More stories

  • in

    Toward sustainable decarbonization of aviation in Latin America

    According to the International Energy Agency, aviation accounts for about 2 percent of global carbon dioxide emissions, and aviation emissions are expected to double by mid-century as demand for domestic and international air travel rises. To sharply reduce emissions in alignment with the Paris Agreement’s long-term goal to keep global warming below 1.5 degrees Celsius, the International Air Transport Association (IATA) has set a goal to achieve net-zero carbon emissions by 2050. Which raises the question: Are there technologically feasible and economically viable strategies to reach that goal within the next 25 years?To begin to address that question, a team of researchers at the MIT Center for Sustainability Science and Strategy (CS3) and the MIT Laboratory for Aviation and the Environment has spent the past year analyzing aviation decarbonization options in Latin America, where air travel is expected to more than triple by 2050 and thereby double today’s aviation-related emissions in the region.Chief among those options is the development and deployment of sustainable aviation fuel. Currently produced from low- and zero-carbon sources (feedstock) including municipal waste and non-food crops, and requiring practically no alteration of aircraft systems or refueling infrastructure, sustainable aviation fuel (SAF) has the potential to perform just as well as petroleum-based jet fuel with as low as 20 percent of its carbon footprint.Focused on Brazil, Chile, Colombia, Ecuador, Mexico and Peru, the researchers assessed SAF feedstock availability, the costs of corresponding SAF pathways, and how SAF deployment would likely impact fuel use, prices, emissions, and aviation demand in each country. They also explored how efficiency improvements and market-based mechanisms could help the region to reach decarbonization targets. The team’s findings appear in a CS3 Special Report.SAF emissions, costs, and sourcesUnder an ambitious emissions mitigation scenario designed to cap global warming at 1.5 C and raise the rate of SAF use in Latin America to 65 percent by 2050, the researchers projected aviation emissions to be reduced by about 60 percent in 2050 compared to a scenario in which existing climate policies are not strengthened. To achieve net-zero emissions by 2050, other measures would be required, such as improvements in operational and air traffic efficiencies, airplane fleet renewal, alternative forms of propulsion, and carbon offsets and removals.As of 2024, jet fuel prices in Latin America are around $0.70 per liter. Based on the current availability of feedstocks, the researchers projected SAF costs within the six countries studied to range from $1.11 to $2.86 per liter. They cautioned that increased fuel prices could affect operating costs of the aviation sector and overall aviation demand unless strategies to manage price increases are implemented.Under the 1.5 C scenario, the total cumulative capital investments required to build new SAF producing plants between 2025 and 2050 were estimated at $204 billion for the six countries (ranging from $5 billion in Ecuador to $84 billion in Brazil). The researchers identified sugarcane- and corn-based ethanol-to-jet fuel, palm oil- and soybean-based hydro-processed esters and fatty acids as the most promising feedstock sources in the near term for SAF production in Latin America.“Our findings show that SAF offers a significant decarbonization pathway, which must be combined with an economy-wide emissions mitigation policy that uses market-based mechanisms to offset the remaining emissions,” says Sergey Paltsev, lead author of the report, MIT CS3 deputy director, and senior research scientist at the MIT Energy Initiative.RecommendationsThe researchers concluded the report with recommendations for national policymakers and aviation industry leaders in Latin America.They stressed that government policy and regulatory mechanisms will be needed to create sufficient conditions to attract SAF investments in the region and make SAF commercially viable as the aviation industry decarbonizes operations. Without appropriate policy frameworks, SAF requirements will affect the cost of air travel. For fuel producers, stable, long-term-oriented policies and regulations will be needed to create robust supply chains, build demand for establishing economies of scale, and develop innovative pathways for producing SAF.Finally, the research team recommended a region-wide collaboration in designing SAF policies. A unified decarbonization strategy among all countries in the region will help ensure competitiveness, economies of scale, and achievement of long-term carbon emissions-reduction goals.“Regional feedstock availability and costs make Latin America a potential major player in SAF production,” says Angelo Gurgel, a principal research scientist at MIT CS3 and co-author of the study. “SAF requirements, combined with government support mechanisms, will ensure sustainable decarbonization while enhancing the region’s connectivity and the ability of disadvantaged communities to access air transport.”Financial support for this study was provided by LATAM Airlines and Airbus. More

