More stories

  • in

    Reducing carbon emissions from residential heating: A pathway forward

    In the race to reduce climate-warming carbon emissions, the buildings sector is falling behind. While carbon dioxide (CO2) emissions in the U.S. electric power sector dropped by 34 percent between 2005 and 2021, emissions in the building sector declined by only 18 percent in that same time period. Moreover, in extremely cold locations, burning natural gas to heat houses can make up a substantial share of the emissions portfolio. Therefore, steps to electrify buildings in general, and residential heating in particular, are essential for decarbonizing the U.S. energy system.But that change will increase demand for electricity and decrease demand for natural gas. What will be the net impact of those two changes on carbon emissions and on the cost of decarbonizing? And how will the electric power and natural gas sectors handle the new challenges involved in their long-term planning for future operations and infrastructure investments?A new study by MIT researchers with support from the MIT Energy Initiative (MITEI) Future Energy Systems Center unravels the impacts of various levels of electrification of residential space heating on the joint power and natural gas systems. A specially devised modeling framework enabled them to estimate not only the added costs and emissions for the power sector to meet the new demand, but also any changes in costs and emissions that result for the natural gas sector.The analyses brought some surprising outcomes. For example, they show that — under certain conditions — switching 80 percent of homes to heating by electricity could cut carbon emissions and at the same time significantly reduce costs over the combined natural gas and electric power sectors relative to the case in which there is only modest switching. That outcome depends on two changes: Consumers must install high-efficiency heat pumps plus take steps to prevent heat losses from their homes, and planners in the power and the natural gas sectors must work together as they make long-term infrastructure and operations decisions. Based on their findings, the researchers stress the need for strong state, regional, and national policies that encourage and support the steps that homeowners and industry planners can take to help decarbonize today’s building sector.A two-part modeling approachTo analyze the impacts of electrification of residential heating on costs and emissions in the combined power and gas sectors, a team of MIT experts in building technology, power systems modeling, optimization techniques, and more developed a two-part modeling framework. Team members included Rahman Khorramfar, a senior postdoc in MITEI and the Laboratory for Information and Decision Systems (LIDS); Morgan Santoni-Colvin SM ’23, a former MITEI graduate research assistant, now an associate at Energy and Environmental Economics, Inc.; Saurabh Amin, a professor in the Department of Civil and Environmental Engineering and principal investigator in LIDS; Audun Botterud, a principal research scientist in LIDS; Leslie Norford, a professor in the Department of Architecture; and Dharik Mallapragada, a former MITEI principal research scientist, now an assistant professor at New York University, who led the project. They describe their new methods and findings in a paper published in the journal Cell Reports Sustainability on Feb. 6.The first model in the framework quantifies how various levels of electrification will change end-use demand for electricity and for natural gas, and the impacts of possible energy-saving measures that homeowners can take to help. “To perform that analysis, we built a ‘bottom-up’ model — meaning that it looks at electricity and gas consumption of individual buildings and then aggregates their consumption to get an overall demand for power and for gas,” explains Khorramfar. By assuming a wide range of building “archetypes” — that is, groupings of buildings with similar physical characteristics and properties — coupled with trends in population growth, the team could explore how demand for electricity and for natural gas would change under each of five assumed electrification pathways: “business as usual” with modest electrification, medium electrification (about 60 percent of homes are electrified), high electrification (about 80 percent of homes make the change), and medium and high electrification with “envelope improvements,” such as sealing up heat leaks and adding insulation.The second part of the framework consists of a model that takes the demand results from the first model as inputs and “co-optimizes” the overall electricity and natural gas system to minimize annual investment and operating costs while adhering to any constraints, such as limits on emissions or on resource availability. The modeling framework thus enables the researchers to explore the impact of each electrification pathway on the infrastructure and operating costs of the two interacting sectors.The New England case study: A challenge for electrificationAs a case study, the researchers chose New England, a region where the weather is sometimes extremely cold and where burning natural gas to heat houses contributes significantly to overall emissions. “Critics will say that electrification is never going to happen [in New England]. It’s just too expensive,” comments Santoni-Colvin. But he notes that most studies focus on the electricity sector in isolation. The new framework considers the joint operation of the two sectors and then quantifies their respective costs and emissions. “We know that electrification will require large investments in the electricity infrastructure,” says Santoni-Colvin. “But what hasn’t been well quantified in the literature is the savings that we generate on the natural gas side by doing that — so, the system-level savings.”Using their framework, the MIT team performed model runs aimed at an 80 percent reduction in building-sector emissions relative to 1990 levels — a target consistent with regional policy goals for 2050. The researchers defined parameters including details about building archetypes, the regional electric power system, existing and potential renewable generating systems, battery storage, availability of natural gas, and other key factors describing New England.They then performed analyses assuming various scenarios with different mixes of home improvements. While most studies assume typical weather, they instead developed 20 projections of annual weather data based on historical weather patterns and adjusted for the effects of climate change through 2050. They then analyzed their five levels of electrification.Relative to business-as-usual projections, results from the framework showed that high electrification of residential heating could more than double the demand for electricity during peak periods and increase overall electricity demand by close to 60 percent. Assuming that building-envelope improvements are deployed in parallel with electrification reduces the magnitude and weather sensitivity of peak loads and creates overall efficiency gains that reduce the combined demand for electricity plus natural gas for home heating by up to 30 percent relative to the present day. Notably, a combination of high electrification and envelope improvements resulted in the lowest average cost for the overall electric power-natural gas system in 2050.Lessons learnedReplacing existing natural gas-burning furnaces and boilers with heat pumps reduces overall energy consumption. Santoni-Colvin calls it “something of an intuitive result” that could be expected because heat pumps are “just that much more efficient than old, fossil fuel-burning systems. But even so, we were surprised by the gains.”Other unexpected results include the importance of homeowners making more traditional energy efficiency improvements, such as adding insulation and sealing air leaks — steps supported by recent rebate policies. Those changes are critical to reducing costs that would otherwise be incurred for upgrading the electricity grid to accommodate the increased demand. “You can’t just go wild dropping heat pumps into everybody’s houses if you’re not also considering other ways to reduce peak loads. So it really requires an ‘all of the above’ approach to get to the most cost-effective outcome,” says Santoni-Colvin.Testing a range of weather outcomes also provided important insights. Demand for heating fuel is very weather-dependent, yet most studies are based on a limited set of weather data — often a “typical year.” The researchers found that electrification can lead to extended peak electric load events that can last for a few days during cold winters. Accordingly, the researchers conclude that there will be a continuing need for a “firm, dispatchable” source of electricity; that is, a power-generating system that can be relied on to produce power any time it’s needed — unlike solar and wind systems. As examples, they modeled some possible technologies, including power plants fired by a low-carbon fuel or by natural gas equipped with carbon capture equipment. But they point out that there’s no way of knowing what types of firm generators will be available in 2050. It could be a system that’s not yet mature, or perhaps doesn’t even exist today.In presenting their findings, the researchers note several caveats. For one thing, their analyses don’t include the estimated cost to homeowners of installing heat pumps. While that cost is widely discussed and debated, that issue is outside the scope of their current project.In addition, the study doesn’t specify what happens to existing natural gas pipelines. “Some homes are going to electrify and get off the gas system and not have to pay for it, leaving other homes with increasing rates because the gas system cost now has to be divided among fewer customers,” says Khorramfar. “That will inevitably raise equity questions that need to be addressed by policymakers.”Finally, the researchers note that policies are needed to drive residential electrification. Current financial support for installation of heat pumps and steps to make homes more thermally efficient are a good start. But such incentives must be coupled with a new approach to planning energy infrastructure investments. Traditionally, electric power planning and natural gas planning are performed separately. However, to decarbonize residential heating, the two sectors should coordinate when planning future operations and infrastructure needs. Results from the MIT analysis indicate that such cooperation could significantly reduce both emissions and costs for residential heating — a change that would yield a much-needed step toward decarbonizing the buildings sector as a whole. More

