More stories

  • in

    Study finds mercury pollution from human activities is declining

    MIT researchers have some good environmental news: Mercury emissions from human activity have been declining over the past two decades, despite global emissions inventories that indicate otherwise.In a new study, the researchers analyzed measurements from all available monitoring stations in the Northern Hemisphere and found that atmospheric concentrations of mercury declined by about 10 percent between 2005 and 2020.They used two separate modeling methods to determine what is driving that trend. Both techniques pointed to a decline in mercury emissions from human activity as the most likely cause.Global inventories, on the other hand, have reported opposite trends. These inventories estimate atmospheric emissions using models that incorporate average emission rates of polluting activities and the scale of these activities worldwide.“Our work shows that it is very important to learn from actual, on-the-ground data to try and improve our models and these emissions estimates. This is very relevant for policy because, if we are not able to accurately estimate past mercury emissions, how are we going to predict how mercury pollution will evolve in the future?” says Ari Feinberg, a former postdoc in the Institute for Data, Systems, and Society (IDSS) and lead author of the study.The new results could help inform scientists who are embarking on a collaborative, global effort to evaluate pollution models and develop a more in-depth understanding of what drives global atmospheric concentrations of mercury.However, due to a lack of data from global monitoring stations and limitations in the scientific understanding of mercury pollution, the researchers couldn’t pinpoint a definitive reason for the mismatch between the inventories and the recorded measurements.“It seems like mercury emissions are moving in the right direction, and could continue to do so, which is heartening to see. But this was as far as we could get with mercury. We need to keep measuring and advancing the science,” adds co-author Noelle Selin, an MIT professor in the IDSS and the Department of Earth, Atmospheric and Planetary Sciences (EAPS).Feinberg and Selin, his MIT postdoctoral advisor, are joined on the paper by an international team of researchers that contributed atmospheric mercury measurement data and statistical methods to the study. The research appears this week in the Proceedings of the National Academy of Sciences.Mercury mismatchThe Minamata Convention is a global treaty that aims to cut human-caused emissions of mercury, a potent neurotoxin that enters the atmosphere from sources like coal-fired power plants and small-scale gold mining.The treaty, which was signed in 2013 and went into force in 2017, is evaluated every five years. The first meeting of its conference of parties coincided with disheartening news reports that said global inventories of mercury emissions, compiled in part from information from national inventories, had increased despite international efforts to reduce them.This was puzzling news for environmental scientists like Selin. Data from monitoring stations showed atmospheric mercury concentrations declining during the same period.Bottom-up inventories combine emission factors, such as the amount of mercury that enters the atmosphere when coal mined in a certain region is burned, with estimates of pollution-causing activities, like how much of that coal is burned in power plants.“The big question we wanted to answer was: What is actually happening to mercury in the atmosphere and what does that say about anthropogenic emissions over time?” Selin says.Modeling mercury emissions is especially tricky. First, mercury is the only metal that is in liquid form at room temperature, so it has unique properties. Moreover, mercury that has been removed from the atmosphere by sinks like the ocean or land can be re-emitted later, making it hard to identify primary emission sources.At the same time, mercury is more difficult to study in laboratory settings than many other air pollutants, especially due to its toxicity, so scientists have limited understanding of all chemical reactions mercury can undergo. There is also a much smaller network of mercury monitoring stations, compared to other polluting gases like methane and nitrous oxide.“One of the challenges of our study was to come up with statistical methods that can address those data gaps, because available measurements come from different time periods and different measurement networks,” Feinberg says.Multifaceted modelsThe researchers compiled data from 51 stations in the Northern Hemisphere. They used statistical techniques to aggregate data from nearby stations, which helped them overcome data gaps and evaluate regional trends.By combining data from 11 regions, their analysis indicated that Northern Hemisphere atmospheric mercury concentrations declined by about 10 percent between 2005 and 2020.Then the researchers used two modeling methods — biogeochemical box modeling and chemical transport modeling — to explore possible causes of that decline.  Box modeling was used to run hundreds of thousands of simulations to evaluate a wide array of emission scenarios. Chemical transport modeling is more computationally expensive but enables researchers to assess the impacts of meteorology and spatial variations on trends in selected scenarios.For instance, they tested one hypothesis that there may be an additional environmental sink that is removing more mercury from the atmosphere than previously thought. The models would indicate the feasibility of an unknown sink of that magnitude.“As we went through each hypothesis systematically, we were pretty surprised that we could really point to declines in anthropogenic emissions as being the most likely cause,” Selin says.Their work underscores the importance of long-term mercury monitoring stations, Feinberg adds. Many stations the researchers evaluated are no longer operational because of a lack of funding.While their analysis couldn’t zero in on exactly why the emissions inventories didn’t match up with actual data, they have a few hypotheses.One possibility is that global inventories are missing key information from certain countries. For instance, the researchers resolved some discrepancies when they used a more detailed regional inventory from China. But there was still a gap between observations and estimates.They also suspect the discrepancy might be the result of changes in two large sources of mercury that are particularly uncertain: emissions from small-scale gold mining and mercury-containing products.Small-scale gold mining involves using mercury to extract gold from soil and is often performed in remote parts of developing countries, making it hard to estimate. Yet small-scale gold mining contributes about 40 percent of human-made emissions.In addition, it’s difficult to determine how long it takes the pollutant to be released into the atmosphere from discarded products like thermometers or scientific equipment.“We’re not there yet where we can really pinpoint which source is responsible for this discrepancy,” Feinberg says.In the future, researchers from multiple countries, including MIT, will collaborate to study and improve the models they use to estimate and evaluate emissions. This research will be influential in helping that project move the needle on monitoring mercury, he says.This research was funded by the Swiss National Science Foundation, the U.S. National Science Foundation, and the U.S. Environmental Protection Agency. More