  • in

    The multifaceted challenge of powering AI

    Artificial intelligence has become vital in business and financial dealings, medical care, technology development, research, and much more. Without realizing it, consumers rely on AI when they stream a video, do online banking, or perform an online search. Behind these capabilities are more than 10,000 data centers globally, each one a huge warehouse containing thousands of computer servers and other infrastructure for storing, managing, and processing data. There are now over 5,000 data centers in the United States, and new ones are being built every day — in the U.S. and worldwide. Often dozens are clustered together right near where people live, attracted by policies that provide tax breaks and other incentives, and by what looks like abundant electricity.And data centers do consume huge amounts of electricity. U.S. data centers consumed more than 4 percent of the country’s total electricity in 2023, and by 2030 that fraction could rise to 9 percent, according to the Electric Power Research Institute. A single large data center can consume as much electricity as 50,000 homes.The sudden need for so many data centers presents a massive challenge to the technology and energy industries, government policymakers, and everyday consumers. Research scientists and faculty members at the MIT Energy Initiative (MITEI) are exploring multiple facets of this problem — from sourcing power to grid improvement to analytical tools that increase efficiency, and more. Data centers have quickly become the energy issue of our day.Unexpected demand brings unexpected solutionsSeveral companies that use data centers to provide cloud computing and data management services are announcing some surprising steps to deliver all that electricity. Proposals include building their own small nuclear plants near their data centers and even restarting one of the undamaged nuclear reactors at Three Mile Island, which has been shuttered since 2019. (A different reactor at that plant partially melted down in 1979, causing the nation’s worst nuclear power accident.) Already the need to power AI is causing delays in the planned shutdown of some coal-fired power plants and raising prices for residential consumers. Meeting the needs of data centers is not only stressing power grids, but also setting back the transition to clean energy needed to stop climate change.There are many aspects to the data center problem from a power perspective. Here are some that MIT researchers are focusing on, and why they’re important.An unprecedented surge in the demand for electricity“In the past, computing was not a significant user of electricity,” says William H. Green, director of MITEI and the Hoyt C. Hottel Professor in the MIT Department of Chemical Engineering. “Electricity was used for running industrial processes and powering household devices such as air conditioners and lights, and more recently for powering heat pumps and charging electric cars. But now all of a sudden, electricity used for computing in general, and by data centers in particular, is becoming a gigantic new demand that no one anticipated.”Why the lack of foresight? Usually, demand for electric power increases by roughly half-a-percent per year, and utilities bring in new power generators and make other investments as needed to meet the expected new demand. But the data centers now coming online are creating unprecedented leaps in demand that operators didn’t see coming. In addition, the new demand is constant. It’s critical that a data center provides its services all day, every day. There can be no interruptions in processing large datasets, accessing stored data, and running the cooling equipment needed to keep all the packed-together computers churning away without overheating.Moreover, even if enough electricity is generated, getting it to where it’s needed may be a problem, explains Deepjyoti Deka, a MITEI research scientist. “A grid is a network-wide operation, and the grid operator may have sufficient generation at another location or even elsewhere in the country, but the wires may not have sufficient capacity to carry the electricity to where it’s wanted.” So transmission capacity must be expanded — and, says Deka, that’s a slow process.Then there’s the “interconnection queue.” Sometimes, adding either a new user (a “load”) or a new generator to an existing grid can cause instabilities or other problems for everyone else already on the grid. In that situation, bringing a new data center online may be delayed. Enough delays can result in new loads or generators having to stand in line and wait for their turn. Right now, much of the interconnection queue is already filled up with new solar and wind projects. The delay is now about five years. Meeting the demand from newly installed data centers while ensuring that the quality of service elsewhere is not hampered is a problem that needs to be addressed.Finding clean electricity sourcesTo further complicate the challenge, many companies — including so-called “hyperscalers” such as Google, Microsoft, and Amazon — have made public commitments to having net-zero carbon emissions within the next 10 years. Many have been making strides toward achieving their clean-energy goals by buying “power purchase agreements.” They sign a contract to buy electricity from, say, a solar or wind facility, sometimes providing funding for the facility to be built. But that approach to accessing clean energy has its limits when faced with the extreme electricity demand of a data center.Meanwhile, soaring power consumption is delaying coal plant closures in many states. There are simply not enough sources of renewable energy to serve both the hyperscalers and the existing users, including individual consumers. As a result, conventional plants fired by fossil fuels such as coal are needed more than ever.As the hyperscalers look for sources of clean energy for their data centers, one option could be to build their own wind and solar installations. But such facilities would generate electricity only intermittently. Given the need for uninterrupted power, the data center would have to maintain energy storage units, which are expensive. They could instead rely on natural gas or diesel generators for backup power — but those devices would need to be coupled with equipment to capture the carbon emissions, plus a nearby site for permanently disposing of the captured carbon.Because of such complications, several of the hyperscalers are turning to nuclear power. As Green notes, “Nuclear energy is well matched to the demand of data centers, because nuclear plants can generate lots of power reliably, without interruption.”In a much-publicized move in September, Microsoft signed a deal to buy power for 20 years after Constellation Energy reopens one of the undamaged reactors at its now-shuttered nuclear plant at Three Mile Island, the site of the much-publicized nuclear accident in 1979. If approved by regulators, Constellation will bring that reactor online by 2028, with Microsoft buying all of the power it produces. Amazon also reached a deal to purchase power produced by another nuclear plant threatened with closure due to financial troubles. And in early December, Meta released a request for proposals to identify nuclear energy developers to help the company meet their AI needs and their sustainability goals.Other nuclear news focuses on small modular nuclear reactors (SMRs), factory-built, modular power plants that could be installed near data centers, potentially without the cost overruns and delays often experienced in building large plants. Google recently ordered a fleet of SMRs to generate the power needed by its data centers. The first one will be completed by 2030 and the remainder by 2035.Some hyperscalers are betting on new technologies. For example, Google is pursuing next-generation geothermal projects, and Microsoft has signed a contract to purchase electricity from a startup’s fusion power plant beginning in 2028 — even though the fusion technology hasn’t yet been demonstrated.Reducing electricity demandOther approaches to providing sufficient clean electricity focus on making the data center and the operations it houses more energy efficient so as to perform the same computing tasks using less power. Using faster computer chips and optimizing algorithms that use less energy are already helping to reduce the load, and also the heat generated.Another idea being tried involves shifting computing tasks to times and places where carbon-free energy is available on the grid. Deka explains: “If a task doesn’t have to be completed immediately, but rather by a certain deadline, can it be delayed or moved to a data center elsewhere in the U.S. or overseas where electricity is more abundant, cheaper, and/or cleaner? This approach is known as ‘carbon-aware computing.’” We’re not yet sure whether every task can be moved or delayed easily, says Deka. “If you think of a generative AI-based task, can it easily be separated into small tasks that can be taken to different parts of the country, solved using clean energy, and then be brought back together? What is the cost of doing this kind of division of tasks?”That approach is, of course, limited by the problem of the interconnection queue. It’s difficult to access clean energy in another region or state. But efforts are under way to ease the regulatory framework to make sure that critical interconnections can be developed more quickly and easily.What about the neighbors?A major concern running through all the options for powering data centers is the impact on residential energy consumers. When a data center comes into a neighborhood, there are not only aesthetic concerns but also more practical worries. Will the local electricity service become less reliable? Where will the new transmission lines be located? And who will pay for the new generators, upgrades to existing equipment, and so on? When new manufacturing facilities or industrial plants go into a neighborhood, the downsides are generally offset by the availability of new jobs. Not so with a data center, which may require just a couple dozen employees.There are standard rules about how maintenance and upgrade costs are shared and allocated. But the situation is totally changed by the presence of a new data center. As a result, utilities now need to rethink their traditional rate structures so as not to place an undue burden on residents to pay for the infrastructure changes needed to host data centers.MIT’s contributionsAt MIT, researchers are thinking about and exploring a range of options for tackling the problem of providing clean power to data centers. For example, they are investigating architectural designs that will use natural ventilation to facilitate cooling, equipment layouts that will permit better airflow and power distribution, and highly energy-efficient air conditioning systems based on novel materials. They are creating new analytical tools for evaluating the impact of data center deployments on the U.S. power system and for finding the most efficient ways to provide the facilities with clean energy. Other work looks at how to match the output of small nuclear reactors to the needs of a data center, and how to speed up the construction of such reactors.MIT teams also focus on determining the best sources of backup power and long-duration storage, and on developing decision support systems for locating proposed new data centers, taking into account the availability of electric power and water and also regulatory considerations, and even the potential for using what can be significant waste heat, for example, for heating nearby buildings. Technology development projects include designing faster, more efficient computer chips and more energy-efficient computing algorithms.In addition to providing leadership and funding for many research projects, MITEI is acting as a convenor, bringing together companies and stakeholders to address this issue. At MITEI’s 2024 Annual Research Conference, a panel of representatives from two hyperscalers and two companies that design and construct data centers together discussed their challenges, possible solutions, and where MIT research could be most beneficial.As data centers continue to be built, and computing continues to create an unprecedented increase in demand for electricity, Green says, scientists and engineers are in a race to provide the ideas, innovations, and technologies that can meet this need, and at the same time continue to advance the transition to a decarbonized energy system. More