  • in

    J-WAFS: Supporting food and water research across MIT

    MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has transformed the landscape of water and food research at MIT, driving faculty engagement and catalyzing new research and innovation in these critical areas. With philanthropic, corporate, and government support, J-WAFS’ strategic approach spans the entire research life cycle, from support for early-stage research to commercialization grants for more advanced projects.Over the past decade, J-WAFS has invested approximately $25 million in direct research funding to support MIT faculty pursuing transformative research with the potential for significant impact. “Since awarding our first cohort of seed grants in 2015, it’s remarkable to look back and see that over 10 percent of the MIT faculty have benefited from J-WAFS funding,” observes J-WAFS Executive Director Renee J. Robins ’83. “Many of these professors hadn’t worked on water or food challenges before their first J-WAFS grant.” By fostering interdisciplinary collaborations and supporting high-risk, high-reward projects, J-WAFS has amplified the capacity of MIT faculty to pursue groundbreaking research that addresses some of the world’s most pressing challenges facing our water and food systems.Drawing MIT faculty to water and food researchJ-WAFS open calls for proposals enable faculty to explore bold ideas and develop impactful approaches to tackling critical water and food system challenges. Professor Patrick Doyle’s work in water purification exemplifies this impact. “Without J-WAFS, I would have never ventured into the field of water purification,” Doyle reflects. While previously focused on pharmaceutical manufacturing and drug delivery, exposure to J-WAFS-funded peers led him to apply his expertise in soft materials to water purification. “Both the funding and the J-WAFS community led me to be deeply engaged in understanding some of the key challenges in water purification and water security,” he explains.Similarly, Professor Otto Cordero of the Department of Civil and Environmental Engineering (CEE) leveraged J-WAFS funding to pivot his research into aquaculture. Cordero explains that his first J-WAFS seed grant “has been extremely influential for my lab because it allowed me to take a step in a new direction, with no preliminary data in hand.” Cordero’s expertise is in microbial communities. He was previous unfamiliar with aquaculture, but he saw the relevance of microbial communities the health of farmed aquatic organisms.Supporting early-career facultyNew assistant professors at MIT have particularly benefited from J-WAFS funding and support. J-WAFS has played a transformative role in shaping the careers and research trajectories of many new faculty members by encouraging them to explore novel research areas, and in many instances providing their first MIT research grant.Professor Ariel Furst reflects on how pivotal J-WAFS’ investment has been in advancing her research. “This was one of the first grants I received after starting at MIT, and it has truly shaped the development of my group’s research program,” Furst explains. With J-WAFS’ backing, her lab has achieved breakthroughs in chemical detection and remediation technologies for water. “The support of J-WAFS has enabled us to develop the platform funded through this work beyond the initial applications to the general detection of environmental contaminants and degradation of those contaminants,” she elaborates. Karthish Manthiram, now a professor of chemical engineering and chemistry at Caltech, explains how J-WAFS’ early investment enabled him and other young faculty to pursue ambitious ideas. “J-WAFS took a big risk on us,” Manthiram reflects. His research on breaking the nitrogen triple bond to make ammonia for fertilizer was initially met with skepticism. However, J-WAFS’ seed funding allowed his lab to lay the groundwork for breakthroughs that later attracted significant National Science Foundation (NSF) support. “That early funding from J-WAFS has been pivotal to our long-term success,” he notes. These stories underscore the broad impact of J-WAFS’ support for early-career faculty, and its commitment to empowering them to address critical global challenges and innovate boldly.Fueling follow-on funding J-WAFS seed grants enable faculty to explore nascent research areas, but external funding for continued work is usually necessary to achieve the full potential of these novel ideas. “It’s often hard to get funding for early stage or out-of-the-box ideas,” notes J-WAFS Director Professor John H. Lienhard V. “My hope, when I founded J-WAFS in 2014, was that seed grants would allow PIs [principal investigators] to prove out novel ideas so that they would be attractive for follow-on funding. And after 10 years, J-WAFS-funded research projects have brought more than $21 million in subsequent awards to MIT.”Professor Retsef Levi led a seed study on how agricultural supply chains affect food safety, with a team of faculty spanning the MIT schools Engineering and Science as well as the MIT Sloan School of Management. The team parlayed their seed grant research into a multi-million-dollar follow-on initiative. Levi reflects, “The J-WAFS seed funding allowed us to establish the initial credibility of our team, which was key to our success in obtaining large funding from several other agencies.”Dave Des Marais was an assistant professor in the Department of CEE when he received his first J-WAFS seed grant. The funding supported his research on how plant growth and physiology are controlled by genes and interact with the environment. The seed grant helped launch his lab’s work addressing enhancing climate change resilience in agricultural systems. The work led to his Faculty Early Career Development (CAREER) Award from the NSF, a prestigious honor for junior faculty members. Now an associate professor, Des Marais’ ongoing project to further investigate the mechanisms and consequences of genomic and environmental interactions is supported by the five-year, $1,490,000 NSF grant. “J-WAFS providing essential funding to get my new research underway,” comments Des Marais.Stimulating interdisciplinary collaborationDes Marais’ seed grant was also key to developing new collaborations. He explains, “the J-WAFS grant supported me to develop a collaboration with Professor Caroline Uhler in EECS/IDSS [the Department of Electrical Engineering and Computer Science/Institute for Data, Systems, and Society] that really shaped how I think about framing and testing hypotheses. One of the best things about J-WAFS is facilitating unexpected connections among MIT faculty with diverse yet complementary skill sets.”Professors A. John Hart of the Department of Mechanical Engineering and Benedetto Marelli of CEE also launched a new interdisciplinary collaboration with J-WAFS funding. They partnered to join expertise in biomaterials, microfabrication, and manufacturing, to create printed silk-based colorimetric sensors that detect food spoilage. “The J-WAFS Seed Grant provided a unique opportunity for multidisciplinary collaboration,” Hart notes.Professors Stephen Graves in the MIT Sloan School of Management and Bishwapriya Sanyal in the Department of Urban Studies and