More stories

  • in

    An interdisciplinary approach to fighting climate change through clean energy solutions

    In early 2021, the U.S. government set an ambitious goal: to decarbonize its power grid, the system that generates and transmits electricity throughout the country, by 2035. It’s an important goal in the fight against climate change, and will require a switch from current, greenhouse-gas producing energy sources (such as coal and natural gas), to predominantly renewable ones (such as wind and solar).

    Getting the power grid to zero carbon will be a challenging undertaking, as Audun Botterud, a principal research scientist at the MIT Laboratory for Information and Decision Systems (LIDS) who has long been interested in the problem, knows well. It will require building lots of renewable energy generators and new infrastructure; designing better technology to capture, store, and carry electricity; creating the right regulatory and economic incentives; and more. Decarbonizing the grid also presents many computational challenges, which is where Botterud’s focus lies. Botterud has modeled different aspects of the grid — the mechanics of energy supply, demand, and storage, and electricity markets — where economic factors can have a huge effect on how quickly renewable solutions get adopted.

    On again, off again

    A major challenge of decarbonization is that the grid must be designed and operated to reliably meet demand. Using renewable energy sources complicates this, as wind and solar power depend on an infamously volatile system: the weather. A sunny day becomes gray and blustery, and wind turbines get a boost but solar farms go idle. This will make the grid’s energy supply variable and hard to predict. Additional resources, including batteries and backup power generators, will need to be incorporated to regulate supply. Extreme weather events, which are becoming more common with climate change, can further strain both supply and demand. Managing a renewables-driven grid will require algorithms that can minimize uncertainty in the face of constant, sometimes random fluctuations to make better predictions of supply and demand, guide how resources are added to the grid, and inform how those resources are committed and dispatched across the entire United States.

    “The problem of managing supply and demand in the grid has to happen every second throughout the year, and given how much we rely on electricity in society, we need to get this right,” Botterud says. “You cannot let the reliability drop as you increase the amount of renewables, especially because I think that will lead to resistance towards adopting renewables.”

    That is why Botterud feels fortunate to be working on the decarbonization problem at LIDS — even though a career here is not something he had originally planned. Botterud’s first experience with MIT came during his time as a graduate student in his home country of Norway, when he spent a year as a visiting student with what is now called the MIT Energy Initiative. He might never have returned, except that while at MIT, Botterud met his future wife, Bilge Yildiz. The pair both ended up working at the Argonne National Laboratory outside of Chicago, with Botterud focusing on challenges related to power systems and electricity markets. Then Yildiz got a faculty position at MIT, where she is a professor of nuclear and materials science and engineering. Botterud moved back to the Cambridge area with her and continued to work for Argonne remotely, but he also kept an eye on local opportunities. Eventually, a position at LIDS became available, and Botterud took it, while maintaining his connections to Argonne.

    “At first glance, it may not be an obvious fit,” Botterud says. “My work is very focused on a specific application, power system challenges, and LIDS tends to be more focused on fundamental methods to use across many different application areas. However, being at LIDS, my lab [the Energy Analytics Group] has access to the most recent advances in these fundamental methods, and we can apply them to power and energy problems. Other people at LIDS are working on energy too, so there is growing momentum to address these important problems.”

    Weather, space, and time

    Much of Botterud’s research involves optimization, using mathematical programming to compare alternatives and find the best solution. Common computational challenges include dealing with large geographical areas that contain regions with different weather, different types and quantities of renewable energy available, and different infrastructure and consumer needs — such as the entire United States. Another challenge is the need for granular time resolution, sometimes even down to the sub-second level, to account for changes in energy supply and demand.

    Often, Botterud’s group will use decomposition to solve such large problems piecemeal and then stitch together solutions. However, it’s also important to consider systems as a whole. For example, in a recent paper, Botterud’s lab looked at the effect of building new transmission lines as part of national decarbonization. They modeled solutions assuming coordination at the state, regional, or national level, and found that the more regions coordinate to build transmission infrastructure and distribute electricity, the less they will need to spend to reach zero carbon.

    In other projects, Botterud uses game theory approaches to study strategic interactions in electricity markets. For example, he has designed agent-based models to analyze electricity markets. These assume each actor will make strategic decisions in their own best interest and then simulate interactions between them. Interested parties can use the models to see what would happen under different conditions and market rules, which may lead companies to make different investment decisions, or governing bodies to issue different regulations and incentives. These choices can shape how quickly the grid gets decarbonized.

    Botterud is also collaborating with researchers in MIT’s chemical engineering department who are working on improving battery storage technologies. Batteries will help manage variable renewable energy supply by capturing surplus energy during periods of high generation to release during periods of insufficient generation. Botterud’s group models the sort of charge cycles that batteries are likely to experience in the power grid, so that chemical engineers in the lab can test their batteries’ abilities in more realistic scenarios. In turn, this also leads to a more realistic representation of batteries in power system optimization models.