  • in

    For clean ammonia, MIT engineers propose going underground

    Ammonia is the most widely produced chemical in the world today, used primarily as a source for nitrogen fertilizer. Its production is also a major source of greenhouse gas emissions — the highest in the whole chemical industry.Now, a team of researchers at MIT has developed an innovative way of making ammonia without the usual fossil-fuel-powered chemical plants that require high heat and pressure. Instead, they have found a way to use the Earth itself as a geochemical reactor, producing ammonia underground. The processes uses Earth’s naturally occurring heat and pressure, provided free of charge and free of emissions, as well as the reactivity of minerals already present in the ground.The trick the team devised is to inject water underground, into an area of iron-rich subsurface rock. The water carries with it a source of nitrogen and particles of a metal catalyst, allowing the water to react with the iron to generate clean hydrogen, which in turn reacts with the nitrogen to make ammonia. A second well is then used to pump that ammonia up to the surface.The process, which has been demonstrated in the lab but not yet in a natural setting, is described today in the journal Joule. The paper’s co-authors are MIT professors of materials science and engineering Iwnetim Abate and Ju Li, graduate student Yifan Gao, and five others at MIT.“When I first produced ammonia from rock in the lab, I was so excited,” Gao recalls. “I realized this represented an entirely new and never-reported approach to ammonia synthesis.’”The standard method for making ammonia is called the Haber-Bosch process, which was developed in Germany in the early 20th century to replace natural sources of nitrogen fertilizer such as mined deposits of bat guano, which were becoming depleted. But the Haber-Bosch process is very energy intensive: It requires temperatures of 400 degrees Celsius and pressures of 200 atmospheres, and this means it needs huge installations in order to be efficient. Some areas of the world, such as sub-Saharan Africa and Southeast Asia, have few or no such plants in operation.  As a result, the shortage or extremely high cost of fertilizer in these regions has limited their agricultural production.The Haber-Bosch process “is good. It works,” Abate says. “Without it, we wouldn’t have been able to feed 2 out of the total 8 billion people in the world right now, he says, referring to the portion of the world’s population whose food is grown with ammonia-based fertilizers. But because of the emissions and energy demands, a better process is needed, he says.Burning fuel to generate heat is responsible for about 20 percent of the greenhouse gases emitted from plants using the Haber-Bosch process. Making hydrogen accounts for the remaining 80 percent.  But ammonia, the molecule NH3, is made up only of nitrogen and hydrogen. There’s no carbon in the formula, so where do the carbon emissions come from? The standard way of producing the needed hydrogen is by processing methane gas with steam, breaking down the gas into pure hydrogen, which gets used, and carbon dioxide gas that gets released into the air.Other processes exist for making low- or no-emissions hydrogen, such as by using solar or wind-generated electricity to split water into oxygen and hydrogen, but that process can be expensive. That’s why Abate and his team worked on developing a system to produce what they call geological hydrogen. Some places in the world, including some in Africa, have been found to naturally generate hydrogen underground through chemical reactions between water and iron-rich rocks. These pockets of naturally occurring hydrogen can be mined, just like natural methane reservoirs, but the extent and locations of such deposits are still relatively unexplored.Abate realized this process could be created or enhanced by pumping water, laced with copper and nickel catalyst particles to speed up the process, into the ground in places where such iron-rich rocks were already present. “We can use the Earth as a factory to produce clean flows of hydrogen,” he says.He recalls thinking about the problem of the emissions from hydrogen production for ammonia: “The ‘aha!’ moment for me was thinking, how about we link this process of geological hydrogen production with the process of making Haber-Bosch ammonia?”That would solve the biggest problem of the underground hydrogen production process, which is how to capture and store the gas once it’s produced. Hydrogen is a very tiny molecule — the smallest of them all — and hard to contain. But by implementing the entire Haber-Bosch process underground, the only material that would need to be sent to the surface would be the ammonia itself, which is easy to capture, store, and transport.The only extra ingredient needed to complete the process was the addition of a source of nitrogen, such as nitrate or nitrogen gas, into the water-catalyst mixture being injected into the ground. Then, as the hydrogen gets released from water molecules after interacting with the iron-rich rocks, it can immediately bond with the nitrogen atoms also carried in the water, with the deep underground environment providing the high temperatures and pressures required by the Haber-Bosch process. A second well near the injection well then pumps the ammonia out and into tanks on the surface.“We call this geological ammonia,” Abate says, “because we are using subsurface temperature, pressure, chemistry, and geologically existing rocks to produce ammonia directly.”Whereas transporting hydrogen requires expensive equipment to cool and liquefy it, and virtually no pipelines exist for its transport (except near oil refinery sites), transporting ammonia is easier and cheaper. It’s about one-sixth the cost of transporting hydrogen, and there are already more than 5,000 miles of ammonia pipelines and 10,000 terminals in place in the U.S. alone. What’s more, Abate explains, ammonia, unlike hydrogen, already has a substantial commercial market in place, with production volume projected to grow by two to three times by 2050, as it is used not only for fertilizer but also as feedstock for a wide variety of chemical processes.For example, ammonia can be burned directly in gas turbines, engines, and industrial furnaces, providing a carbon-free alternative to fossil fuels. It is being explored for maritime shipping and aviation as an alternative fuel, and as a possible space propellant.Another upside to geological ammonia is that untreated wastewater, including agricultural runoff, which tends to be rich in nitrogen already, could serve as the water source and be treated in the process. “We can tackle the problem of treating wastewater, while also making something of value out of this waste,” Abate says.Gao adds that this process “involves no direct carbon emissions, presenting a potential pathway to reduce global CO2 emissions by up to 1 percent.” To arrive at this point, he says, the team “overcame numerous challenges and learned from many failed attempts. For example, we tested a wide range of conditions and catalysts before identifying the most effective one.”The project was seed-funded under a flagship project of MIT’s Climate Grand Challenges program, the Center for the Electrification and Decarbonization of Industry. Professor Yet-Ming Chiang, co-director of the center, says “I don’t think there’s been any previous example of deliberately using the Earth as a chemical reactor. That’s one of the key novel points of this approach.”  Chiang emphasizes that even though it is a geological process, it happens very fast, not on geological timescales. “The reaction is fundamentally over in a matter of hours,” he says. “The reaction is so fast that this answers one of the key questions: Do you have to wait for geological times? And the answer is absolutely no.”Professor Elsa Olivetti, a mission director of the newly established Climate Project at MIT, says, “The creative thinking by this team is invaluable to MIT’s ability to have impact at scale. Coupling these exciting results with, for example, advanced understanding of the geology surrounding hydrogen accumulations represent the whole-of-Institute efforts the Climate Project aims to support.”“This is a significant breakthrough for the future of sustainable development,” says Geoffrey Ellis, a geologist at the U.S. Geological Survey, who was not associated with this work. He adds, “While there is clearly more work that needs to be done to validate this at the pilot stage and to get this to the commercial scale, the concept that has been demonstrated is truly transformative.  The approach of engineering a system to optimize the natural process of nitrate reduction by Fe2+ is ingenious and will likely lead to further innovations along these lines.”The initial work on the process has been done in the laboratory, so the next step will be to prove the process using a real underground site. “We think that kind of experiment can be done within the next one to two years,” Abate says. This could open doors to using a similar approach for other chemical production processes, he adds.The team has applied for a patent and aims to work towards bringing the process to market.“Moving forward,” Gao says, “our focus will be on optimizing the process conditions and scaling up tests, with the goal of enabling practical applications for geological ammonia in the near future.”The research team also included Ming Lei, Bachu Sravan Kumar, Hugh Smith, Seok Hee Han, and Lokesh Sangabattula, all at MIT. Additional funding was provided by the National Science Foundation and was carried out, in part, through the use of MIT.nano facilities. More