Planning (DUSP) partnered to pursue new research on agricultural supply chains. With field work in Senegal, their J-WAFS-supported project brought together international development specialists and operations management experts to study how small firms and government agencies influence access to and uptake of irrigation technology by poorer farmers. “We used J-WAFS to spur a collaboration that would have been improbable without this grant,” they explain. Being part of the J-WAFS community also introduced them to researchers in Professor Amos Winter’s lab in the Department of Mechanical Engineering working on irrigation technologies for low-resource settings. DUSP doctoral candidate Mark Brennan notes, “We got to share our understanding of how irrigation markets and irrigation supply chains work in developing economies, and then we got to contrast that with their understanding of how irrigation system models work.”Timothy Swager, professor of chemistry, and Rohit Karnik, professor of mechanical engineering and J-WAFS associate director, collaborated on a sponsored research project supported by Xylem, Inc. through the J-WAFS Research Affiliate program. The cross-disciplinary research, which targeted the development of ultra-sensitive sensors for toxic PFAS chemicals, was conceived following a series of workshops hosted by J-WAFS. Swager and Karnik were two of the participants, and their involvement led to the collaborative proposal that Xylem funded. “J-WAFS funding allowed us to combine Swager lab’s expertise in sensing with my lab’s expertise in microfluidics to develop a cartridge for field-portable detection of PFAS,” says Karnik. “J-WAFS has enriched my research program in so many ways,” adds Swager, who is now working to commercialize the technology.Driving global collaboration and impactJ-WAFS has also helped MIT faculty establish and advance international collaboration and impactful global research. By funding and supporting projects that connect MIT researchers with international partners, J-WAFS has not only advanced technological solutions, but also strengthened cross-cultural understanding and engagement.Professor Matthew Shoulders leads the inaugural J-WAFS Grand Challenge project. In response to the first J-WAFS call for “Grand Challenge” proposals, Shoulders assembled an interdisciplinary team based at MIT to enhance and provide climate resilience to agriculture by improving the most inefficient aspect of photosynthesis, the notoriously-inefficient carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk/high-reward project following a competitive process that engaged external reviewers through a several rounds of iterative proposal development. The technical feedback to the team led them to researchers with complementary expertise from the Australian National University. “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists and field trial experts, yielding a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team will be able to make a concerted effort using the most modern, state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”Professor Leon Glicksman and Research Engineer Eric Verploegen’s team designed a low-cost cooling chamber to preserve fruits and vegetables harvested by smallholder farmers with no access to cold chain storage. J-WAFS’ guidance motivated the team to prioritize practical considerations informed by local collaborators, ensuring market competitiveness. “As our new idea for a forced-air evaporative cooling chamber was taking shape, we continually checked that our solution was evolving in a direction that would be competitive in terms of cost, performance, and usability to existing commercial alternatives,” explains Verploegen. Following the team’s initial seed grant, the team secured a J-WAFS Solutions commercialization grant, which Verploegen say “further motivated us to establish partnerships with local organizations capable of commercializing the technology earlier in the project than we might have done otherwise.” The team has since shared an open-source design as part of its commercialization strategy to maximize accessibility and impact.Bringing corporate sponsored research opportunities to MIT facultyJ-WAFS also plays a role in driving private partnerships, enabling collaborations that bridge industry and academia. Through its Research Affiliate Program, for example, J-WAFS provides opportunities for faculty to collaborate with industry on sponsored research, helping to convert scientific discoveries into licensable intellectual property (IP) that companies can turn into commercial products and services.J-WAFS introduced professor of mechanical engineering Alex Slocum to a challenge presented by its research affiliate company, Xylem: how to design a more energy-efficient pump for fluctuating flows. With centrifugal pumps consuming an estimated 6 percent of U.S. electricity annually, Slocum and his then-graduate student Hilary Johnson SM ’18, PhD ’22 developed an innovative variable volute mechanism that reduces energy usage. “Xylem envisions this as the first in a new category of adaptive pump geometry,” comments Johnson. The research produced a pump prototype and related IP that Xylem is working on commercializing. Johnson notes that these outcomes “would not have been possible without J-WAFS support and facilitation of the Xylem industry partnership.” Slocum adds, “J-WAFS enabled Hilary to begin her work on pumps, and Xylem sponsored the research to bring her to this point … where she has an opportunity to do far more than the original project called for.”Swager speaks highly of the impact of corporate research sponsorship through J-WAFS on his research and technology translation efforts. His PFAS project with Karnik described above was also supported by Xylem. “Xylem was an excellent sponsor of our research. Their engagement and feedback were instrumental in advancing our PFAS detection technology, now on the path to commercialization,” Swager says.Looking forwardWhat J-WAFS has accomplished is more than a collection of research projects; a decade of impact demonstrates how J-WAFS’ approach has been transformative for many MIT faculty members. As Professor Mathias Kolle puts it, his engagement with J-WAFS “had a significant influence on how we think about our research and its broader impacts.” He adds that it “opened my eyes to the challenges in the field of water and food systems and the many different creative ideas that are explored by MIT.” This thriving ecosystem of innovation, collaboration, and academic growth around water and food research has not only helped faculty build interdisciplinary and international partnerships, but has also led to the commercialization of transformative technologies with real-world applications. C. Cem Taşan, the POSCO Associate Professor of Metallurgy who is leading a J-WAFS Solutions commercialization team that is about to launch a startup company, sums it up by noting, “Without J-WAFS, we wouldn’t be here at all.”  As J-WAFS looks to the future, its continued commitment — supported by the generosity of its donors and partners — builds on a decade of success enabling MIT faculty to advance water and food research that addresses some of the world’s most pressing challenges. More