  • in

    3 Questions: The past, present, and future of sustainability science

    It was 1978, over a decade before the word “sustainable” would infiltrate environmental nomenclature, and Ronald Prinn, MIT professor of atmospheric science, had just founded the Advanced Global Atmospheric Gases Experiment (AGAGE). Today, AGAGE provides real-time measurements for well over 50 environmentally harmful trace gases, enabling us to determine emissions at the country level, a key element in verifying national adherence to the Montreal Protocol and the Paris Accord. This, Prinn says, started him thinking about doing science that informed decision making.Much like global interest in sustainability, Prinn’s interest and involvement continued to grow into what would become three decades worth of achievements in sustainability science. The Center for Global Change Science (CGCS) and Joint Program on the Science and Policy Global Change, respectively founded and co-founded by Prinn, have recently joined forces to create the MIT School of Science’s new Center for Sustainability Science and Strategy (CS3), lead by former CGCS postdoc turned MIT professor, Noelle Selin.As he prepares to pass the torch, Prinn reflects on how far sustainability has come, and where it all began.Q: Tell us about the motivation for the MIT centers you helped to found around sustainability.A: In 1990 after I founded the Center for Global Change Science, I also co-founded the Joint Program on the Science and Policy Global Change with a very important partner, [Henry] “Jake” Jacoby. He’s now retired, but at that point he was a professor in the MIT Sloan School of Management. Together, we determined that in order to answer questions related to what we now call sustainability of human activities, you need to combine the natural and social sciences involved in these processes. Based on this, we decided to make a joint program between the CGCS and a center that he directed, the Center for Energy and Environmental Policy Research (CEEPR).It was called the “joint program” and was joint for two reasons — not only were two centers joining, but two disciplines were joining. It was not about simply doing the same science. It was about bringing a team of people together that could tackle these coupled issues of environment, human development and economy. We were the first group in the world to fully integrate these elements together.Q: What has been your most impactful contribution and what effect did it have on the greater public’s overall understanding?A: Our biggest contribution is the development, and more importantly, the application of the Integrated Global System Model [IGSM] framework, looking at human development in both developing countries and developed countries that had a significant impact on the way people thought about climate issues. With IGSM, we were able to look at the interactions among human and natural components, studying the feedbacks and impacts that climate change had on human systems; like how it would alter agriculture and other land activities, how it would alter things we derive from the ocean, and so on.Policies were being developed largely by economists or climate scientists working independently, and we started showing how the real answers and analysis required a coupling of all of these components. We showed, and I think convincingly, that what people used to study independently, must be coupled together, because the impacts of climate change and air pollution affected so many things.To address the value of policy, despite the uncertainty in climate projections, we ran multiple runs of the IGSM with and without policy, with different choices for uncertain IGSM variables. For public communication, around 2005, we introduced our signature Greenhouse Gamble interactive visualization tools; these have been renewed over time as science and policies evolved.Q: What can MIT provide now at this critical juncture in understanding climate change and its impact?A: We need to further push the boundaries of integrated global system modeling to ensure full sustainability of human activity and all of its beneficial dimensions, which is the exciting focus that the CS3 is designed to address. We need to focus on sustainability as a central core element and use it to not just analyze existing policies but to propose new ones. Sustainability is not just climate or air pollution, it’s got to do with human impacts in general. Human health is central to sustainability, and equally important to equity. We need to expand the capability for credibly assessing what the impact policies have not just on developed countries, but on developing countries, taking into account that many places around the world are at artisanal levels of their economies. They cannot be blamed for anything that is changing climate and causing air pollution and other detrimental things that are currently going on. They need our help. That’s what sustainability is in its full dimensions.Our capabilities are evolving toward a modeling system so detailed that we can find out detrimental things about policies even at local levels before investing in changing infrastructure. This is going to require collaboration among even more disciplines and creating a seamless connection between research and decision making; not just for policies enacted in the public sector, but also for decisions that are made in the private sector.  More