    These are only some of the problems that Botterud works on. He enjoys the challenge of tackling a spectrum of different projects, collaborating with everyone from engineers to architects to economists. He also believes that such collaboration leads to better solutions. The problems created by climate change are myriad and complex, and solving them will require researchers to cooperate and explore.

    “In order to have a real impact on interdisciplinary problems like energy and climate,” Botterud says, “you need to get outside of your research sweet spot and broaden your approach.” More

  • in

    Michael Howland gives wind energy a lift

    Michael Howland was in his office at MIT, watching real-time data from a wind farm 7,000 miles away in northwest India, when he noticed something odd: Some of the turbines weren’t producing the expected amount of electricity.

    Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering, studies the physics of the Earth’s atmosphere and how that information can optimize renewable energy systems. To accomplish this, he and his team develop and use predictive models, supercomputer simulations, and real-life data from wind farms, such as the one in India.

    The global wind power market is one of the most cost-competitive and resilient power sources across the world, the Global Wind Energy Council reported last year. The year 2020 saw record growth in wind power capacity, thanks to a surge of installations in China and the United States. Yet wind power needs to grow three times faster in the coming decade to address the worst impacts of climate change and achieve federal and state climate goals, the report says.

    “Optimal wind farm design and the resulting cost of energy are dependent on the wind,” Howland says. “But wind farms are often sited and designed based on short-term historical climate records.”

    In October 2021, Howland received a Seed Fund grant from the MIT Energy Initiative (MITEI) to account for how climate change might affect the wind of the future. “Our initial results suggest that considering the uncertainty in the winds in the design and operation of wind farms can lead to more reliable energy production,” he says.

    Most recently, Howland and his team came up with a model that predicts the power produced by each individual turbine based on the physics of the wind farm as a whole. The model can inform decisions that may boost a farm’s overall output.

    The state of the planet

    Growing up in a suburb of Philadelphia, the son of neuroscientists, Howland’s childhood wasn’t especially outdoorsy. Later, he’d become an avid hiker with a deep appreciation for nature, but a ninth-grade class assignment made him think about the state of the planet, perhaps for the first time.

    A history teacher had asked the class to write a report on climate change. “I remember arguing with my high school classmates about whether humans were the leading cause of climate change, but the teacher didn’t want to get into that debate,” Howland recalls. “He said climate change was happening, whether or not you accept that it’s anthropogenic, and he wanted us to think about the impacts of global warming, and solutions. I was one of his vigorous defenders.”

    As part of a research internship after his first year of college, Howland visited a wind farm in Iowa, where wind produces more than half of the state’s electricity. “The turbines look tall from the highway, but when you’re underneath them, you’re really struck by their scale,” he says. “That’s where you get a sense of how colossal they really are.” (Not a fan of heights, Howland opted not to climb the turbine’s internal ladder to snap a photo from the top.)

    After receiving an undergraduate degree from Johns Hopkins University and master’s and PhD degrees in mechanical engineering from Stanford University, he joined MIT’s Department of Civil and Environmental Engineering to focus on the intersection of fluid mechanics, weather, climate, and energy modeling. His goal is to enhance renewable energy systems.

    An added bonus to being at MIT is the opportunity to inspire the next generation, much like his ninth-grade history teacher did for him. Howland’s graduate-level introduction to the atmospheric boundary layer is geared primarily to engineers and physicists, but as he sees it, climate change is such a multidisciplinary and complex challenge that “every skill set that exists in human society can be relevant to mitigating it.”

    “There are the physics and engineering questions that our lab primarily works on, but there are also questions related to social sciences, public acceptance, policymaking, and implementation,” he says. “Careers in renewable energy are rapidly growing. There are far more job openings than we can hire for right now. In many areas, we don’t yet have enough people to address the challenges in renewable energy and climate change mitigation that need to be solved.

    “I encourage my students — really, everyone I interact with — to find a way to impact the climate change problem,” he says.

    Unusual conditions

    In fall 2021, Howland was trying to explain the odd data coming in from India.

    Based on sensor feedback, wind turbines’ software-driven control systems constantly tweak the speed and the angle of the blades, and what’s known as yaw — the orientation of the giant blades in relation to the wind direction.

    Existing utility-scale turbines are controlled “greedily,” which means that every turbine in the farm automatically turns into the wind to maximize its own power production.

    Though the turbines in the front row of the Indian wind farm were reacting appropriately to the wind direction, their power output was all over the place. “Not what we would expect based on the existing models,” Howland says.