  • in

    Pivot Bio is using microbial nitrogen to make agriculture more sustainable

    The Haber-Bosch process, which converts atmospheric nitrogen to make ammonia fertilizer, revolutionized agriculture and helped feed the world’s growing population, but it also created huge environmental problems. It is one of the most energy-intensive chemical processes in the world, responsible for 1-2 percent of global energy consumption. It also releases nitrous oxide, a potent greenhouse gas that harms the ozone layer. Excess nitrogen also routinely runs off farms into waterways, harming marine life and polluting groundwater.In place of synthetic fertilizer, Pivot Bio has engineered nitrogen-producing microbes to make farming more sustainable. The company, which was co-founded by Professor Chris Voigt, Karsten Temme, and Alvin Tamsir, has engineered its microbes to grow on plant roots, where they feed on the root’s sugars and precisely deliver nitrogen in return.Pivot’s microbial colonies grow with the plant and produce more nitrogen at exactly the time the plant needs it, minimizing nitrogen runoff.“The way we have delivered nutrients to support plant growth historically is fertilizer, but that’s an inefficient way to get all the nutrients you need,” says Temme, Pivot’s chief innovation officer. “We have the ability now to help farmers be more efficient and productive with microbes.”Farmers can replace up to 40 pounds per acre of traditional nitrogen with Pivot’s product, which amounts to about a quarter of the total nitrogen needed for a crop like corn.Pivot’s products are already being used to grow corn, wheat, barley, oats, and other grains across millions of acres of American farmland, eliminating hundreds of thousands of tons of CO2 equivalent in the process. The company’s impact is even more striking given its unlikely origins, which trace back to one of the most challenging times of Voigt’s career.A Pivot from despairThe beginning of every faculty member’s career can be a sink-or-swim moment, and by Voigt’s own account, he was drowning. As a freshly minted assistant professor at the University of California at San Francisco, Voigt was struggling to stand up his lab, attract funding, and get experiments started.Around 2008, Voigt joined a research group out of the University of California at Berkeley that was writing a grant proposal focused on photovoltaic materials. His initial role was minor, but a senior researcher pulled out of the group a week before the proposal had to be submitted, so Voigt stepped up.“I said ‘I’ll finish this section in a week,’” Voigt recalls. “It was my big chance.”For the proposal, Voigt detailed an ambitious plan to rearrange the genetics of biologic photosynthetic systems to make them more efficient. He barely submitted it in time.A few months went by, then the proposal reviews finally came back. Voigt hurried to the meeting with some of the most senior researchers at UC Berkeley to discuss the responses.“My part of the proposal got completely slammed,” Voigt says. “There were something like 15 reviews on it — they were longer than the actual grant — and it’s just one after another tearing into my proposal. All the most famous people are in this meeting, future energy secretaries, future leaders of the university, and it was totally embarrassing. After that meeting, I was considering leaving academia.”A few discouraging months later, Voigt got a call from Paul Ludden, the dean of the School of Science at UC Berkeley. He wanted to talk.“As I walk into Paul’s office, he’s reading my proposal,” Voigt recalls. “He sits me down and says, ‘Everybody’s telling me how terrible this is.’ I’m thinking, ‘Oh my God.’ But then he says, ‘I think there’s something here. Your idea is good, you just picked the wrong system.’”Ludden went on to explain to Voigt that he should apply his gene-swapping idea to nitrogen fixation. He even offered to send Voigt a postdoc from his lab, Dehua Zhao, to help. Voigt paired Zhao with Temme, and sure enough, the resulting 2011 paper of their work was well-received by the nitrogen fixation community.“Nitrogen fixation has been a holy grail for scientists, agronomists, and farmers for almost a century, ever since somebody discovered the first microbe that can fix nitrogen for legumes like soybeans,” Temme says. “Everybody always said that someday we’ll be able to do this for the cereal crops. The excitement with Pivot was this is the first time that technology became accessible.”Voigt had moved to MIT in 2010. When the paper came out, he founded Pivot Bio with Temme and another Berkeley researcher, Alvin Tamsir. Since then, Voigt, who is the Daniel I.C. Wang Professor at MIT and the head of the Department of Biological Engineering, has continued collaborating with Pivot on things like increasing nitrogen production, making strains more stable, and making them inducible to different signals from the plant. Pivot has licensed technology from MIT, and the research has also received support from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS).Pivot’s first goals were to gain regulatory approval and prove themselves in the marketplace. To gain approval in the U.S., Pivot’s team focused on using DNA from within the same organism rather than bringing in totally new DNA, which simplified the approval process. It also partnered with independent corn seed dealers to get its product to farms. Early deployments occurred in 2019.Farmers apply Pivot’s product at planting, either as a liquid that gets sprayed on the soil or as a dry powder that is rehydrated and applied to the seeds as a coating. The microbes live on the surface of the growing root system, eating plant sugars and releasing nitrogen throughout the plant’s life cycle.“Today, our microbes colonize just a fraction of the total sugars provided by the plant,” Temme explains. “They’re also sharing ammonia with the plant, and all of those things are just a portion of what’s possible technically. Our team is always trying to figure out how to make those microbes more efficient at getting the energy they need to grow or at fixing nitrogen and sharing it with the crop.”In 2023, Pivot started the N-Ovator program to connect companies with growers who practice sustainable farming using Pivot’s microbial nitrogen. Through the program, companies buy nitrogen credits and farmers can get paid by verifying their practices. The program was named one of the Inventions of the Year by Time Magazine last year and has paid out millions of dollars to farmers to date.Microbial nitrogen and beyondPivot is currently selling to farmers across the U.S. and working with smallholder farmers in Kenya. It’s also hoping to gain approval for its microbial solution in Brazil and Canada, which it hopes will be its next markets.”How do we get the economics to make sense for everybody — the farmers, our partners, and the company?” Temme says of Pivot’s mission. “Because this truly can be a deflationary technology that upends the very expensive traditional way of making fertilizer.”Pivot’s team is also extending the product to cotton, and Temme says microbes can be a nitrogen source for any type of plant on the planet. Further down the line, the company believes it can help farmers with other nutrients essential to help their crops grow.“Now that we’ve established our technology, how can Pivot help farmers overcome all the other limitations they face with crop nutrients to maximize yields?” Temme asks. “That really starts to change the way a farmer thinks about managing the entire acre from a price, productivity, and sustainability perspective.” More

  • in

    MIT spinout Gradiant reduces companies’ water use and waste by billions of gallons each day