  • in

    New filtration material could remove long-lasting chemicals from water

    Water contamination by the chemicals used in today’s technology is a rapidly growing problem globally. A recent study by the U.S. Centers for Disease Control found that 98 percent of people tested had detectable levels of PFAS, a family of particularly long-lasting compounds also known as “forever chemicals,” in their bloodstream.A new filtration material developed by researchers at MIT might provide a nature-based solution to this stubborn contamination issue. The material, based on natural silk and cellulose, can remove a wide variety of these persistent chemicals as well as heavy metals. And, its antimicrobial properties can help keep the filters from fouling.The findings are described in the journal ACS Nano, in a paper by MIT postdoc Yilin Zhang, professor of civil and environmental engineering Benedetto Marelli, and four others from MIT.PFAS chemicals are present in a wide range of products, including cosmetics, food packaging, water-resistant clothing, firefighting foams, and antistick coating for cookware. A recent study identified 57,000 sites contaminated by these chemicals in the U.S. alone. The U.S. Environmental Protection Agency has estimated that PFAS remediation will cost $1.5 billion per year, in order to meet new regulations that call for limiting the compound to less than 7 parts per trillion in drinking water.Contamination by PFAS and similar compounds “is actually a very big deal, and current solutions may only partially resolve this problem very efficiently or economically,” Zhang says. “That’s why we came up with this protein and cellulose-based, fully natural solution,” he says.“We came to the project by chance,” Marelli notes. The initial technology that made the filtration material possible was developed by his group for a completely unrelated purpose — as a way to make a labelling system to counter the spread of counterfeit seeds, which are often of inferior quality. His team devised a way of processing silk proteins into uniform nanoscale crystals, or “nanofibrils,” through an environmentally benign, water-based drop-casting method at room temperature.Zhang suggested that their new nanofibrillar material might be effective at filtering contaminants, but initial attempts with the silk nanofibrils alone didn’t work. The team decided to try adding another material: cellulose, which is abundantly available and can be obtained from agricultural wood pulp waste. The researchers used a self-assembly method in which the silk fibroin protein is suspended in water and then templated into nanofibrils by inserting “seeds” of cellulose nanocrystals. This causes the previously disordered silk molecules to line up together along the seeds, forming the basis of a hybrid material with distinct new properties.By integrating cellulose into the silk-based fibrils that could be formed into a thin membrane, and then tuning the electrical charge of the cellulose, the researchers produced a material that was highly effective at removing contaminants in lab tests.

    By integrating cellulose into the silk-based fibrils that could be formed into a thin membrane, and then tuning the electrical charge of the cellulose, the researchers produced a material that was highly effective at removing contaminants in lab tests. Pictured is an example of the filter.

    Image: Courtesy of the researchers

    Previous item
    Next item

    The electrical charge of the cellulose, they found, also gave it strong antimicrobial properties. This is a significant advantage, since one of the primary causes of failure in filtration membranes is fouling by bacteria and fungi. The antimicrobial properties of this material should greatly reduce that fouling issue, the researchers say.“These materials can really compete with the current standard materials in water filtration when it comes to extracting metal ions and these emerging contaminants, and they can also outperform some of them currently,” Marelli says. In lab tests, the materials were able to extract orders of magnitude more of the contaminants from water than the currently used standard materials, activated carbon or granular activated carbon.While the new work serves as a proof of principle, Marelli says, the team plans to continue working on improving the material, especially in terms of durability and availability of source materials. While the silk proteins used can be available as a byproduct of the silk textile industry, if this material were to be scaled up to address the global needs for water filtration, the supply might be insufficient. Also, alternative protein materials may turn out to perform the same function at lower cost.Initially, the material would likely be used as a point-of-use filter, something that could be attached to a kitchen faucet, Zhang says. Eventually, it could be scaled up to provide filtration for municipal water supplies, but only after testing demonstrates that this would not pose any risk of introducing any contamination into the water supply. But one big advantage of the material, he says, is that both the silk and the cellulose constituents are considered food-grade substances, so any contamination is unlikely.“Most of the normal materials available today are focusing on one class of contaminants or solving single problems,” Zhang says. “I think we are among the first to address all of these simultaneously.”“What I love about this approach is that it is using only naturally grown materials like silk and cellulose to fight pollution,” says Hannes Schniepp, professor of applied science at the College of William and Mary, who was not associated with this work. “In competing approaches, synthetic materials are used — which usually require only more chemistry to fight some of the adverse outcomes that chemistry has produced. [This work] breaks this cycle! … If this can be mass-produced in an economically viable way, this could really have a major impact.”The research team included MIT postdocs Hui Sun and Meng Li, graduate student Maxwell Kalinowski, and recent graduate Yunteng Cao PhD ’22, now a postdoc at Yale University. The work was supported by the U.S. Office of Naval Research, the U.S. National Science Foundation, and the Singapore-MIT Alliance for Research and Technology. More

  • in

    Scientists find a human “fingerprint” in the upper troposphere’s increasing ozone