    These massive turbine towers stood at 100 meters, about the length of a football field, with blades the length of an Olympic swimming pool. At their highest point, the blade tips lunged almost 200 meters into the sky.

    Then there’s the speed of the blades themselves: The tips move many times faster than the wind, around 80 to 100 meters per second — up to a quarter or a third of the speed of sound.

    Using a state-of-the-art sensor that measures the speed of incoming wind before it interacts with the massive rotors, Howland’s team saw an unexpectedly complex airflow effect. He covers the phenomenon in his class. The data coming in from India, he says, displayed “quite remarkable wind conditions stemming from the effects of Earth’s rotation and the physics of buoyancy 
that you don’t always see.”

    Traditionally, wind turbines operate in the lowest 10 percent of the atmospheric boundary layer — the so-called surface layer — which is affected primarily by ground conditions. The Indian turbines, Howland realized, were operating in regions of the atmosphere that turbines haven’t historically accessed.

    Trending taller

    Howland knew that airflow interactions can persist for kilometers. The interaction of high winds with the front-row turbines was generating wakes in the air similar to the way boats generate wakes in the water.

    To address this, Howland’s model trades off the efficiency of upwind turbines to benefit downwind ones. By misaligning some of the upwind turbines in certain conditions, the downwind units experience less wake turbulence, increasing the overall energy output of the wind farm by as much as 1 percent to 3 percent, without requiring additional costs. If a 1.2 percent energy increase was applied to the world’s existing wind farms, it would be the equivalent of adding more than 3,600 new wind turbines — enough to power about 3 million homes.

    Even a modest boost could mean fewer turbines generating the same output, or the ability to place more units into a smaller space, because negative interactions between the turbines can be diminished.

    Howland says the model can predict potential benefits in a variety of scenarios at different types of wind farms. “The part that’s important and exciting is that it’s not just particular to this wind farm. We can apply the collective control method across the wind farm fleet,” he says, which is growing taller and wider.

    By 2035, the average hub height for offshore turbines in the United States is projected to grow from 100 meters to around 150 meters — the height of the Washington Monument.

    “As we continue to build larger wind turbines and larger wind farms, we need to revisit the existing practice for their design and control,” Howland says. “We can use our predictive models to ensure that we build and operate the most efficient renewable generators possible.”

    Looking to the future

    Howland and other climate watchers have reason for optimism with the passage in August 2022 of the Inflation Reduction Act, which calls for a significant investment in domestic energy production and for reducing carbon emissions by roughly 40 percent by 2030.

    But Howland says the act itself isn’t sufficient. “We need to continue pushing the envelope in research and development as well as deployment,” he says. The model he created with his team can help, especially for offshore wind farms experiencing low wind turbulence and larger wake interactions.

    Offshore wind can face challenges of public acceptance. Howland believes that researchers, policymakers, and the energy industry need to do more to get the public on board by addressing concerns through open public dialogue, outreach, and education.

    Howland once wrote and illustrated a children’s book, inspired by Dr. Seuss’s “The Lorax,” that focused on renewable energy. Howland recalls his “really terrible illustrations,” but he believes he was onto something. “I was having some fun helping people interact with alternative energy in a more natural way at an earlier age,” he says, “and recognize that these are not nefarious technologies, but remarkable feats of human ingenuity.” More

  • in

    Helping the cause of environmental resilience

    Haruko Wainwright, the Norman C. Rasmussen Career Development Professor in Nuclear Science and Engineering (NSE) and assistant professor in civil and environmental engineering at MIT, grew up in rural Japan, where many nuclear facilities are located. She remembers worrying about the facilities as a child. Wainwright was only 6 at the time of the Chernobyl accident in 1986, but still recollects it vividly.

    Those early memories have contributed to Wainwright’s determination to research how technologies can mold environmental resilience — the capability of mitigating the consequences of accidents and recovering from contamination.

    Wainwright believes that environmental monitoring can help improve resilience. She co-leads the U.S. Department of Energy (DOE)’s Advanced Long-term Environmental Monitoring Systems (ALTEMIS) project, which integrates technologies such as in situ sensors, geophysics, remote sensing, simulations, and artificial intelligence to establish new paradigms for monitoring. The project focuses on soil and groundwater contamination at more than 100 U.S. sites that were used for nuclear weapons production.

    As part of this research, which was featured last year in Environmental Science & Technology Journal, Wainwright is working on a machine learning framework for improving environmental monitoring strategies. She hopes the ALTEMIS project will enable the rapid detection of anomalies while ensuring the stability of residual contamination and waste disposal facilities.

    Childhood in rural Japan

    Even as a child, Wainwright was interested in physics, history, and a variety of other subjects.