    When it comes to water use, most of us think of the water we drink. But industrial uses for things like manufacturing account for billions of gallons of water each day. For instance, making a single iPhone, by one estimate, requires more than 3,000 gallons.Gradiant is working to reduce the world’s industrial water footprint. Founded by a team from MIT, Gradiant offers water recycling, treatment, and purification solutions to some of the largest companies on Earth, including Coca Cola, Tesla, and the Taiwan Semiconductor Manufacturing Company. By serving as an end-to-end water company, Gradiant says it helps companies reuse 2 billion gallons of water each day and saves another 2 billion gallons of fresh water from being withdrawn.The company’s mission is to preserve water for generations to come in the face of rising global demand.“We work on both ends of the water spectrum,” Gradiant co-founder and CEO Anurag Bajpayee SM ’08, PhD ’12 says. “We work with ultracontaminated water, and we can also provide ultrapure water for use in areas like chip fabrication. Our specialty is in the extreme water challenges that can’t be solved with traditional technologies.”For each customer, Gradiant builds tailored water treatment solutions that combine chemical treatments with membrane filtration and biological process technologies, leveraging a portfolio of patents to drastically cut water usage and waste.“Before Gradiant, 40 million liters of water would be used in the chip-making process. It would all be contaminated and treated, and maybe 30 percent would be reused,” explains Gradiant co-founder and COO Prakash Govindan PhD ’12. “We have the technology to recycle, in some cases, 99 percent of the water. Now, instead of consuming 40 million liters, chipmakers only need to consume 400,000 liters, which is a huge shift in the water footprint of that industry. And this is not just with semiconductors. We’ve done this in food and beverage, we’ve done this in renewable energy, we’ve done this in pharmaceutical drug production, and several other areas.”Learning the value of waterGovindan grew up in a part of India that experienced a years-long drought beginning when he was 10. Without tap water, one of Govindan’s chores was to haul water up the stairs of his apartment complex each time a truck delivered it.“However much water my brother and I could carry was how much we had for the week,” Govindan recalls. “I learned the value of water the hard way.”Govindan attended the Indian Institute of Technology as an undergraduate, and when he came to MIT for his PhD, he sought out the groups working on water challenges. He began working on a water treatment method called carrier gas extraction for his PhD under Gradiant co-founder and MIT Professor John Lienhard.Bajpayee also worked on water treatment methods at MIT, and after brief stints as postdocs at MIT, he and Govindan licensed their work and founded Gradiant.Carrier gas extraction became Gradiant’s first proprietary technology when the company launched in 2013. The founders began by treating wastewater created by oil and gas wells, landing their first partner in a Texas company. But Gradiant gradually expanded to solving water challenges in power generation, mining, textiles, and refineries. Then the founders noticed opportunities in industries like electronics, semiconductors, food and beverage, and pharmaceuticals. Today, oil and gas wastewater treatment makes up a small percentage of Gradiant’s work.As the company expanded, it added technologies to its portfolio, patenting new water treatment methods around reverse osmosis, selective contaminant extraction, and free radical oxidation. Gradiant has also created a digital system that uses AI to measure, predict, and control water treatment facilities.“The advantage Gradiant has over every other water company is that R&D is in our DNA,” Govindan says, noting Gradiant has a world-class research lab at its headquarters in Boston. “At MIT, we learned how to do cutting-edge technology development, and we never let go of that.”The founders compare their suite of technologies to LEGO bricks they can mix and match depending on a customer’s water needs. Gradiant has built more than 2,500 of these end-to-end systems for customers around the world.“Our customers aren’t water companies; they are industrial clients like semiconductor manufacturers, drug companies, and food and beverage companies,” Bajpayee says. “They aren’t about to start operating a water treatment plant. They look at us as their water partner who can take care of the whole water problem.”Continuing innovationThe founders say Gradiant has been roughly doubling its revenue each year over the last five years, and it’s continuing to add technologies to its platform. For instance, Gradiant recently developed a critical minerals recovery solution to extract materials like lithium and nickel from customers’ wastewater, which could expand access to critical materials essential to the production of batteries and other products.“If we can extract lithium from brine water in an environmentally and economically feasible way, the U.S. can meet all of its lithium needs from within the U.S.,” Bajpayee says. “What’s preventing large-scale extraction of lithium from brine is technology, and we believe what we have now deployed will open the floodgates for direct lithium extraction and completely revolutionized the industry.”The company has also validated a method for eliminating PFAS — so-called toxic “forever chemicals” — in a pilot project with a leading U.S. semiconductor manufacturer. In the near future, it hopes to bring that solution to municipal water treatment plants to protect cities.At the heart of Gradiant’s innovation is the founders’ belief that industrial activity doesn’t have to deplete one of the world’s most vital resources.“Ever since the industrial revolution, we’ve been taking from nature,” Bajpayee says. “By treating and recycling water, by reducing water consumption and making industry highly water efficient, we have this unique opportunity to turn the clock back and give nature water back. If that’s your driver, you can’t choose not to innovate.” More