    Ozone can be an agent of good or harm, depending on where you find it in the atmosphere. Way up in the stratosphere, the colorless gas shields the Earth from the sun’s harsh ultraviolet rays. But closer to the ground, ozone is a harmful air pollutant that can trigger chronic health problems including chest pain, difficulty breathing, and impaired lung function.And somewhere in between, in the upper troposphere — the layer of the atmosphere just below the stratosphere, where most aircraft cruise — ozone contributes to warming the planet as a potent greenhouse gas.There are signs that ozone is continuing to rise in the upper troposphere despite efforts to reduce its sources at the surface in many nations. Now, MIT scientists confirm that much of ozone’s increase in the upper troposphere is likely due to humans.In a paper appearing today in the journal Environmental Science and Technology, the team reports that they detected a clear signal of human influence on upper tropospheric ozone trends in a 17-year satellite record starting in 2005.“We confirm that there’s a clear and increasing trend in upper tropospheric ozone in the northern midlatitudes due to human beings rather than climate noise,” says study lead author Xinyuan Yu, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS).“Now we can do more detective work and try to understand what specific human activities are leading to this ozone trend,” adds co-author Arlene Fiore, the Peter H. Stone and Paola Malanotte Stone Professor in Earth, Atmospheric and Planetary Sciences.The study’s MIT authors include Sebastian Eastham and Qindan Zhu, along with Benjamin Santer at the University of California at Los Angeles, Gustavo Correa of Columbia University, Jean-François Lamarque at the National Center for Atmospheric Research, and Jerald Zimeke at NASA Goddard Space Flight Center.Ozone’s tangled webUnderstanding ozone’s causes and influences is a challenging exercise. Ozone is not emitted directly, but instead is a product of “precursors” — starting ingredients, such as nitrogen oxides and volatile organic compounds (VOCs), that react in the presence of sunlight to form ozone. These precursors are generated from vehicle exhaust, power plants, chemical solvents, industrial processes, aircraft emissions, and other human-induced activities.Whether and how long ozone lingers in the atmosphere depends on a tangle of variables, including the type and extent of human activities in a given area, as well as natural climate variability. For instance, a strong El Niño year could nudge the atmosphere’s circulation in a way that affects ozone’s concentrations, regardless of how much ozone humans are contributing to the atmosphere that year.Disentangling the human- versus climate-driven causes of ozone trend, particularly in the upper troposphere, is especially tricky. Complicating matters is the fact that in the lower troposphere — the lowest layer of the atmosphere, closest to ground level — ozone has stopped rising, and has even fallen in some regions at northern midlatitudes in the last few decades. This decrease in lower tropospheric ozone is mainly a result of efforts in North America and Europe to reduce industrial sources of air pollution.“Near the surface, ozone has been observed to decrease in some regions, and its variations are more closely linked to human emissions,” Yu notes. “In the upper troposphere, the ozone trends are less well-monitored but seem to decouple with those near the surface, and ozone is more easily influenced by climate variability. So, we don’t know whether and how much of that increase in observed ozone in the upper troposphere is attributed to humans.”A human signal amid climate noiseYu and Fiore wondered whether a human “fingerprint” in ozone levels, caused directly by human activities, could be strong enough to be detectable in satellite observations in the upper troposphere. To see such a signal, the researchers would first have to know what to look for.For this, they looked to simulations of the Earth’s climate and atmospheric chemistry. Following approaches developed in climate science, they reasoned that if they could simulate a number of possible climate variations in recent decades, all with identical human-derived sources of ozone precursor emissions, but each starting with a slightly different climate condition, then any differences among these scenarios should be due to climate noise. By inference, any common signal that emerged when averaging over the simulated scenarios should be due to human-driven causes. Such a signal, then, would be a “fingerprint” revealing human-caused ozone, which the team could look for in actual satellite observations.With this strategy in mind, the team ran simulations using a state-of-the-art chemistry climate model. They ran multiple climate scenarios, each starting from the year 1950 and running through 2014.From their simulations, the team saw a clear and common signal across scenarios, which they identified as a human fingerprint. They then looked to tropospheric ozone products derived from multiple instruments aboard NASA’s Aura satellite.“Quite honestly, I thought the satellite data were just going to be too noisy,” Fiore admits. “I didn’t expect that the pattern would be robust enough.”But the satellite observations they used gave them a good enough shot. The team looked through the upper tropospheric ozone data derived from the satellite products, from the years 2005 to 2021, and found that, indeed, they could see the signal of human-caused ozone that their simulations predicted. The signal is especially pronounced over Asia, where industrial activity has risen significantly in recent decades and where abundant sunlight and frequent weather events loft pollution, including ozone and its precursors, to the upper troposphere.Yu and Fiore are now looking to identify the specific human activities that are leading to ozone’s increase in the upper troposphere.“Where is this increasing trend coming from? Is it the near-surface emissions from combusting fossil fuels in vehicle engines and power plants? Is it the aircraft that are flying in the upper troposphere? Is it the influence of wildland fires? Or some combination of all of the above?” Fiore says. “Being able to separate human-caused impacts from natural climate variations can help to inform strategies to address climate change and air pollution.”This research was funded, in part, by NASA. More

  • in

    China-based emissions of three potent climate-warming greenhouse gases spiked in past decade