    But growing up in a rural area was not ideal for someone interested in STEM. There were no engineers or scientists in the community and no science museums, either. “It was not so cool to be interested in science, and I never talked about my interest with anyone,” Wainwright recalls.

    Television and books were the only door to the world of science. “I did not study English until middle school and I had never been on a plane until college. I sometimes find it miraculous that I am now working in the U.S. and teaching at MIT,” she says.

    As she grew a little older, Wainwright heard a lot of discussions about nuclear facilities in the region and many stories about Hiroshima and Nagasaki.

    At the same time, giants like Marie Curie inspired her to pursue science. Nuclear physics was particularly fascinating. “At some point during high school, I started wondering ‘what are radiations, what is radioactivity, what is light,’” she recalls. Reading Richard Feynman’s books and trying to understand quantum mechanics made her want to study physics in college.

    Pursuing research in the United States

    Wainwright pursued an undergraduate degree in engineering physics at Kyoto University. After two research internships in the United States, Wainwright was impressed by the dynamic and fast-paced research environment in the country.

    And compared to Japan, there were “more women in science and engineering,” Wainwright says. She enrolled at the University of California at Berkeley in 2005, where she completed her doctorate in nuclear engineering with minors in statistics and civil and environmental engineering.

    Before moving to MIT NSE in 2022, Wainwright was a staff scientist in the Earth and Environmental Area at Lawrence Berkeley National Laboratory (LBNL). She worked on a variety of topics, including radioactive contamination, climate science, CO2 sequestration, precision agriculture, and watershed science. Her time at LBNL helped Wainwright build a solid foundation about a variety of environmental sensors and monitoring and simulation methods across different earth science disciplines.   

    Empowering communities through monitoring

    One of the most compelling takeaways from Wainwright’s early research: People trust actual measurements and data as facts, even though they are skeptical about models and predictions. “I talked with many people living in Fukushima prefecture. Many of them have dosimeters and measure radiation levels on their own. They might not trust the government, but they trust their own data and are then convinced that it is safe to live there and to eat local food,” Wainwright says.

    She has been impressed that area citizens have gained significant knowledge about radiation and radioactivity through these efforts. “But they are often frustrated that people living far away, in cities like Tokyo, still avoid agricultural products from Fukushima,” Wainwright says.

    Wainwright thinks that data derived from environmental monitoring — through proper visualization and communication — can address misconceptions and fake news that often hurt people near contaminated sites.

    Wainwright is now interested in how these technologies — tested with real data at contaminated sites — can be proactively used for existing and future nuclear facilities “before contamination happens,” as she explored for Nuclear News. “I don’t think it is a good idea to simply dismiss someone’s concern as irrational. Showing credible data has been much more effective to provide assurance. Or a proper monitoring network would enable us to minimize contamination or support emergency responses when accidents happen,” she says.

    Educating communities and students

    Part of empowering communities involves improving their ability to process science-based information. “Potentially hazardous facilities always end up in rural regions; minorities’ concerns are often ignored. The problem is that these regions don’t produce so many scientists or policymakers; they don’t have a voice,” Wainwright says, “I am determined to dedicate my time to improve STEM education in rural regions and to increase the voice in these regions.”

    In a project funded by DOE, she collaborates with the team of researchers at the University of Alaska — the Alaska Center for Energy and Power and Teaching Through Technology program — aiming to improve STEM education for rural and indigenous communities. “Alaska is an important place for energy transition and environmental justice,” Wainwright says. Micro-nuclear reactors can potentially improve the life of rural communities who bear the brunt of the high cost of fuel and transportation. However, there is a distrust of nuclear technologies, stemming from past nuclear weapon testing. At the same time, Alaska has vast metal mining resources for renewable energy and batteries. And there are concerns about environmental contamination from mining and various sources. The teams’ vision is much broader, she points out. “The focus is on broader environmental monitoring technologies and relevant STEM education, addressing general water and air qualities,” Wainwright says.

    The issues also weave into the courses Wainwright teaches at MIT. “I think it is important for engineering students to be aware of environmental justice related to energy waste and mining as well as past contamination events and their recovery,” she says. “It is not OK just to send waste to, or develop mines in, rural regions, which could be a special place for some people. We need to make sure that these developments will not harm the environment and health of local communities.” Wainwright also hopes that this knowledge will ultimately encourage students to think creatively about engineering designs that minimize waste or recycle material.

    The last question of the final quiz of one of her recent courses was: Assume that you store high-level radioactive waste in your “backyard.” What technical strategies would make you and your family feel safe? “All students thought about this question seriously and many suggested excellent points, including those addressing environmental monitoring,” Wainwright says, “that made me hopeful about the future.” More

  • in

    Minimizing electric vehicles’ impact on the grid

    National and global plans to combat climate change include increasing the electrification of vehicles and the percentage of electricity generated from renewable sources. But some projections show that these trends might require costly new power plants to meet peak loads in the evening when cars are plugged in after the workday. What’s more, overproduction of power from solar farms during the daytime can waste valuable electricity-generation capacity.