  • in

    In a unique research collaboration, students make the case for less e-waste

    Brought together as part of the Social and Ethical Responsibilities of Computing (SERC) initiative within the MIT Schwarzman College of Computing, a community of students known as SERC Scholars is collaborating to examine the most urgent problems humans face in the digital landscape.Each semester, students from all levels from across MIT are invited to join a different topical working group led by a SERC postdoctoral associate. Each group delves into a specific issue — such as surveillance or data ownership — culminating in a final project presented at the end of the term.Typically, students complete the program with hands-on experience conducting research in a new cross-disciplinary field. However, one group of undergraduate and graduate students recently had the unique opportunity to enhance their resume by becoming published authors of a case study about the environmental and climate justice implications of the electronics hardware life cycle.Although it’s not uncommon for graduate students to co-author case studies, it’s unusual for undergraduates to earn this opportunity — and for their audience to be other undergraduates around the world.“Our team was insanely interdisciplinary,” says Anastasia Dunca, a junior studying computer science and one of the co-authors. “I joined the SERC Scholars Program because I liked the idea of being part of a cohort from across MIT working on a project that utilized all of our skillsets. It also helps [undergraduates] learn the ins and outs of computing ethics research.”Case study co-author Jasmin Liu, an MBA student in the MIT Sloan School of Management, sees the program as a platform to learn about the intersection of technology, society, and ethics: “I met team members spanning computer science, urban planning, to art/culture/technology. I was excited to work with a diverse team because I know complex problems must be approached with many different perspectives. Combining my background in humanities and business with the expertise of others allowed us to be more innovative and comprehensive.”Christopher Rabe, a former SERC postdoc who facilitated the group, says, “I let the students take the lead on identifying the topic and conducting the research.” His goal for the group was to challenge students across disciplines to develop a working definition of climate justice.From mining to e-wasteThe SERC Scholars’ case study, “From Mining to E-waste: The Environmental and Climate Justice Implications of the Electronics Hardware Life Cycle,” was published by the MIT Case Studies in Social and Ethical Responsibilities of Computing.The ongoing case studies series, which releases new issues twice a year on an open-source platform, is enabling undergraduate instructors worldwide to incorporate research-based education materials on computing ethics into their existing class syllabi.This particular case study broke down the electronics life cycle from mining to manufacturing, usage, and disposal. It offered an in-depth look at how this cycle promotes inequity in the Global South. Mining for the average of 60 minerals that power everyday devices lead to illegal deforestation, compromising air quality in the Amazon, and triggering armed conflict in Congo. Manufacturing leads to proven health risks for both formal and informal workers, some of whom are child laborers.Life cycle assessment and circular economy are proposed as mechanisms for analyzing environmental and climate justice issues in the electronics life cycle. Rather than posing solutions, the case study offers readers entry points for further discussion and for assessing their own individual responsibility as producers of e-waste.Crufting and crafting a case studyDunca joined Rabe’s working group, intrigued by the invitation to conduct a rigorous literature review examining issues like data center resource and energy use, manufacturing waste, ethical issues with AI, and climate change. Rabe quickly realized that a common thread among all participants was an interest in understanding and reducing e-waste and its impact on the environment.“I came in with the idea of us co-authoring a case study,” Rabe said. However, the writing-intensive process was initially daunting to those students who were used to conducting applied research. Once Rabe created sub-groups with discrete tasks, the steps for researching, writing, and iterating a case study became more approachable.For Ellie Bultena, an undergraduate student studying linguistics and philosophy and a contributor to the study, that meant conducting field research on the loading dock of MIT’s Stata Center, where students and faculty go “crufting” through piles of clunky printers, broken computers, and used lab equipment discarded by the Institute’s labs, departments, and individual users.Although not a formally sanctioned activity on-campus, “crufting” is the act of gleaning usable parts from these junk piles to be repurposed into new equipment or art. Bultena’s respondents, who opted to be anonymous, said that MIT could do better when it comes to the amount of e-waste generated and suggested that formal strategies could be implemented to encourage community members to repair equipment more easily or recycle more formally.Rabe, now an education program director at the MIT Environmental Solutions Initiative, is hopeful that through the Zero-Carbon Campus Initiative, which commits MIT to eliminating all direct emissions by 2050, MIT will ultimately become a model for other higher education institutions.Although the group lacked the time and resources to travel to communities in the Global South that they profiled in their case study, members leaned into exhaustive secondary research, collecting data on how some countries are irresponsibly dumping e-waste. In contrast, others have developed alternative solutions that can be duplicated elsewhere and scaled.“We source materials, manufacture them, and then throw them away,” Lelia Hampton says. A PhD candidate in electrical engineering and computer science and another co-author, Hampton jumped at the opportunity to serve in a writing role, bringing together the sub-groups research findings. “I’d never written a case study, and it was exciting. Now I want to write 10 more.”The content directly informed Hampton’s dissertation research, which “looks at applying machine learning to climate justice issues such as urban heat islands.” She said that writing a case study that is accessible to general audiences upskilled her for the non-profit organization she’s determined to start. “It’s going to provide communities with free resources and data needed to understand how they are impacted by climate change and begin to advocate against injustice,” Hampton explains.Dunca, Liu, Rabe, Bultena, and Hampton are joined on the case study by fellow authors Mrinalini Singha, a graduate student in the Art, Culture, and Technology program; Sungmoon Lim, a graduate student in urban studies and planning and EECS; Lauren Higgins, an undergraduate majoring in political science; and Madeline Schlegal, a Northeastern University co-op student.Taking the case study to classrooms around the worldAlthough PhD candidates have contributed to previous case studies in the series, this publication is the first to be co-authored with MIT undergraduates. Like any other peer-reviewed journal, before publication, the SERC Scholars’ case study was anonymously reviewed by senior scholars drawn from various fields.The series editor, David Kaiser, also served as one of SERC’s inaugural associate deans and helped shape the program. “The case studies, by design, are short, easy to read, and don’t take up lots of time,” Kaiser explained. “They are gateways for students to explore, and instructors can cover a topic that has likely already been on their mind.” This semester, Kaiser, the Germeshausen Professor of the History of Science and a professor of physics, is teaching STS.004 (Intersections: Science, Technology, and the World), an undergraduate introduction to the field of science, technology, and society. The last month of the semester has been dedicated wholly to SERC case studies, one of which is: “From Mining to E-Waste.”Hampton was visibly moved to hear that the case study is being used at MIT but also by some of the 250,000 visitors to the SERC platform, many of whom are based in the Global South and directly impacted by the issues she and her cohort researched. “Many students are focused on climate, whether through computer science, data science, or mechanical engineering. I hope that this case study educates them on environmental and climate aspects of e-waste and computing.” More