  • in

    How hard is it to prevent recurring blackouts in Puerto Rico?

    Researchers at MIT’s Laboratory for Information and Decision Systems (LIDS) have shown that using decision-making software and dynamic monitoring of weather and energy use can significantly improve resiliency in the face of weather-related outages, and can also help to efficiently integrate renewable energy sources into the grid.The researchers point out that the system they suggest might have prevented or at least lessened the kind of widespread power outage that Puerto Rico experienced last week by providing analysis to guide rerouting of power through different lines and thus limit the spread of the outage.The computer platform, which the researchers describe as DyMonDS, for Dynamic Monitoring and Decision Systems, can be used to enhance the existing operating and planning practices used in the electric industry. The platform supports interactive information exchange and decision-making between the grid operators and grid-edge users — all the distributed power sources, storage systems and software that contribute to the grid. It also supports optimization of available resources and controllable grid equipment as system conditions vary. It further lends itself to implementing cooperative decision-making by different utility- and non-utility-owned electric power grid users, including portfolios of mixed resources, users, and storage. Operating and planning the interactions of the end-to-end high-voltage transmission grid with local distribution grids and microgrids represents another major potential use of this platform.This general approach was illustrated using a set of publicly-available data on both meteorology and details of electricity production and distribution in Puerto Rico. An extended AC Optimal Power Flow software developed by SmartGridz Inc. is used for system-level optimization of controllable equipment. This provides real-time guidance for deciding how much power, and through which transmission lines, should be channeled by adjusting plant dispatch and voltage-related set points, and in extreme cases, where to reduce or cut power in order to maintain physically-implementable service for as many customers as possible. The team found that the use of such a system can help to ensure that the greatest number of critical services maintain power even during a hurricane, and at the same time can lead to a substantial decrease in the need for construction of new power plants thanks to more efficient use of existing resources.The findings are described in a paper in the journal Foundations and Trends in Electric Energy Systems, by MIT LIDS researchers Marija Ilic and Laurentiu Anton, along with recent alumna Ramapathi Jaddivada.“Using this software,” Ilic says, they show that “even during bad weather, if you predict equipment failures, and by using that information exchange, you can localize the effect of equipment failures and still serve a lot of customers, 50 percent of customers, when otherwise things would black out.”Anton says that “the way many grids today are operated is sub-optimal.” As a result, “we showed how much better they could do even under normal conditions, without any failures, by utilizing this software.” The savings resulting from this optimization, under everyday conditions, could be in the tens of percents, they say.The way utility systems plan currently, Ilic says, “usually the standard is that they have to build enough capacity and operate in real time so that if one large piece of equipment fails, like a large generator or transmission line, you still serve customers in an uninterrupted way. That’s what’s called N-minus-1.” Under this policy, if one major component of the system fails, they should be able to maintain service for at least 30 minutes. That system allows utilities to plan for how much reserve generating capacity they need to have on hand. That’s expensive, Ilic points out, because it means maintaining this reserve capacity all the time, even under normal operating conditions when it’s not needed.In addition, “right now there are no criteria for what I call N-minus-K,” she says. If bad weather causes five pieces of equipment to fail at once, “there is no software to help utilities decide what to schedule” in terms of keeping the most customers, and the most important services such as hospitals and emergency services, provided with power. They showed that even with 50 percent of the infrastructure out of commission, it would still be possible to keep power flowing to a large proportion of customers.Their work on analyzing the power situation in Puerto Rico started after the island had been devastated by hurricanes Irma and Maria. Most of the electric generation capacity is in the south, yet the largest loads are in San Juan, in the north, and Mayaguez in the west. When transmission lines get knocked down, a lot of rerouting of power needs to happen quickly.With the new systems, “the software finds the optimal adjustments for set points,” for example, changing voltages can allow for power to be redirected through less-congested lines, or can be increased to lessen power losses, Anton says.The software also helps in the long-term planning for the grid. As many fossil-fuel power plants are scheduled to be decommissioned soon in Puerto Rico, as they are in many other places, planning for how to replace that power without having to resort to greenhouse gas-emitting sources is a key to achieving carbon-reduction goals. And by analyzing usage patterns, the software can guide the placement of new renewable power sources where they can most efficiently provide power where and when it’s needed.As plants are retired or as components are affected by weather, “We wanted to ensure the dispatchability of power when the load changes,” Anton says, “but also when crucial components are lost, to ensure the robustness at each step of the retirement schedule.”One thing they found was that “if you look at how much generating capacity exists, it’s more than the peak load, even after you retire a few fossil plants,” Ilic says. “But it’s hard to deliver.” Strategic planning of new distribution lines could make a big difference.Jaddivada, director of innovation at SmartGridz, says that “we evaluated different possible architectures in Puerto Rico, and we showed the ability of this software to ensure uninterrupted electricity service. This is the most important challenge utilities have today. They have to go through a computationally tedious process to make sure the grid functions for any possible outage in the system. And that can be done in a much more efficient way through the software that the company  developed.”The project was a collaborative effort between the MIT LIDS researchers and others at MIT Lincoln Laboratory, the Pacific Northwest National Laboratory, with overall help of SmartGridz software.  More