    In a new study, MIT researchers have found that it’s possible to mitigate or eliminate both these problems without the need for advanced technological systems of connected devices and real-time communications, which could add to costs and energy consumption. Instead, encouraging the placing of charging stations for electric vehicles (EVs) in strategic ways, rather than letting them spring up anywhere, and setting up systems to initiate car charging at delayed times could potentially make all the difference.

    The study, published today in the journal Cell Reports Physical Science, is by Zachary Needell PhD ’22, postdoc Wei Wei, and Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society.

    In their analysis, the researchers used data collected in two sample cities: New York and Dallas. The data were gathered from, among other sources, anonymized records collected via onboard devices in vehicles, and surveys that carefully sampled populations to cover variable travel behaviors. They showed the times of day cars are used and for how long, and how much time the vehicles spend at different kinds of locations — residential, workplace, shopping, entertainment, and so on.

    The findings, Trancik says, “round out the picture on the question of where to strategically locate chargers to support EV adoption and also support the power grid.”

    Better availability of charging stations at workplaces, for example, could help to soak up peak power being produced at midday from solar power installations, which might otherwise go to waste because it is not economical to build enough battery or other storage capacity to save all of it for later in the day. Thus, workplace chargers can provide a double benefit, helping to reduce the evening peak load from EV charging and also making use of the solar electricity output.

    These effects on the electric power system are considerable, especially if the system must meet charging demands for a fully electrified personal vehicle fleet alongside the peaks in other demand for electricity, for example on the hottest days of the year. If unmitigated, the evening peaks in EV charging demand could require installing upwards of 20 percent more power-generation capacity, the researchers say.

    “Slow workplace charging can be more preferable than faster charging technologies for enabling a higher utilization of midday solar resources,” Wei says.

    Meanwhile, with delayed home charging, each EV charger could be accompanied by a simple app to estimate the time to begin its charging cycle so that it charges just before it is needed the next day. Unlike other proposals that require a centralized control of the charging cycle, such a system needs no interdevice communication of information and can be preprogrammed — and can accomplish a major shift in the demand on the grid caused by increasing EV penetration. The reason it works so well, Trancik says, is because of the natural variability in driving behaviors across individuals in a population.

    By “home charging,” the researchers aren’t only referring to charging equipment in individual garages or parking areas. They say it’s essential to make charging stations available in on-street parking locations and in apartment building parking areas as well.

    Trancik says the findings highlight the value of combining the two measures — workplace charging and delayed home charging — to reduce peak electricity demand, store solar energy, and conveniently meet drivers’ charging needs on all days. As the team showed in earlier research, home charging can be a particularly effective component of a strategic package of charging locations; workplace charging, they have found, is not a good substitute for home charging for meeting drivers’ needs on all days.

    “Given that there’s a lot of public money going into expanding charging infrastructure,” Trancik says, “how do you incentivize the location such that this is going to be efficiently and effectively integrated into the power grid without requiring a lot of additional capacity expansion?” This research offers some guidance to policymakers on where to focus rules and incentives.

    “I think one of the fascinating things about these findings is that by being strategic you can avoid a lot of physical infrastructure that you would otherwise need,” she adds. “Your electric vehicles can displace some of the need for stationary energy storage, and you can also avoid the need to expand the capacity of power plants, by thinking about the location of chargers as a tool for managing demands — where they occur and when they occur.”

    Delayed home charging could make a surprising amount of difference, the team found. “It’s basically incentivizing people to begin charging later. This can be something that is preprogrammed into your chargers. You incentivize people to delay the onset of charging by a bit, so that not everyone is charging at the same time, and that smooths out the peak.”

    Such a program would require some advance commitment on the part of participants. “You would need to have enough people committing to this program in advance to avoid the investment in physical infrastructure,” Trancik says. “So, if you have enough people signing up, then you essentially don’t have to build those extra power plants.”

    It’s not a given that all of this would line up just right, and putting in place the right mix of incentives would be crucial. “If you want electric vehicles to act as an effective storage technology for solar energy, then the [EV] market needs to grow fast enough in order to be able to do that,” Trancik says.

    To best use public funds to help make that happen, she says, “you can incentivize charging installations, which would go through ideally a competitive process — in the private sector, you would have companies bidding for different projects, but you can incentivize installing charging at workplaces, for example, to tap into both of these benefits.” Chargers people can access when they are parked near their residences are also important, Trancik adds, but for other reasons. Home charging is one of the ways to meet charging needs while avoiding inconvenient disruptions to people’s travel activities.