  • in

    Aspiring to sustainable development

    In a first for both universities, MIT undergraduates are engaged in research projects at the Universidad del Valle de Guatemala (UVG), while MIT scholars are collaborating with UVG undergraduates on in-depth field studies in Guatemala.These pilot projects are part of a larger enterprise, called ASPIRE (Achieving Sustainable Partnerships for Innovation, Research, and Entrepreneurship). Funded by the U.S. Agency for International Development, this five-year, $15-million initiative brings together MIT, UVG, and the Guatemalan Exporters Association to promote sustainable solutions to local development challenges.“This research is yielding insights into our understanding of how to design with and for marginalized people, specifically Indigenous people,” says Elizabeth Hoffecker, co-principal investigator of ASPIRE at MIT and director of the MIT Local Innovation Group.The students’ work is bearing fruit in the form of publications and new products — directly advancing ASPIRE’s goals to create an innovation ecosystem in Guatemala that can be replicated elsewhere in Central and Latin America.For the students, the project offers rewards both tangible and inspirational.“My experience allowed me to find my interest in local innovation and entrepreneurship,” says Ximena Sarmiento García, a fifth-year undergraduate at UVG majoring in anthropology. Supervised by Hoffecker, Sarmiento García says, “I learned how to inform myself, investigate, and find solutions — to become a researcher.”Sandra Youssef, a rising junior in mechanical engineering at MIT, collaborated with UVG researchers and Indigenous farmers to design a mobile cart to improve the harvest yield of snow peas. “It was perfect for me,” she says. “My goal was to use creative, new technologies and science to make a dent in difficult problems.”Remote and effectiveKendra Leith, co-principal investigator of ASPIRE, and associate director for research at MIT D-Lab, shaped the MIT-based undergraduate research opportunities (UROPs) in concert with UVG colleagues. “Although MIT students aren’t currently permitted to travel to Guatemala, I wanted them to have an opportunity to apply their experience and knowledge to address real-world challenges,” says Leith. “The Covid pandemic prepared them and their counterparts at UVG for effective remote collaboration — the UROPs completed remarkably productive research projects over Zoom and met our goals for them.”MIT students participated in some of UVG’s most ambitious ASPIRE research. For instance, Sydney Baller, a rising sophomore in mechanical engineering, joined a team of Indigenous farmers and UVG mechanical engineers investigating the manufacturing process and potential markets for essential oils extracted from thyme, rosemary, and chamomile plants.“Indigenous people have thousands of years working with plant extracts and ancient remedies,” says Baller. “There is promising history there that would be important to follow up with more modern research.”Sandra Youssef used computer-aided design and manufacturing to realize a design created in a hackathon by snow pea farmers. “Our cart had to hold 495 pounds of snow peas without collapsing or overturning, navigate narrow paths on hills, and be simple and inexpensive to assemble,” she says. The snow pea producers have tested two of Youssef’s designs, built by a team at UVG led by Rony Herrarte, a faculty member in the department of mechanical engineering.From waste to filterTwo MIT undergraduates joined one of UVG’s long-standing projects: addressing pollution in Guatemala’s water. The research seeks to use chitosan molecules, extracted from shrimp shells, for bioremediation of heavy metals and other water contaminants. These shells are available in abundance, left as waste by the country’s shrimp industry.Sophomores Ariana Hodlewsky, majoring in chemical engineering, and Paolo Mangiafico, majoring in brain and cognitive sciences, signed on to work with principal investigator and chemistry department instructor Allan Vásquez (UVG) on filtration systems utilizing chitosan.“The team wants to find a cost-effective product rural communities, most at risk from polluted water, can use in homes or in town water systems,” says Mangiafico. “So we have been investigating different technologies for water filtration, and analyzing the Guatemalan and U.S. markets to understand the regulations and opportunities that might affect introduction of a chitosan-based product.”“Our research into how different communities use water and into potential consumers and pitfalls sets the scene for prototypes UVG wants to produce,” says Hodlewsky.Lourdes Figueroa, UVG ASPIRE project manager for technology transfer, found their assistance invaluable.“Paolo and Ariana brought the MIT culture and mindset to the project,” she says. “They wanted to understand not only how the technology works, but the best ways of getting the technology out of the lab to make it useful.”This was an “Aha!” moment, says Figueroa. “The MIT students made a major contribution to both the engineering and marketing sides by emphasizing that you have to think about how to guarantee the market acceptance of the technology while it is still under development.”Innovation ecosystemsUVG’s three campuses have served as incubators for problem-solving innovation and entrepreneurship, in many cases driven by students from Indigenous communities and families. In 2022, Elizabeth Hoffecker, with eight UVG anthropology majors, set out to identify the most vibrant examples of these collaborative initiatives, which ASPIRE seeks to promote and replicate.Hoffecker’s “innovation ecosystem diagnostic” revealed a cluster of activity centered on UVG’s Altiplano campus in the central highlands, which serves Mayan communities. Hoffecker and two of the anthropology students focused on four examples for a series of case studies, which they are currently preparing for submission to a peer-reviewed journal.“The caliber of their work was so good that it became clear to me that we could collaborate on a paper,” says Hoffecker. “It was my first time publishing with undergraduates.”The researchers’ cases included novel production of traditional thread, and creation of a 3D phytoplankton kit that is being used to educate community members about water pollution in Lake Atitlán, a tourist destination that drives the local economy but is increasingly being affected by toxic algae blooms. Hoffecker singles out a project by Indigenous undergraduates who developed play-based teaching tools for introducing basic mathematical concepts.“These connect to local Mayan ways of understanding and offer a novel, hands-on way to strengthen the math teaching skills of local primary school teachers in Indigenous communities,” says Hoffecker. “They created something that addresses a very immediate need in the community — lack of training.Both of Hoffecker’s undergraduate collaborators are writing theses inspired by these case studies.“My time with Elizabeth allowed me to learn how to conduct research from scratch, ask for help, find solutions, and trust myself,” says Sarmiento García. She finds the ASPIRE approach profoundly appealing. “It is not only ethical, but also deeply committed to applying results to the real lives of the people involved.”“This experience has been incredibly positive, validating my own ability to generate knowledge through research, rather than relying only on established authors to back up my arguments,” says Camila del Cid, a fifth-year anthropology student. “This was empowering, especially as a Latin American researcher, because it emphasized that my perspective and contributions are important.”Hoffecker says this pilot run with UVG undergrads produced “high-quality research that can inform evidence-based decision-making on development issues of top regional priority” — a key goal for ASPIRE. Hoffecker plans to “develop a pathway that other UVG students can follow to conduct similar research.”MIT undergraduate research will continue. “Our students’ activities have been very valuable in Guatemala, so much so that the snow pea, chitosan, and essential oils teams would like to continue working with our students this year,” says Leith.  She anticipates a new round of MIT UROPs for next summer.Youssef, for one, is eager to get to work on refining the snow pea cart. “I like the idea of working outside my comfort zone, thinking about things that seem unsolvable and coming up with a solution to fix some aspect of the problem,” she says. More