    When it comes to heating up the planet, not all greenhouse gases are created equal. They vary widely in their global warming potential (GWP), a measure of how much infrared thermal radiation a greenhouse gas would absorb over a given time frame once it enters the atmosphere. For example, measured over a 100-year period, the GWP of methane is about 28 times that of carbon dioxide (CO2), and the GWPs of a class of greenhouse gases known as perfluorocarbons (PFCs) are thousands of times that of CO2. The lifespans in the atmosphere of different greenhouse gases also vary widely. Methane persists in the atmosphere for around 10 years; CO2 for over 100 years, and PFCs for up to tens of thousands of years.Given the high GWPs and lifespans of PFCs, their emissions could pose a major roadblock to achieving the aspirational goal of the Paris Agreement on climate change — to limit the increase in global average surface temperature to 1.5 degrees Celsius above preindustrial levels. Now, two new studies based on atmospheric observations inside China and high-resolution atmospheric models show a rapid rise in Chinese emissions over the last decade (2011 to 2020 or 2021) of three PFCs: tetrafluoromethane (PFC-14) and hexafluoroethane (PFC-116) (results in PNAS), and perfluorocyclobutane (PFC-318) (results in Environmental Science & Technology).Both studies find that Chinese emissions have played a dominant role in driving up global emission levels for all three PFCs.The PNAS study identifies substantial PFC-14 and PFC-116 emission sources in the less-populated western regions of China from 2011 to 2021, likely due to the large amount of aluminum industry in these regions. The semiconductor industry also contributes to some of the emissions detected in the more economically developed eastern regions. These emissions are byproducts from aluminum smelting, or occur during the use of the two PFCs in the production of semiconductors and flat panel displays. During the observation period, emissions of both gases in China rose by 78 percent, accounting for most of the increase in global emissions of these gases.The ES&T study finds that during 2011-20, a 70 percent increase in Chinese PFC-318 emissions (contributing more than half of the global emissions increase of this gas) — originated primarily in eastern China. The regions with high emissions of PFC-318 in China overlap with geographical areas densely populated with factories that produce polytetrafluoroethylene (PTFE, commonly used for nonstick cookware coatings), implying that PTFE factories are major sources of PFC-318 emissions in China. In these factories, PFC-318 is formed as a byproduct.“Using atmospheric observations from multiple monitoring sites, we not only determined the magnitudes of PFC emissions, but also pinpointed the possible locations of their sources,” says Minde An, a postdoc at the MIT Center for Global Change Science (CGCS), and corresponding author of both studies. “Identifying the actual source industries contributing to these PFC emissions, and understanding the reasons for these largely byproduct emissions, can provide guidance for developing region- or industry-specific mitigation strategies.”“These three PFCs are largely produced as unwanted byproducts during the manufacture of otherwise widely used industrial products,” says MIT professor of atmospheric sciences Ronald Prinn, director of both the MIT Joint Program on the Science and Policy of Global Change and CGCS, and a co-author of both studies. “Phasing out emissions of PFCs as early as possible is highly beneficial for achieving global climate mitigation targets and is likely achievable by recycling programs and targeted technological improvements in these industries.”Findings in both studies were obtained, in part, from atmospheric observations collected from nine stations within a Chinese network, including one station from the Advanced Global Atmospheric Gases Experiment (AGAGE) network. For comparison, global total emissions were determined from five globally distributed, relatively unpolluted “background” AGAGE stations, as reported in the latest United Nations Environment Program and World Meteorological Organization Ozone Assessment report. More

  • in

    Q&A: What past environmental success can teach us about solving the climate crisis