    The study was supported by the European Regional Development Fund Operational Program for Competitiveness and Internationalization, the Lisbon Portugal Regional Operation Program, and the Portuguese Foundation for Science and Technology. More

  • in

    Shrinky Dinks, nail polish, and smelly bacteria

    In a lab on the fourth floor of MIT’s Building 56, a group of Massachusetts high school students gathered around a device that measures conductivity.

    Vincent Nguyen, 15, from Saugus, thought of the times the material on their sample electrode flaked off the moment they took it out of the oven. Or how the electrode would fold weirdly onto itself. The big fails were kind of funny, but discouraging. The students had worked for a month, experimenting with different materials, and 17-year-old Brianna Tong of Malden wondered if they’d finally gotten it right: Would their electrode work well enough to power a microbial fuel cell?

    The students secured their electrode with alligator clips, someone hit start, and the teens watched anxiously as the device searched for even the faintest electrical current.

    Capturing electrons from bacteria

    Last July, Tong, Nguyen, and six other students from Malden Catholic High School commuted between the lab of MIT chemical engineer Ariel L. Furst and their school’s chemistry lab. Their goal was to fashion electrodes for low-cost microbial fuel cells — miniature bioreactors that generate small amounts of electricity by capturing electrons transferred from living microbes. These devices can double as electrochemical sensors.

    Furst, the Paul M. Cook Career Development Professor of Chemical Engineering, uses a mix of electrochemistry, microbial engineering, and materials science to address challenges in human health and clean energy. “The goal of all of our projects is to increase sustainability, clean energy, and health equity globally,” she says.

    Electrochemical sensors are powerful, sensitive detection and measurement tools. Typically, their electrodes need to be built in precisely engineered environments. “Thinking about ways of making devices without needing a cleanroom is important for coming up with inexpensive devices that can be deployed in low-resource settings under non-ideal conditions,” Furst says.

    For 17-year-old Angelina Ang of Everett, the project illuminated the significance of “coming together to problem-solve for a healthier and more sustainable earth,” she says. “It made me realize that we hold the answers to fix our dying planet.”

    With the help of a children’s toy called Shrinky Dinks, carbon-based materials, nail polish, and a certain smelly bacterium, the students got — literally — a trial-by-fire introduction to the scientific method. At one point, one of their experimental electrodes burst into flames. Other results were more promising.

    The students took advantage of the electrical properties of a bacterium — Shewanella oneidensis — that’s been called nature’s microscopic power plant. As part of their metabolism, Shewanella oneidensis generate electricity by oxidizing organic matter. In essence, they spit out electrons. Put enough together, and you get a few milliamps.

    To build bacteria-friendly electrodes, one of the first things the students did was culture Shewanella. They learned how to pour a growth medium into petri dishes where the reddish, normally lake-living bacteria could multiply. The microbes, Furst notes, are a little stinky, like cabbage. “But we think they’re really cool,” she says.

    With the right engineering, Shewanella can produce electric current when they detect toxins in water or soil. They could be used for bioremediation of wastewater. Low-cost versions could be useful for areas with limited or no access to reliable electricity and clean water.

    Next-generation chemists

    The Malden Catholic-MIT program resulted from a fluke encounter between Furst and a Malden Catholic parent.

    Mary-Margaret O’Donnell-Zablocki, then a medicinal chemist at a Kendall Square biotech startup, met Furst through a mutual friend. She asked Furst if she’d consider hosting high school chemistry students in her lab for the summer.

    Furst was intrigued. She traces her own passion for science to a program she’d happened upon between her junior and senior years in high school in St. Louis. The daughter of a software engineer and a businesswoman, Furst was casting around for potential career interests when she came across a summer program that enlisted scientists in academia and private research to introduce high school students and teachers to aspects of the scientific enterprise.

    “That’s when I realized that research is not like a lab class where there’s an expected outcome,” Furst recalls. “It’s so much cooler than that.”

    Using startup funding from an MIT Energy Initiative seed grant, Furst developed a curriculum with Malden Catholic chemistry teacher Seamus McGuire, and students were invited to apply. In addition to Tong, Ang, and Nguyen, participants included Chengxiang Lou, 18, from China; Christian Ogata, 14, of Wakefield; Kenneth Ramirez, 17, of Everett; Isaac Toscano, 17, of Medford; and MaryKatherine Zablocki, 15, of Revere and Wakefield. O’Donnell-Zablocki was surprised — and pleased — when her daughter applied to the program and was accepted.

    Furst notes that women are still underrepresented in chemical engineering. She was particularly excited to mentor young women through the program.

