, Solomon led a study reporting key signs of ozone recovery. The ozone hole seemed to be shrinking with each year, especially in September, the time of year when it opens up. Still, these observations were qualitative. The study showed large uncertainties regarding how much of this recovery was due to concerted efforts to reduce ozone-depleting substances, or if the shrinking ozone hole was a result of other “forcings,” such as year-to-year weather variability from El Niño, La Niña, and the polar vortex.“While detecting a statistically significant increase in ozone is relatively straightforward, attributing these changes to specific forcings is more challenging,” says Wang.Anthropogenic healingIn their new study, the MIT team took a quantitative approach to identify the cause of Antarctic ozone recovery. The researchers borrowed a method from the climate change community, known as “fingerprinting,” which was pioneered by Klaus Hasselmann, who was awarded the Nobel Prize in Physics in 2021 for the technique. In the context of climate, fingerprinting refers to a method that isolates the influence of specific climate factors, apart from natural, meteorological noise. Hasselmann applied fingerprinting to identify, confirm, and quantify the anthropogenic fingerprint of climate change.Solomon and Wang looked to apply the fingerprinting method to identify another anthropogenic signal: the effect of human reductions in ozone-depleting substances on the recovery of the ozone hole.“The atmosphere has really chaotic variability within it,” Solomon says. “What we’re trying to detect is the emerging signal of ozone recovery against that kind of variability, which also occurs in the stratosphere.”The researchers started with simulations of the Earth’s atmosphere and generated multiple “parallel worlds,” or simulations of the same global atmosphere, under different starting conditions. For instance, they ran simulations under conditions that assumed no increase in greenhouse gases or ozone-depleting substances. Under these conditions, any changes in ozone should be the result of natural weather variability. They also ran simulations with only increasing greenhouse gases, as well as only decreasing ozone-depleting substances.They compared these simulations to observe how ozone in the Antarctic stratosphere changed, both with season, and across different altitudes, in response to different starting conditions. From these simulations, they mapped out the times and altitudes where ozone recovered from month to month, over several decades, and identified a key “fingerprint,” or pattern, of ozone recovery that was specifically due to conditions of declining ozone-depleting substances.The team then looked for this fingerprint in actual satellite observations of the Antarctic ozone hole from 2005 to the present day. They found that, over time, the fingerprint that they identified in simulations became clearer and clearer in observations. In 2018, the fingerprint was at its strongest, and the team could say with 95 percent confidence that ozone recovery was due mainly to reductions in ozone-depleting substances.“After 15 years of observational records, we see this signal to noise with 95 percent confidence, suggesting there’s only a very small chance that the observed pattern similarity can be explained by variability noise,” Wang says. “This gives us confidence in the fingerprint. It also gives us confidence that we can solve environmental problems. What we can learn from ozone studies is how different countries can swiftly follow these treaties to decrease emissions.”If the trend continues, and the fingerprint of ozone recovery grows stronger, Solomon anticipates that soon there will be a year, here and there, when the ozone layer stays entirely intact. And eventually, the ozone hole should stay shut for good.“By something like 2035, we might see a year when there’s no ozone hole depletion at all in the Antarctic. And that will be very exciting for me,” she says. “And some of you will see the ozone hole go away completely in your lifetimes. And people did that.”This research was supported, in part, by the National Science Foundation and NASA. More