    Susan Solomon, MIT professor of Earth, atmospheric, and planetary sciences (EAPS) and of chemistry, played a critical role in understanding how a class of chemicals known as chlorofluorocarbons were creating a hole in the ozone layer. Her research was foundational to the creation of the Montreal Protocol, an international agreement established in the 1980s that phased out products releasing chlorofluorocarbons. Since then, scientists have documented signs that the ozone hole is recovering thanks to these measures.Having witnessed this historical process first-hand, Solomon, the Lee and Geraldine Martin Professor of Environmental Studies, is aware of how people can come together to make successful environmental policy happen. Using her story, as well as other examples of success — including combating smog, getting rid of DDT, and more — Solomon draws parallels from then to now as the climate crisis comes into focus in her new book, “Solvable: How we Healed the Earth and How we can do it Again.”Solomon took a moment to talk about why she picked the stories in her book, the students who inspired her, and why we need hope and optimism now more than ever.Q: You have first-hand experience seeing how we’ve altered the Earth, as well as the process of creating international environmental policy. What prompted you to write a book about your experiences?A: Lots of things, but one of the main ones is the things that I see in teaching. I have taught a class called Science, Politics and Environmental Policy for many years here at MIT. Because my emphasis is always on how we’ve actually fixed problems, students come away from that class feeling hopeful, like they really want to stay engaged with the problem.It strikes me that students today have grown up in a very contentious and difficult era in which they feel like nothing ever gets done. But stuff does get done, even now. Looking at how we did things so far really helps you to see how we can do things in the future.Q: In the book, you use five different stories as examples of successful environmental policy, and then end talking about how we can apply these lessons to climate change. Why did you pick these five stories?A: I picked some of them because I’m closer to those problems in my own professional experience, like ozone depletion and smog. I did other issues partly because I wanted to show that even in the 21st century, we’ve actually got some stuff done — that’s the story of the Kigali Amendment to the Montreal Protocol, which is a binding international agreement on some greenhouse gases.Another chapter is on DDT. One of the reasons I included that is because it had an enormous effect on the birth of the environmental movement in the United States. Plus, that story allows you to see how important the environmental groups can be.Lead in gasoline and paint is the other one. I find it a very moving story because the idea that we were poisoning millions of children and not even realizing it is so very, very sad. But it’s so uplifting that we did figure out the problem, and it happened partly because of the civil rights movement, that made us aware that the problem was striking minority communities much more than non-minority communities.Q: What surprised you the most during your research for the book?A: One of the things that that I didn’t realize and should have, was the outsized role played by one single senator, Ed Muskie of Maine. He made pollution control his big issue and devoted incredible energy to it. He clearly had the passion and wanted to do it for many years, but until other factors helped him, he couldn’t. That’s where I began to understand the role of public opinion and the way in which policy is only possible when public opinion demands change.Another thing about Muskie was the way in which his engagement with these issues demanded that science be strong. When I read what he put into congressional testimony I realized how highly he valued the science. Science alone is never enough, but it’s always necessary. Over the years, science got a lot stronger, and we developed ways of evaluating what the scientific wisdom across many different studies and many different views actually is. That’s what scientific assessment is all about, and it’s crucial to environmental progress.Q: Throughout the book you argue that for environmental action to succeed, three things must be met which you call the three Ps: a threat much be personal, perceptible, and practical. Where did this idea come from?A: My observations. You have to perceive the threat: In the case of the ozone hole, you could perceive it because those false-color images of the ozone loss were so easy to understand, and it was personal because few things are scarier than cancer, and a reduced ozone layer leads to too much sun, increasing skin cancers. Science plays a role in communicating what can be readily understood by the public, and that’s important to them perceiving it as a serious problem.Nowadays, we certainly perceive the reality of climate change. We also see that it’s personal. People are dying because of heat waves in much larger numbers than they used to; there are horrible problems in the Boston area, for example, with flooding and sea level rise. People perceive the reality of the problem and they feel personally threatened.The third P is practical: People have to believe that there are practical solutions. It’s interesting to watch how the battle for hearts and minds has shifted. There was a time when the skeptics would just attack the whole idea that the climate was changing. Eventually, they decided ‘we better accept that because people perceive it, so let’s tell them that it’s not caused by human activity.’ But it’s clear enough now that human activity does play a role. So they’ve moved on to attacking that third P, that somehow it’s not practical to have any kind of solutions. This is progress! So what about that third P?What I tried to do in the book is to point out some of the ways in which the problem has also become eminently practical to deal with in the last 10 years, and will continue to move in that direction. We’re right on the cusp of success, and we just have to keep going. People should not give in to eco despair; that’s the worst thing you could do, because then nothing will happen. If we continue to move at the rate we have, we will certainly get to where we need to be.Q: That ties in very nicely with my next question. The book is very optimistic; what gives you hope?A: I’m optimistic because I’ve seen so many examples of where we have succeeded, and because I see so many signs of movement right now that are going to push us in the same direction.If we had kept conducting business as usual as we had been in the year 2000, we’d be looking at 4 degrees of future warming. Right now, I think we’re looking at 3 degrees. I think we can get to 2 degrees. We have to really work on it, and we have to get going seriously in the next decade, but globally right now over 30 percent of our energy is from renewables. That’s fantastic! Let’s just keep going.Q: Throughout the book, you show that environmental problems won’t be solved by individual actions alone, but requires policy and technology driving. What individual actions can people take to help push for those bigger changes?A: A big one is choose to eat more sustainably; choose alternative transportation methods like public transportation or reducing the amount of trips that you make. Older people usually have retirement investments, you can shift them over to a social choice funds and away from index funds that end up funding companies that you might not be interested in. You can use your money to put pressure: Amazon has been under a huge amount of pressure to cut down on their plastic packaging, mainly coming from consumers. They’ve just announced they’re not going to use those plastic pillows anymore. I think you can see lots of ways in which people really do matter, and we can matter more.Q: What do you hope people take away from the book?A: Hope for their future and resolve to do the best they can getting engaged with it. More