  • in

    Helping students bring about decarbonization, from benchtop to global energy marketplace

    MIT students are adept at producing research and innovations at the cutting edge of their fields. But addressing a problem as large as climate change requires understanding the world’s energy landscape, as well as the ways energy technologies evolve over time.Since 2010, the course IDS.521/IDS.065 (Energy Systems for Climate Change Mitigation) has equipped students with the skills they need to evaluate the various energy decarbonization pathways available to the world. The work is designed to help them maximize their impact on the world’s emissions by making better decisions along their respective career paths.“The question guiding my teaching and research is how do we solve big societal challenges with technology, and how can we be more deliberate in developing and supporting technologies to get us there?” says Professor Jessika Trancik, who started the course to help fill a gap in knowledge about the ways technologies evolve and scale over time.Since its inception in 2010, the course has attracted graduate students from across MIT’s five schools. The course has also recently opened to undergraduate students and been adapted to an online course for professionals.Class sessions alternate between lectures and student discussions that lead up to semester-long projects in which groups of students explore specific strategies and technologies for reducing global emissions. This year’s projects span several topics, including how quickly transmission infrastructure is expanding, the relationship between carbon emissions and human development, and how to decarbonize the production of key chemicals.The curriculum is designed to help students identify the most promising ways to mitigate climate change whether they plan to be scientists, engineers, policymakers, investors, urban planners, or just more informed citizens.“We’re coming at this issue from both sides,” explains Trancik, who is part of MIT’s Institute for Data, Systems, and Society. “Engineers are used to designing a technology to work as well as possible here and now, but not always thinking over a longer time horizon about a technology evolving and succeeding in the global marketplace. On the flip side, for students at the macro level, often studies in policy and economics of technological change don’t fully account for the physical and engineering constraints of rates of improvement. But all of that information allows you to make better decisions.”Bridging the gapAs a young researcher working on low-carbon polymers and electrode materials for solar cells, Trancik always wondered how the materials she worked on would scale in the real world. They might achieve promising performance benchmarks in the lab, but would they actually make a difference in mitigating climate change? Later, she began focusing increasingly on developing methods for predicting how technologies might evolve.“I’ve always been interested in both the macro and the micro, or even nano, scales,” Trancik says. “I wanted to know how to bridge these new technologies we’re working on with the big picture of where we want to go.”Trancik’ described her technology-grounded approach to decarbonization in a paper that formed the basis for IDS.065. In the paper, she presented a way to evaluate energy technologies against climate-change mitigation goals while focusing on the technology’s evolution.“That was a departure from previous approaches, which said, given these technologies with fixed characteristics and assumptions about their rates of change, how do I choose the best combination?” Trancik explains. “Instead we asked: Given a goal, how do we develop the best technologies to meet that goal? That inverts the problem in a way that’s useful to engineers developing these technologies, but also to policymakers and investors that want to use the evolution of technologies as a tool for achieving their objectives.”This past semester, the class took place every Tuesday and Thursday in a classroom on the first floor of the Stata Center. Students regularly led discussions where they reflected on the week’s readings and offered their own insights.“Students always share their takeaways and get to ask open questions of the class,” says Megan Herrington, a PhD candidate in the Department of Chemical Engineering. “It helps you understand the readings on a deeper level because people with different backgrounds get to share their perspectives on the same questions and problems. Everybody comes to class with their own lens, and the class is set up to highlight those differences.”The semester begins with an overview of climate science, the origins of emissions reductions goals, and technology’s role in achieving those goals. Students then learn how to evaluate technologies against decarbonization goals.But technologies aren’t static, and neither is the world. Later lessons help students account for the change of technologies over time, identifying the mechanisms for that change and even forecasting rates of change.Students also learn about the role of government policy. This year, Trancik shared her experience traveling to the COP29 United Nations Climate Change Conference.“It’s not just about technology,” Trancik says. “It’s also about the behaviors that we engage in and the choices we make. But technology plays a major role in determining what set of choices we can make.”From the classroom to the worldStudents in the class say it has given them a new perspective on climate change mitigation.“I have really enjoyed getting to see beyond the research people are doing at the benchtop,” says Herrington. “It’s interesting to see how certain materials or technologies that aren’t scalable yet may fit into a larger transformation in energy delivery and consumption. It’s also been interesting to pull back the curtain on energy systems analysis to understand where the metrics we cite in energy-related research originate from, and to anticipate trajectories of emerging technologies.”Onur Talu, a first-year master’s student in the Technology and Policy Program, says the class has made him more hopeful.“I came into this fairly pessimistic about the climate,” says Talu, who has worked for clean technology startups in the past. “This class has taught me different ways to look at the problem of climate change mitigation and developing renewable technologies. It’s also helped put into perspective how much we’ve accomplished so far.”Several student projects from the class over the years have been developed into papers published in peer-reviewed journals. They have also been turned into tools, like carboncounter.com, which plots the emissions and costs of cars and has been featured in The New York Times.Former class students have also launched startups; Joel Jean SM ’13, PhD ’17, for example, started Swift Solar. Others have drawn on the course material to develop impactful careers in government and academia, such as Patrick Brown PhD ’16 at the National Renewable Energy Laboratory and Leah Stokes SM ’15, PhD ’15 at the University of California at Santa Barbara.Overall, students say the course helps them take a more informed approach to applying their skills toward addressing climate change.“It’s not enough to just know how bad climate change could be,” says Yu Tong, a first-year master’s student in civil and environmental engineering. “It’s also important to understand how technology can work to mitigate climate change from both a technological and market perspective. It’s about employing technology to solve these issues rather than just working in a vacuum.” More