    A conductive ink

    The students were charged with identifying materials that had high conductivity, low resistance, were a bit soluble, and — with the help of a compatible “glue” — were able to stick to a substrate.

    Furst showed the Malden Catholic crew Shrinky Dinks — a common polymer popularized in the 1970s as a craft material that, when heated in a toaster oven, shrinks to a third of its size and becomes thicker and more rigid. Electrodes based on Shrinky Dinks would cost pennies, making it an ideal, inexpensive material for microbial fuel cells that could monitor, for instance, soil health in low- and middle-income countries.

    “Right now, monitoring soil health is problematic,” Furst says. “You have to collect a sample and bring it back to the lab to analyze in expensive equipment. But if we have these little devices that cost a couple of bucks each, we can monitor soil health remotely.”

    After a crash course in conductive carbon-based inks and solvent glues, the students went off to Malden Catholic to figure out what materials they wanted to try.

    Tong rattled them off: carbon nanotubes, carbon nanofibers, graphite powder, activated carbon. Potential solvents to help glue the carbon to the Shrinky Dinks included nail polish, corn syrup, and embossing ink, to name a few. They tested and retested. When they hit a dead end, they revised their hypotheses.

    They tried using a 3D printed stencil to daub the ink-glue mixture onto the Shrinky Dinks. They hand-painted them. They tried printing stickers. They worked with little squeegees. They tried scooping and dragging the material. Some of their electro-materials either flaked off or wouldn’t stick in the heating process.

    “Embossing ink never dried after baking the Shrinky Dink,” Ogata recalls. “In fact, it’s probably still liquid! And corn syrup had a tendency to boil. Seeing activated carbon ignite or corn syrup boiling in the convection oven was quite the spectacle.”

    “After the electrode was out of the oven and cooled down, we would check the conductivity,” says Tong, who plans to pursue a career in science. “If we saw there was a high conductivity, we got excited and thought those materials worked.”

    The moment of truth came in Furst’s MIT lab, where the students had access to more sophisticated testing equipment. Would their electrodes conduct electricity?

    Many of them didn’t. Tong says, “At first, we were sad, but then Dr. Furst told us that this is what science is, testing repeatedly and sometimes not getting the results we wanted.” Lou agrees. “If we just copy the data left by other scholars and don’t collect and figure it out by ourselves, then it is difficult to be a qualified researcher,” he says.

    Some of the students plan to continue the project one afternoon a week at MIT and as an independent study at Malden Catholic. The long-term goal is to create a field-based soil sensor that employs a bacterium like Shewanella.

    By chance, the students’ very first electrode — made of graphite powder ink and nail polish glue — generated the most current. One of the team’s biggest surprises was how much better black nail polish worked than clear nail polish. It turns out black nail polish contains iron-based pigment — a conductor. The unexpected win took some of the sting out of the failures.

    “They learned a very hard lesson: Your results might be awesome, and things are exciting, but then nothing else might work. And that’s totally fine,” Furst says.

    This article appears in the Winter 2023 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Working to make nuclear energy more competitive

    Assil Halimi has loved science since he was a child, but it was a singular experience at a college internship that stoked his interest in nuclear engineering. As part of work on a conceptual design for an aircraft electric propulsion system, Halimi had to read a chart that compared the energy density of various fuel sources. He was floored to see that the value for uranium was orders of magnitude higher than the rest. “Just a fuel pellet the size of my fingertip can generate as much energy as a ton of coal or 150 gallons of oil,” Halimi points out.

    Having grown up in Algeria, in an economy dominated by oil and gas, Halimi was always aware of energy’s role in fueling growth. But here was a source that showed enormous potential. “The more I read about nuclear, the more I saw its direct relationship with climate change and how nuclear energy can potentially replace the carbonized economy,” Halimi says. “The problem we’re dealing with right now is that the source of energy is not clean. Nuclear [presented itself] as an answer, or at least as a promise that you can dig into,” he says. “I was also seeing the electrification of systems and the economy evolving.”

    A tectonic shift was brewing, and Halimi wanted in.

    Then an electrical engineering major at the Institut National des Sciences Appliquées de Lyon (INSA Lyon), Halimi added nuclear engineering as a second major. Today, the second-year doctoral student at MIT’s Department of Nuclear Science and Engineering (NSE) has expanded on his early curiosity in the field and researches methods of improving the design of small modular reactors. Under Professor Koroush Shirvan’s advisement, Halimi also studies high burnup fuel so we can extract more energy from the same amount of material.

    A foot in two worlds

    The son of a computer engineer father and a mother who works as a judge, Halimi was born in Algiers and grew up in Cherchell, a small town near the capital. His interest in science grew sharper in middle school; Halimi remembers being a member of the astronomy club. As a middle and high schooler, Halimi traveled to areas with low light pollution to observe the night skies.