  • in

    Study finds mercury pollution from human activities is declining

    MIT researchers have some good environmental news: Mercury emissions from human activity have been declining over the past two decades, despite global emissions inventories that indicate otherwise.In a new study, the researchers analyzed measurements from all available monitoring stations in the Northern Hemisphere and found that atmospheric concentrations of mercury declined by about 10 percent between 2005 and 2020.They used two separate modeling methods to determine what is driving that trend. Both techniques pointed to a decline in mercury emissions from human activity as the most likely cause.Global inventories, on the other hand, have reported opposite trends. These inventories estimate atmospheric emissions using models that incorporate average emission rates of polluting activities and the scale of these activities worldwide.“Our work shows that it is very important to learn from actual, on-the-ground data to try and improve our models and these emissions estimates. This is very relevant for policy because, if we are not able to accurately estimate past mercury emissions, how are we going to predict how mercury pollution will evolve in the future?” says Ari Feinberg, a former postdoc in the Institute for Data, Systems, and Society (IDSS) and lead author of the study.The new results could help inform scientists who are embarking on a collaborative, global effort to evaluate pollution models and develop a more in-depth understanding of what drives global atmospheric concentrations of mercury.However, due to a lack of data from global monitoring stations and limitations in the scientific understanding of mercury pollution, the researchers couldn’t pinpoint a definitive reason for the mismatch between the inventories and the recorded measurements.“It seems like mercury emissions are moving in the right direction, and could continue to do so, which is heartening to see. But this was as far as we could get with mercury. We need to keep measuring and advancing the science,” adds co-author Noelle Selin, an MIT professor in the IDSS and the Department of Earth, Atmospheric and Planetary Sciences (EAPS).Feinberg and Selin, his MIT postdoctoral advisor, are joined on the paper by an international team of researchers that contributed atmospheric mercury measurement data and statistical methods to the study. The research appears this week in the Proceedings of the National Academy of Sciences.Mercury mismatchThe Minamata Convention is a global treaty that aims to cut human-caused emissions of mercury, a potent neurotoxin that enters the atmosphere from sources like coal-fired power plants and small-scale gold mining.The treaty, which was signed in 2013 and went into force in 2017, is evaluated every five years. The first meeting of its conference of parties coincided with disheartening news reports that said global inventories of mercury emissions, compiled in part from information from national inventories, had increased despite international efforts to reduce them.This was puzzling news for environmental scientists like Selin. Data from monitoring stations showed atmospheric mercury concentrations declining during the same period.Bottom-up inventories combine emission factors, such as the amount of mercury that enters the atmosphere when coal mined in a certain region is burned, with estimates of pollution-causing activities, like how much of that coal is burned in power plants.“The big question we wanted to answer was: What is actually happening to mercury in the atmosphere and what does that say about anthropogenic emissions over time?” Selin says.Modeling mercury emissions is especially tricky. First, mercury is the only metal that is in liquid form at room temperature, so it has unique properties. Moreover, mercury that has been removed from the atmosphere by sinks like the ocean or land can be re-emitted later, making it hard to identify primary emission sources.At the same time, mercury is more difficult to study in laboratory settings than many other air pollutants, especially due to its toxicity, so scientists have limited understanding of all chemical reactions mercury can undergo. There is also a much smaller network of mercury monitoring stations, compared to other polluting gases like methane and nitrous oxide.“One of the challenges of our study was to come up with statistical methods that can address those data gaps, because available measurements come from different time periods and different measurement networks,” Feinberg says.Multifaceted modelsThe researchers compiled data from 51 stations in the Northern Hemisphere. They used statistical techniques to aggregate data from nearby stations, which helped them overcome data gaps and evaluate regional trends.By combining data from 11 regions, their analysis indicated that Northern Hemisphere atmospheric mercury concentrations declined by about 10 percent between 2005 and 2020.Then the researchers used two modeling methods — biogeochemical box modeling and chemical transport modeling — to explore possible causes of that decline.  Box modeling was used to run hundreds of thousands of simulations to evaluate a wide array of emission scenarios. Chemical transport modeling is more computationally expensive but enables researchers to assess the impacts of meteorology and spatial variations on trends in selected scenarios.For instance, they tested one hypothesis that there may be an additional environmental sink that is removing more mercury from the atmosphere than previously thought. The models would indicate the feasibility of an unknown sink of that magnitude.“As we went through each hypothesis systematically, we were pretty surprised that we could really point to declines in anthropogenic emissions as being the most likely cause,” Selin says.Their work underscores the importance of long-term mercury monitoring stations, Feinberg adds. Many stations the researchers evaluated are no longer operational because of a lack of funding.While their analysis couldn’t zero in on exactly why the emissions inventories didn’t match up with actual data, they have a few hypotheses.One possibility is that global inventories are missing key information from certain countries. For instance, the researchers resolved some discrepancies when they used a more detailed regional inventory from China. But there was still a gap between observations and estimates.They also suspect the discrepancy might be the result of changes in two large sources of mercury that are particularly uncertain: emissions from small-scale gold mining and mercury-containing products.Small-scale gold mining involves using mercury to extract gold from soil and is often performed in remote parts of developing countries, making it hard to estimate. Yet small-scale gold mining contributes about 40 percent of human-made emissions.In addition, it’s difficult to determine how long it takes the pollutant to be released into the atmosphere from discarded products like thermometers or scientific equipment.“We’re not there yet where we can really pinpoint which source is responsible for this discrepancy,” Feinberg says.In the future, researchers from multiple countries, including MIT, will collaborate to study and improve the models they use to estimate and evaluate emissions. This research will be influential in helping that project move the needle on monitoring mercury, he says.This research was funded by the Swiss National Science Foundation, the U.S. National Science Foundation, and the U.S. Environmental Protection Agency. More

  • in

    3 Questions: The past, present, and future of sustainability science

    It was 1978, over a decade before the word “sustainable” would infiltrate environmental nomenclature, and Ronald Prinn, MIT professor of atmospheric science, had just founded the Advanced Global Atmospheric Gases Experiment (AGAGE). Today, AGAGE provides real-time measurements for well over 50 environmentally harmful trace gases, enabling us to determine emissions at the country level, a key element in verifying national adherence to the Montreal Protocol and the Paris Accord. This, Prinn says, started him thinking about doing science that informed decision making.Much like global interest in sustainability, Prinn’s interest and involvement continued to grow into what would become three decades worth of achievements in sustainability science. The Center for Global Change Science (CGCS) and Joint Program on the Science and Policy Global Change, respectively founded and co-founded by Prinn, have recently joined forces to create the MIT School of Science’s new Center for Sustainability Science and Strategy (CS3), lead by former CGCS postdoc turned MIT professor, Noelle Selin.As he prepares to pass the torch, Prinn reflects on how far sustainability has come, and where it all began.Q: Tell us about the motivation for the MIT centers you helped to found around sustainability.A: In 1990 after I founded the Center for Global Change Science, I also co-founded the Joint Program on the Science and Policy Global Change with a very important partner, [Henry] “Jake” Jacoby. He’s now retired, but at that point he was a professor in the MIT Sloan School of Management. Together, we determined that in order to answer questions related to what we now call sustainability of human activities, you need to combine the natural and social sciences involved in these processes. Based on this, we decided to make a joint program between the CGCS and a center that he directed, the Center for Energy and Environmental Policy Research (CEEPR).It was called the “joint program” and was joint for two reasons — not only were two centers joining, but two disciplines were joining. It was not about simply doing the same science. It was about bringing a team of people together that could tackle these coupled issues of environment, human development and economy. We were the first group in the world to fully integrate these elements together.Q: What has been your most impactful contribution and what effect did it have on the greater public’s overall understanding?A: Our biggest contribution is the development, and more importantly, the application of the Integrated Global System Model [IGSM] framework, looking at human development in both developing countries and developed countries that had a significant impact on the way people thought about climate issues. With IGSM, we were able to look at the interactions among human and natural components, studying the feedbacks and impacts that climate change had on human systems; like how it would alter agriculture and other land activities, how it would alter things we derive from the ocean, and so on.Policies were being developed largely by economists or climate scientists working independently, and we started showing how the real answers and analysis required a coupling of all of these components. We showed, and I think convincingly, that what people used to study independently, must be coupled together, because the impacts of climate change and air pollution affected so many things.To address the value of policy, despite the uncertainty in climate projections, we ran multiple runs of the IGSM with and without policy, with different choices for uncertain IGSM variables. For public communication, around 2005, we introduced our signature Greenhouse Gamble interactive visualization tools; these have been renewed over time as science and policies evolved.Q: What can MIT provide now at this critical juncture in understanding climate change and its impact?A: We need to further push the boundaries of integrated global system modeling to ensure full sustainability of human activity and all of its beneficial dimensions, which is the exciting focus that the CS3 is designed to address. We need to focus on sustainability as a central core element and use it to not just analyze existing policies but to propose new ones. Sustainability is not just climate or air pollution, it’s got to do with human impacts in general. Human health is central to sustainability, and equally important to equity. We need to expand the capability for credibly assessing what the impact policies have not just on developed countries, but on developing countries, taking into account that many places around the world are at artisanal levels of their economies. They cannot be blamed for anything that is changing climate and causing air pollution and other detrimental things that are currently going on. They need our help. That’s what sustainability is in its full dimensions.Our capabilities are evolving toward a modeling system so detailed that we can find out detrimental things about policies even at local levels before investing in changing infrastructure. This is going to require collaboration among even more disciplines and creating a seamless connection between research and decision making; not just for policies enacted in the public sector, but also for decisions that are made in the private sector.  More