  • in

    MIT spinout Commonwealth Fusion Systems unveils plans for the world’s first fusion power plant

    America is one step closer to tapping into a new and potentially limitless clean energy source today, with the announcement from MIT spinout Commonwealth Fusion Systems (CFS) that it plans to build the world’s first grid-scale fusion power plant in Chesterfield County, Virginia.The announcement is the latest milestone for the company, which has made groundbreaking progress toward harnessing fusion — the reaction that powers the sun — since its founders first conceived of their approach in an MIT classroom in 2012. CFS is now commercializing a suite of advanced technologies developed in MIT research labs.“This moment exemplifies the power of MIT’s mission, which is to create knowledge that serves the nation and the world, whether via the classroom, the lab, or out in communities,” MIT Vice President for Research Ian Waitz says. “From student coursework 12 years ago to today’s announcement of the siting in Virginia of the world’s first fusion power plant, progress has been amazingly rapid. At the same time, we owe this progress to over 65 years of sustained investment by the U.S. federal government in basic science and energy research.”The new fusion power plant, named ARC, is expected to come online in the early 2030s and generate about 400 megawatts of clean, carbon-free electricity — enough energy to power large industrial sites or about 150,000 homes.The plant will be built at the James River Industrial Park outside of Richmond through a nonfinancial collaboration with Dominion Energy Virginia, which will provide development and technical expertise along with leasing rights for the site. CFS will independently finance, build, own, and operate the power plant.The plant will support Virginia’s economic and clean energy goals by generating what is expected to be billions of dollars in economic development and hundreds of jobs during its construction and long-term operation.More broadly, ARC will position the U.S. to lead the world in harnessing a new form of safe and reliable energy that could prove critical for economic prosperity and national security, including for meeting increasing electricity demands driven by needs like artificial intelligence.“This will be a watershed moment for fusion,” says CFS co-founder Dennis Whyte, the Hitachi America Professor of Engineering at MIT. “It sets the pace in the race toward commercial fusion power plants. The ambition is to build thousands of these power plants and to change the world.”Fusion can generate energy from abundant fuels like hydrogen and lithium isotopes, which can be sourced from seawater, and leave behind no emissions or toxic waste. However, harnessing fusion in a way that produces more power than it takes in has proven difficult because of the high temperatures needed to create and maintain the fusion reaction. Over the course of decades, scientists and engineers have worked to make the dream of fusion power plants a reality.In 2012, teaching the MIT class 22.63 (Principles of Fusion Engineering), Whyte challenged a group of graduate students to design a fusion device that would use a new kind of superconducting magnet to confine the plasma used in the reaction. It turned out the magnets enabled a more compact and economic reactor design. When Whyte reviewed his students’ work, he realized that could mean a new development path for fusion.Since then, a huge amount of capital and expertise has rushed into the once fledgling fusion industry. Today there are dozens of private fusion companies around the world racing to develop the first net-energy fusion power plants, many utilizing the new superconducting magnets. CFS, which Whyte founded with several students from his class, has attracted more than $2 billion in funding.“It all started with that class, where our ideas kept evolving as we challenged the standard assumptions that came with fusion,” Whyte says. “We had this new superconducting technology, so much of the common wisdom was no longer valid. It was a perfect forum for students, who can challenge the status quo.”Since the company’s founding in 2017, it has collaborated with researchers in MIT’s Plasma Science and Fusion Center (PFSC) on a range of initiatives, from validating the underlying plasma physics for the first demonstration machine to breaking records with a new kind of magnet to be used in commercial fusion power plants. Each piece of progress moves the U.S. closer to harnessing a revolutionary new energy source.CFS is currently completing development of its fusion demonstration machine, SPARC, at its headquarters in Devens, Massachusetts. SPARC is expected to produce its first plasma in 2026 and net fusion energy shortly after, demonstrating for the first time a commercially relevant design that will produce more power than it consumes. SPARC will pave the way for ARC, which is expected to deliver power to the grid in the early 2030s.“There’s more challenging engineering and science to be done in this field, and we’re very enthusiastic about the progress that CFS and the researchers on our campus are making on those problems,” Waitz says. “We’re in a ‘hockey stick’ moment in fusion energy, where things are moving incredibly quickly now. On the other hand, we can’t forget about the much longer part of that hockey stick, the sustained support for very complex, fundamental research that underlies great innovations. If we’re going to continue to lead the world in these cutting-edge technologies, continued investment in those areas will be crucial.” More

  • in

    New climate chemistry model finds “non-negligible” impacts of potential hydrogen fuel leakage