  • in

    Rohit Karnik named director of J-WAFS

    Rohit Karnik, the Tata Professor in the MIT Department of Mechanical Engineering, has been named the new director of the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), effective March 1. Karnik, who has served as associate director of J-WAFS since 2023, succeeds founding director John H. Lienhard V, Abdul Latif Jameel Professor of Water and Mechanical Engineering.Karnik assumes the role of director at a pivotal time for J-WAFS, as it celebrates its 10th anniversary. Announcing the appointment today in a letter to the J-WAFS research community, Vice President for Research Ian A. Waitz noted Karnik’s deep involvement with the lab’s research efforts and programming, as well as his accolades as a researcher, teacher, leader, and mentor. “I am delighted that Rohit will bring his talent and vision to bear on the J-WAFS mission, ensuring the program sustains its direct support of research on campus and its important impact around the world,” Waitz wrote.J-WAFS is the only program at MIT focused exclusively on water and food research. Since 2015, the lab has made grants totaling approximately $25M to researchers across the Institute, including from all five schools and 40 departments, labs, and centers. It has supported 300 faculty, research staff, and students combined. Furthermore, the J-WAFS Solutions Program, which supports efforts to commercialize innovative water and food technologies, has spun out 12 companies and two open-sourced products. “We launched J-WAFS with the aim of building a community of water and food researchers at MIT, taking advantage of MIT’s strengths in so many disciplines that contribute to these most essential human needs,” writes Lienhard, who will retire this June. “After a decade’s work, that community is strong and visible. I am delighted that Rohit has agreed to take the reins. He will bring the program to the next level.” Lienhard has served as director since founding J-WAFS in 2014, along with executive director Renee J. Robins ’83, who last fall shared her intent to retire as well. “It’s a big change for a program to turn over both the director and executive director roles at the same time,” says Robins. “Having worked alongside Rohit as our associate director for the past couple of years, I am greatly assured that J-WAFS will be in good hands with a new and steady leadership team.”Karnik became associate director of J-WAFS in July 2023, a move that coincided with the start of a sabbatical for Lienhard. Before that time, Karnik was already well engaged with J-WAFS as a grant recipient, reviewer, and community member. As associate director, Rohit has been integral to J-WAFS operations, planning, and grant management, including the proposal selection process. He was instrumental in planning the second J-WAFS Grand Challenge grant and led workshops at which researchers brainstormed proposal topics and formed teams. Karnik also engaged with J-WAFS’ corporate partners, helped plan lectures and events, and offered project oversight. “The experience gave me broad exposure to the amazing ideas and research at MIT in the water and food space, and the collaborations and synergies across departments and schools that enable excellence in research,” says Karnik. “The strengths of J-WAFS lie in being able to support principal investigators in pursuing research to address humanity’s water and food needs; in creating a community of students though the fellowship program and support of student clubs; and in bringing people together at seminars, workshops, and other events. All of this is made possible by the endowment and a dedicated team with close involvement in the projects after the grants are awarded.”J-WAFS was established through a generous gift from Community Jameel, an independent, global organization advancing science to help communities thrive in a rapidly changing world. The lab was named in honor of the late Abdul Latif Jameel, the founder of the Abdul Latif Jameel company and father of MIT alumnus Mohammed Jameel ’78, who founded and chairs Community Jameel. J-WAFS’ operations are carried out by a small but passionate team of people at MIT who are dedicated to the mission of securing water and food systems. That mission is more important than ever, as climate change, urbanization, and a growing global population are putting tremendous stress on the world’s water and food supplies. These challenges drive J-WAFS’ efforts to mobilize the research, innovation, and technology that can sustainably secure humankind’s most vital resources. As director, Karnik will help shape the research agenda and key priorities for J-WAFS and usher the program into its second decade.Karnik originally joined MIT as a postdoc in the departments of Mechanical and Chemical Engineering in October 2006. In September 2007, he became an assistant professor of mechanical engineering at MIT, before being promoted to associate professor in 2012. His research group focuses on the physics of micro- and nanofluidic flows and applying that to the design of micro- and nanofluidic systems for applications in water, healthcare, energy, and the environment. Past projects include ones on membranes for water filtration and chemical separations, sensors for water, and water filters from waste wood. Karnik has served as associate department head and interim co-department head in the Department of Mechanical Engineering. He also serves as faculty director of the New Engineering Education Transformation (NEET) program in the School of Engineering.Before coming to MIT, Karnik received a bachelor’s degree from the Indian Institute of Technology in Bombay, and a master’s and PhD from the University of California at Berkeley, all in mechanical engineering. He has authored numerous publications, is co-inventor on several patents, and has received awards and honors including the National Science Foundation CAREER Award, the U.S. Department of Energy Early Career Award, the MIT Office of Graduate Education’s Committed to Caring award, and election to the National Academy of Inventors as a senior member. Lienhard, J-WAFS’ outgoing director, has served on the MIT faculty since 1988. His research and educational efforts have focused on heat and mass transfer, water purification and desalination, thermodynamics, and separation processes. Lienhard has directly supervised more than 90 PhD and master’s theses, and he is the author of over 300 peer-reviewed papers and three textbooks. He holds more than 40 U.S. patents, most commercialized through startup companies with his students. One of these, the water treatment company Gradiant Corporation, is now valued over $1 billion and employs more than 1,200 people. Lienhard has received many awards, including the 2024 Lifetime Achievement Award of the International Desalination and Reuse Association.Since 1998, Renee Robins has worked on the conception, launch, and development of a number of large interdisciplinary, international, and partnership-based research and education collaborations at MIT and elsewhere. She served in roles for the Cambridge MIT Institute, the MIT Portugal Program, the Mexico City Program, the Program on Emerging Technologies, and the Technology and Policy Program. She holds two undergraduate degrees from MIT, in biology and humanities/anthropology, and a master’s degree in public policy from Carnegie Mellon University. She has overseen significant growth in J-WAFS’ activities, funding, staffing, and collaborations over the past decade. In 2021, she was awarded an Infinite Mile Award in the area of the Offices of the Provost and Vice President for Research, in recognition of her contributions within her role at J-WAFS to help the Institute carry out its mission.“John and Renee have done a remarkable job in establishing J-WAFS and bringing it up to its present form,” says Karnik. “I’m committed to making sure that the key aspects of J-WAFS that bring so much value to the MIT community, the nation, and the world continue to function well. MIT researchers and alumni in the J-WAFS community are already having an impact on addressing humanity’s water and food needs, and I believe that there is potential for MIT to have an even greater positive impact on securing humanity’s vital resources in the future.” More