  • in

    Study finds health risks in switching ships from diesel to ammonia fuel

    As container ships the size of city blocks cross the oceans to deliver cargo, their huge diesel engines emit large quantities of air pollutants that drive climate change and have human health impacts. It has been estimated that maritime shipping accounts for almost 3 percent of global carbon dioxide emissions and the industry’s negative impacts on air quality cause about 100,000 premature deaths each year.Decarbonizing shipping to reduce these detrimental effects is a goal of the International Maritime Organization, a U.N. agency that regulates maritime transport. One potential solution is switching the global fleet from fossil fuels to sustainable fuels such as ammonia, which could be nearly carbon-free when considering its production and use.But in a new study, an interdisciplinary team of researchers from MIT and elsewhere caution that burning ammonia for maritime fuel could worsen air quality further and lead to devastating public health impacts, unless it is adopted alongside strengthened emissions regulations.Ammonia combustion generates nitrous oxide (N2O), a greenhouse gas that is about 300 times more potent than carbon dioxide. It also emits nitrogen in the form of nitrogen oxides (NO and NO2, referred to as NOx), and unburnt ammonia may slip out, which eventually forms fine particulate matter in the atmosphere. These tiny particles can be inhaled deep into the lungs, causing health problems like heart attacks, strokes, and asthma.The new study indicates that, under current legislation, switching the global fleet to ammonia fuel could cause up to about 600,000 additional premature deaths each year. However, with stronger regulations and cleaner engine technology, the switch could lead to about 66,000 fewer premature deaths than currently caused by maritime shipping emissions, with far less impact on global warming.“Not all climate solutions are created equal. There is almost always some price to pay. We have to take a more holistic approach and consider all the costs and benefits of different climate solutions, rather than just their potential to decarbonize,” says Anthony Wong, a postdoc in the MIT Center for Global Change Science and lead author of the study.His co-authors include Noelle Selin, an MIT professor in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS); Sebastian Eastham, a former principal research scientist who is now a senior lecturer at Imperial College London; Christine Mounaïm-Rouselle, a professor at the University of Orléans in France; Yiqi Zhang, a researcher at the Hong Kong University of Science and Technology; and Florian Allroggen, a research scientist in the MIT Department of Aeronautics and Astronautics. The research appears this week in Environmental Research Letters.Greener, cleaner ammoniaTraditionally, ammonia is made by stripping hydrogen from natural gas and then combining it with nitrogen at extremely high temperatures. This process is often associated with a large carbon footprint. The maritime shipping industry is betting on the development of “green ammonia,” which is produced by using renewable energy to make hydrogen via electrolysis and to generate heat.“In theory, if you are burning green ammonia in a ship engine, the carbon emissions are almost zero,” Wong says.But even the greenest ammonia generates nitrous oxide (N2O), nitrogen oxides (NOx) when combusted, and some of the ammonia may slip out, unburnt. This nitrous oxide would escape into the atmosphere, where the greenhouse gas would remain for more than 100 years. At the same time, the nitrogen emitted as NOx and ammonia would fall to Earth, damaging fragile ecosystems. As these emissions are digested by bacteria, additional N2O  is produced.NOx and ammonia also mix with gases in the air to form fine particulate matter. A primary contributor to air pollution, fine particulate matter kills an estimated 4 million people each year.“Saying that ammonia is a ‘clean’ fuel is a bit of an overstretch. Just because it is carbon-free doesn’t necessarily mean it is clean and good for public health,” Wong says.A multifaceted modelThe researchers wanted to paint the whole picture, capturing the environmental and public health impacts of switching the global fleet to ammonia fuel. To do so, they designed scenarios to measure how pollutant impacts change under certain technology and policy assumptions.From a technological point of view, they considered two ship engines. The first burns pure ammonia, which generates higher levels of unburnt ammonia but emits fewer nitrogen oxides. The second engine technology involves mixing ammonia with hydrogen to improve combustion and optimize the performance of a catalytic converter, which controls both nitrogen oxides and unburnt ammonia pollution.They also considered three policy scenarios: current regulations, which only limit NOx emissions in some parts of the world; a scenario that adds ammonia emission limits over North America and Western Europe; and a scenario that adds global limits on ammonia and NOx emissions.The researchers used a ship track model to calculate how pollutant emissions change under each scenario and then fed the results into an air quality model. The air quality model calculates the impact of ship emissions on particulate matter and ozone pollution. Finally, they estimated the effects on global public health.One of the biggest challenges came from a lack of real-world data, since no ammonia-powered ships are yet sailing the seas. Instead, the researchers relied on experimental ammonia combustion data from collaborators to build their model.“We had to come up with some clever ways to make that data useful and informative to both the technology and regulatory situations,” he says.A range of outcomesIn the end, they found that with no new regulations and ship engines that burn pure ammonia, switching the entire fleet would cause 681,000 additional premature deaths each year.“While a scenario with no new regulations is not very realistic, it serves as a good warning of how dangerous ammonia emissions could be. And unlike NOx, ammonia emissions from shipping are currently unregulated,” Wong says.However, even without new regulations, using cleaner engine technology would cut the number of premature deaths down to about 80,000, which is about 20,000 fewer than are currently attributed to maritime shipping emissions. With stronger global regulations and cleaner engine technology, the number of people killed by air pollution from shipping could be reduced by about 66,000.“The results of this study show the importance of developing policies alongside new technologies,” Selin says. “There is a potential for ammonia in shipping to be beneficial for both climate and air quality, but that requires that regulations be designed to address the entire range of potential impacts, including both climate and air quality.”Ammonia’s air quality impacts would not be felt uniformly across the globe, and addressing them fully would require coordinated strategies across very different contexts. Most premature deaths would occur in East Asia, since air quality regulations are less stringent in this region. Higher levels of existing air pollution cause the formation of more particulate matter from ammonia emissions. In addition, shipping volume over East Asia is far greater than elsewhere on Earth, compounding these negative effects.In the future, the researchers want to continue refining their analysis. They hope to use these findings as a starting point to urge the marine industry to share engine data they can use to better evaluate air quality and climate impacts. They also hope to inform policymakers about the importance and urgency of updating shipping emission regulations.This research was funded by the MIT Climate and Sustainability Consortium. More