    As the world looks for ways to stop climate change, much discussion focuses on using hydrogen instead of fossil fuels, which emit climate-warming greenhouse gases (GHGs) when they’re burned. The idea is appealing. Burning hydrogen doesn’t emit GHGs to the atmosphere, and hydrogen is well-suited for a variety of uses, notably as a replacement for natural gas in industrial processes, power generation, and home heating.But while burning hydrogen won’t emit GHGs, any hydrogen that’s leaked from pipelines or storage or fueling facilities can indirectly cause climate change by affecting other compounds that are GHGs, including tropospheric ozone and methane, with methane impacts being the dominant effect. A much-cited 2022 modeling study analyzing hydrogen’s effects on chemical compounds in the atmosphere concluded that these climate impacts could be considerable. With funding from the MIT Energy Initiative’s Future Energy Systems Center, a team of MIT researchers took a more detailed look at the specific chemistry that poses the risks of using hydrogen as a fuel if it leaks.The researchers developed a model that tracks many more chemical reactions that may be affected by hydrogen and includes interactions among chemicals. Their open-access results, published Oct. 28 in Frontiers in Energy Research, showed that while the impact of leaked hydrogen on the climate wouldn’t be as large as the 2022 study predicted — and that it would be about a third of the impact of any natural gas that escapes today — leaked hydrogen will impact the climate. Leak prevention should therefore be a top priority as the hydrogen infrastructure is built, state the researchers.Hydrogen’s impact on the “detergent” that cleans our atmosphereGlobal three-dimensional climate-chemistry models using a large number of chemical reactions have also been used to evaluate hydrogen’s potential climate impacts, but results vary from one model to another, motivating the MIT study to analyze the chemistry. Most studies of the climate effects of using hydrogen consider only the GHGs that are emitted during the production of the hydrogen fuel. Different approaches may make “blue hydrogen” or “green hydrogen,” a label that relates to the GHGs emitted. Regardless of the process used to make the hydrogen, the fuel itself can threaten the climate. For widespread use, hydrogen will need to be transported, distributed, and stored — in short, there will be many opportunities for leakage. The question is, What happens to that leaked hydrogen when it reaches the atmosphere? The 2022 study predicting large climate impacts from leaked hydrogen was based on reactions between pairs of just four chemical compounds in the atmosphere. The results showed that the hydrogen would deplete a chemical species that atmospheric chemists call the “detergent of the atmosphere,” explains Candice Chen, a PhD candidate in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “It goes around zapping greenhouse gases, pollutants, all sorts of bad things in the atmosphere. So it’s cleaning our air.” Best of all, that detergent — the hydroxyl radical, abbreviated as OH — removes methane, which is an extremely potent GHG in the atmosphere. OH thus plays an important role in slowing the rate at which global temperatures rise. But any hydrogen leaked to the atmosphere would reduce the amount of OH available to clean up methane, so the concentration of methane would increase.However, chemical reactions among compounds in the atmosphere are notoriously complicated. While the 2022 study used a “four-equation model,” Chen and her colleagues — Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies and Chemistry; and Kane Stone, a research scientist in EAPS — developed a model that includes 66 chemical reactions. Analyses using their 66-equation model showed that the four-equation system didn’t capture a critical feedback involving OH — a feedback that acts to protect the methane-removal process.Here’s how that feedback works: As the hydrogen decreases the concentration of OH, the cleanup of methane slows down, so the methane concentration increases. However, that methane undergoes chemical reactions that can produce new OH radicals. “So the methane that’s being produced can make more of the OH detergent,” says Chen. “There’s a small countering effect. Indirectly, the methane helps produce the thing that’s getting rid of it.” And, says Chen, that’s a key difference between their 66-equation model and the four-equation one. “The simple model uses a constant value for the production of OH, so it misses that key OH-production feedback,” she says.To explore the importance of including that feedback effect, the MIT researchers performed the following analysis: They assumed that a single pulse of hydrogen was injected into the atmosphere and predicted the change in methane concentration over the next 100 years, first using four-equation model and then using the 66-equation model. With the four-equation system, the additional methane concentration peaked at nearly 2 parts per billion (ppb); with the 66-equation system, it peaked at just over 1 ppb.Because the four-equation analysis assumes only that the injected hydrogen destroys the OH, the methane concentration increases unchecked for the first 10 years or so. In contrast, the 66-equation analysis goes one step further: the methane concentration does increase, but as the system re-equilibrates, more OH forms and removes methane. By not accounting for that feedback, the four-equation analysis overestimates the peak increase in methane due to the hydrogen pulse by about 85 percent. Spread over time, the simple model doubles the amount of methane that forms in response to the hydrogen pulse.Chen cautions that the point of their work is not to present their result as “a solid estimate” of the impact of hydrogen. Their analysis is based on a simple “box” model that represents global average conditions and assumes that all the chemical species present are well mixed. Thus, the species can vary over time — that is, they can be formed and destroyed — but any species that are present are always perfectly mixed. As a result, a box model does not account for the impact of, say, wind on the distribution of species. “The point we’re trying to make is that you can go too simple,” says Chen. “If you’re going simpler than what we’re representing, you will get further from the right answer.” She goes on to note, “The utility of a relatively simple model like ours is that all of the knobs and levers are very clear. That means you can explore the system and see what affects a value of interest.”Leaked hydrogen versus leaked natural gas: A climate comparisonBurning natural gas produces fewer GHG emissions than does burning coal or oil; but as with hydrogen, any natural gas that’s leaked from wells, pipelines, and processing facilities can have climate impacts, negating some of the perceived benefits of using natural gas in place of other fossil fuels. After all, natural gas consists largely of methane, the highly potent GHG in the atmosphere that’s cleaned up by the OH detergent. Given its potency, even small leaks of methane can have a large climate impact.So when thinking about replacing natural gas fuel — essentially methane — with hydrogen fuel, it’s important to consider how the climate impacts of the two fuels compare if and when they’re leaked. The usual way to compare the climate impacts of two chemicals is using a measure called the global warming potential, or GWP. The GWP combines two measures: the radiative forcing of a gas — that is, its heat-trapping ability — with its lifetime in the atmosphere. Since the lifetimes of gases differ widely, to compare the climate impacts of two gases, the convention is to relate the GWP of each one to the GWP of carbon dioxide. But hydrogen and methane leakage cause increases in methane, and that methane decays according to its lifetime. Chen and her colleagues therefore realized that an unconventional procedure would work: they could compare the impacts of the two leaked gases directly. What they found was that the climate impact of hydrogen is about three times less than that of methane (on a per mass basis). So switching from natural gas to hydrogen would not only eliminate combustion emissions, but also potentially reduce the climate effects, depending on how much leaks.Key takeawaysIn summary, Chen highlights some of what she views as the key findings of the study. First on her list is the following: “We show that a really simple four-equation system is not what should be used to project out the atmospheric response to more hydrogen leakages in the future.” The researchers believe that their 66-equation model is a good compromise for the number of chemical reactions to include. It generates estimates for the GWP of methane “pretty much in line with the lower end of the numbers that most other groups are getting using much more sophisticated climate chemistry models,” says Chen. And it’s sufficiently transparent to use in exploring various options for protecting the climate. Indeed, the MIT researchers plan to use their model to examine scenarios that involve replacing other fossil fuels with hydrogen to estimate the climate benefits of making the switch in coming decades.The study also demonstrates a valuable new way to compare the greenhouse effects of two gases. As long as their effects exist on similar time scales, a direct comparison is possible — and preferable to comparing each with carbon dioxide, which is extremely long-lived in the atmosphere. In this work, the direct comparison generates a simple look at the relative climate impacts of leaked hydrogen and leaked methane — valuable information to take into account when considering switching from natural gas to hydrogen.Finally, the researchers offer practical guidance for infrastructure development and use for both hydrogen and natural gas. Their analyses determine that hydrogen fuel itself has a “non-negligible” GWP, as does natural gas, which is mostly methane. Therefore, minimizing leakage of both fuels will be necessary to achieve net-zero carbon emissions by 2050, the goal set by both the European Commission and the U.S. Department of State. Their paper concludes, “If used nearly leak-free, hydrogen is an excellent option. Otherwise, hydrogen should only be a temporary step in the energy transition, or it must be used in tandem with carbon-removal steps [elsewhere] to counter its warming effects.” More

  • in

    Transforming fusion from a scientific curiosity into a powerful clean energy source

    If you’re looking for hard problems, building a nuclear fusion power plant is a pretty good place to start. Fusion — the process that powers the sun — has proven to be a difficult thing to recreate here on Earth despite decades of research.“There’s something very attractive to me about the magnitude of the fusion challenge,” Hartwig says. “It’s probably true of a lot of people at MIT. I’m driven to work on very hard problems. There’s something intrinsically satisfying about that battle. It’s part of the reason I’ve stayed in this field. We have to cross multiple frontiers of physics and engineering if we’re going to get fusion to work.”The problem got harder when, in Hartwig’s last year in graduate school, the Department of Energy announced plans to terminate funding for the Alcator C-Mod tokamak, a major fusion experiment in MIT’s Plasma Science and Fusion Center that Hartwig needed to do to graduate. Hartwig was able to finish his PhD, and the scare didn’t dissuade him from the field. In fact, he took an associate professor position at MIT in 2017 to keep working on fusion.“It was a pretty bleak time to take a faculty position in fusion energy, but I am a person who loves to find a vacuum,” says Hartwig, who is a newly tenured associate professor at MIT. “I adore a vacuum because there’s enormous opportunity in chaos.”Hartwig did have one very good reason for hope. In 2012, he had taken a class taught by Professor Dennis Whyte that challenged students to design and assess the economics of a nuclear fusion power plant that incorporated a new kind of high-temperature superconducting magnet. Hartwig says the magnets enable fusion reactors to be much smaller, cheaper, and faster.Whyte, Hartwig, and a few other members of the class started working nights and weekends to prove the reactors were feasible. In 2017, the group founded Commonwealth Fusion Systems (CFS) to build the world’s first commercial-scale fusion power plants.Over the next four years, Hartwig led a research project at MIT with CFS that further developed the magnet technology and scaled it to create a 20-Tesla superconducting magnet — a suitable size for a nuclear fusion power plant.The magnet and subsequent tests of its performance represented a turning point for the industry. Commonwealth Fusion Systems has since attracted more than $2 billion in investments to build its first reactors, while the fusion industry overall has exceeded $8 billion in private investment.The old joke in fusion is that the technology is always 30 years away. But fewer people are laughing these days.“The perspective in 2024 looks quite a bit different than it did in 2016, and a huge part of that is tied to the institutional capability of a place like MIT and the willingness of people here to accomplish big things,” Hartwig says.A path to the starsAs a child growing up in St. Louis, Hartwig was interested in sports and playing outside with friends but had little interest in physics. When he went to Boston University as an undergraduate, he studied biomedical engineering simply because his older brother had done it, so he thought he could get a job. But as he was introduced to tools for structural experiments and analysis, he found himself more interested in how the tools worked than what they could do.“That led me to physics, and physics ended up leading me to nuclear science, where I’m basically still doing applied physics,” Hartwig explains.Joining the field late in his undergraduate studies, Hartwig worked hard to get his physics degree on time. After graduation, he was burnt out, so he took two years off and raced his bicycle competitively while working in a bike shop.“There’s so much pressure on people in science and engineering to go straight through,” Hartwig says. “People say if you take time off, you won’t be able to get into graduate school, you won’t be able to get recommendation letters. I always tell my students, ‘It depends on the person.’ Everybody’s different, but it was a great period for me, and it really set me up to enter graduate school with a more mature mindset and to be more focused.”Hartwig returned to academia as a PhD student in MIT’s Department of Nuclear Science and Engineering in 2007. When his thesis advisor, Dennis Whyte, announced a course focused on designing nuclear fusion power plants, it caught Hartwig’s eye. The final projects showed a surprisingly promising path forward for a fusion field that had been stagnant for decades. The rest was history.“We started CFS with the idea that it would partner deeply with MIT and MIT’s Plasma Science and Fusion Center to leverage the infrastructure, expertise, people, and capabilities that we have MIT,” Hartwig says. “We had to start the company with the idea that it would be deeply partnered with MIT in an innovative way that hadn’t really been done before.”Guided by impactHartwig says the Department of Nuclear Science and Engineering, and the Plasma Science and Fusion Center in particular, have seen a huge influx in graduate student applications in recent years.“There’s so much demand, because people are excited again about the possibilities,” Hartwig says. “Instead of having fusion and a machine built in one or two generations, we’ll hopefully be learning how these things work in under a decade.”Hartwig’s research group is still testing CFS’ new magnets, but it is also partnering with other fusion companies in an effort to advance the field more broadly.Overall, when Hartwig looks back at his career, the thing he is most proud of is switching specialties every six years or so, from building equipment for his PhD to conducting fundamental experiments to designing reactors to building magnets.“It’s not that traditional in academia,” Hartwig says. “Where I’ve found success is coming into something new, bringing a naivety but also realism to a new field, and offering a different toolkit, a different approach, or a different idea about what can be done.”Now Hartwig is onto his next act, developing new ways to study materials for use in fusion and fission reactors.“I’m already interested in moving on to the next thing; the next field where I’m not a trained expert,” Hartwig says. “It’s about identifying where there’s stagnation in fusion and in technology, where innovation is not happening where we desperately need it, and bringing new ideas to that.” More