  • in

    How to increase the rate of plastics recycling

    While recycling systems and bottle deposits have become increasingly widespread in the U.S., actual rates of recycling are “abysmal,” according to a team of MIT researchers who studied the rates for recycling of PET, the plastic commonly used in beverage bottles. However, their findings suggest some ways to change this.The present rate of recycling for PET, or polyethylene terephthalate, bottles nationwide is about 24 percent and has remained stagnant for a decade, the researchers say. But their study indicates that with a nationwide bottle deposit program, the rates could increase to 82 percent, with nearly two-thirds of all PET bottles being recycled into new bottles, at a net cost of just a penny a bottle when demand is robust. At the same time, they say, policies would be needed to ensure a sufficient demand for the recycled material.The findings are being published today in the Journal of Industrial Ecology, in a paper by MIT professor of materials science and engineering Elsa Olivetti, graduate students Basuhi Ravi and Karan Bhuwalka, and research scientist Richard Roth.The team looked at PET bottle collection and recycling rates in different states as well as other nations with and without bottle deposit policies, and with or without curbside recycling programs, as well as the inputs and outputs of various recycling companies and methods. The researchers say this study is the first to look in detail at the interplay between public policies and the end-to-end realities of the packaging production and recycling market.They found that bottle deposit programs are highly effective in the areas where they are in place, but at present there is not nearly enough collection of used bottles to meet the targets set by the packaging industry. Their analysis suggests that a uniform nationwide bottle deposit policy could achieve the levels of recycling that have been mandated by proposed legislation and corporate commitments.The recycling of PET is highly successful in terms of quality, with new products made from all-recycled material virtually matching the qualities of virgin material. And brands have shown that new bottles can be safely made with 100 percent postconsumer waste. But the team found that collection of the material is a crucial bottleneck that leaves processing plants unable to meet their needs. However, with the right policies in place, “one can be optimistic,” says Olivetti, who is the Jerry McAfee Professor in Engineering and the associate dean of the School of Engineering.“A message that we have found in a number of cases in the recycling space is that if you do the right work to support policies that think about both the demand but also the supply,” then significant improvements are possible, she says. “You have to think about the response and the behavior of multiple actors in the system holistically to be viable,” she says. “We are optimistic, but there are many ways to be pessimistic if we’re not thinking about that in a holistic way.”For example, the study found that it is important to consider the needs of existing municipal waste-recovery facilities. While expanded bottle deposit programs are essential to increase recycling rates and provide the feedstock to companies recycling PET into new products, the current facilities that process material from curbside recycling programs will lose revenue from PET bottles, which are a relatively high-value product compared to the other materials in the recycled waste stream. These companies would lose a source of their income if the bottles are collected through deposit programs, leaving them with only the lower-value mixed plastics.The researchers developed economic models based on rates of collection found in the states with deposit programs, recycled-content requirements, and other policies, and used these models to extrapolate to the nation as a whole. Overall, they found that the supply needs of packaging producers could be met through a nationwide bottle deposit system with a 10-cent deposit per bottle — at a net cost of about 1 cent per bottle produced when demand is strong. This need not be a federal program, but rather one where the implementation would be left up to the individual states, Olivetti says.Other countries have been much more successful in implementing deposit systems that result in very high participation rates. Several European countries manage to collect more than 90 percent of PET bottles for recycling, for example. But in the U.S., less than 29 percent are collected, and after losses in the recycling chain about 24 percent actually get recycled, the researchers found. Whereas 73 percent of Americans have access to curbside recycling, presently only 10 states have bottle deposit systems in place.Yet the demand is there so far. “There is a market for this material,” says Olivetti. While bottles collected through mixed-waste collection can still be recycled to some extent, those collected through deposit systems tend to be much cleaner and require less processing, and so are more economical to recycle into new bottles, or into textiles.To be effective, policies need to not just focus on increasing rates of recycling, but on the whole cycle of supply and demand and the different players involved, Olivetti says. Safeguards would need to be in place to protect existing recycling facilities from the lost revenues they would suffer as a result of bottle deposits, perhaps in the form of subsidies funded by fees on the bottle producers, to avoid putting these essential parts of the processing chain out of business. And other policies may be needed to ensure the continued market for the material that gets collected, including recycled content requirements and extended producer responsibility regulations, the team found.At this stage, it’s important to focus on the specific waste streams that can most effectively be recycled, and PET, along with many metals, clearly fit that category. “When we start to think about mixed plastic streams, that’s much more challenging from an environmental perspective,” she says. “Recycling systems need to be pursuing extended producers’ responsibility, or specifically thinking about materials designed more effectively toward recycled content,” she says.It’s also important to address “what the right metrics are to design for sustainably managed materials streams,” she says. “It could be energy use, could be circularity [for example, making old bottles into new bottles], could be around waste reduction, and making sure those are all aligned. That’s another kind of policy coordination that’s needed.” More