    As a teenager, Halimi set his goals high, enrolling in high school in both Algeria and France. Taking classes in Arabic and French, he found a fair amount of overlap between the two curricula. The divergence in the nonscientific classes gave Halimi a better understanding of the cultural perspectives. After studying the French curriculum remotely, Halimi graduated with two diplomas. He remembers having to take two baccalaureate exams, which didn’t bother him much, but he did have to miss viewing parts of the 2014 World Cup soccer tournament.

    A multidisciplinary approach to engineering

    After high school, Halimi moved to France to study engineering at INSA Lyon. He elected for a major in electrical engineering and, ever the pragmatist, also signed up for a bachelor’s degree in math and economics. “You can build a lot of amazing things, but you have to take costs into account to make sure you’re proposing something feasible that can make it in the real world,” Halimi says, explaining his motivation to study economics.

    Wrapping up his bachelor’s in math and economics in two short years, Halimi decided to pursue a double curriculum in electrical and nuclear engineering during his final year of engineering studies. Since his school in Lyon did not offer the double curriculum, Halimi had to move to Paris to study at The French Alternative Energies and Atomic Energy Commission (CEA), part of the University of Paris-Saclay. The summer before he started, he traveled to Japan and toured the Fukushima nuclear power plant.

    Halimi first conducted research at MIT NSE as part of an internship in nuclear engineering when he was still a student in France. He remembers wanting to explore work on reactor design, when an advisor at CEA recommended interning with Shirvan.

    Pragmatism in nuclear energy adoption

    Halimi’s work at MIT NSE focuses on high burnup fuel assessment and small modular reactor (SMR) design.

    Existing nuclear plants have faced stiff competition during the last decade. Improving the fuel efficiency (high burnup) is a potential way of improving the economic competitiveness of the existing reactor fleet. One challenge is that materials degrade when you keep them longer in the reactor. Halimi evaluates fuel performance and safety features of more efficient fuel operation using advanced computer simulation tools. At the 2022 TopFuel Light Water Reactor Fuel Performance Conference, Halimi presented a paper describing strategies to achieve higher burnups. He is now working on journal paper about this work.

    Halimi’s research on SMR design is motivated by the industry’s move to smaller plants that take less time to construct. The challenge, he says, is that if you simply make the reactors smaller, you lose the advantages of economies of scale and might end up with a more expensive economic proposal. Halimi’s goal is to analyze how smaller reactors can compensate for economies of scale by improving their technical design. Other advantages stacked in favor of smaller reactors is that they can be constructed faster and in series.

    Halimi analyzes the fuel performance, core design, thermal hydraulics, and safety of these small reactors. “One efficient way that I particularly assess to improve their economics is high power density operation,” he says. In late 2021 Halimi published a paper on the relationship between cost and reactor power density in Nuclear Engineering and Design Journal. The research has been featured in other conference papers.

    When he’s not working, Halimi makes time to play soccer and hopes to get back into astronomy. “I sold all my gear when I moved from Europe so I need to buy new ones at some point,” he says.

    Halimi is convinced that nuclear power will be a serious contender in the energy landscape. “You have to propose something that will make everyone happy,” Halimi laughs when he describes work in nuclear science and engineering.

    The work ahead is daunting — “Nuclear power is safe, sustainable, and reliable; now we need to be on time and on budget [to achieve] climate goals” he says — but Halimi is ready. By addressing both the competitiveness of the existing reactors through high burnup fuels and designing the next generation of nuclear plants, he is adopting a dual-pronged approach to make nuclear energy an economical and viable alternative to carbon-based fuels. More

  • in

    3 Questions: Antje Danielson on energy education and its role in climate action

    The MIT Energy Initiative (MITEI) leads energy education at MIT, developing and implementing a robust educational toolkit for MIT graduate and undergraduate students, online learners around the world, and high school students who want to contribute to the energy transition. As MITEI’s director of education, Antje Danielson manages a team devoted to training the next generation of energy innovators, entrepreneurs, and policymakers. Here, she discusses new initiatives in MITEI’s education program and how they are preparing students to take an active role in climate action.

    Q: What role are MITEI’s education efforts playing in climate action initiatives at MIT, and what more could we be doing?

    A: This is a big question. The carbon emissions from energy are such an important factor in climate mitigation; therefore, what we do in energy education is practically synonymous with climate education. This is well illustrated in a 2018 Nature Energy paper by Fuso Nerini, which outlines that affordable, clean energy is related to many of the United Nations Sustainable Development Goals (SDGs) — not just SDG 7, which specifically calls for “affordable, reliable, sustainable, and modern energy for all” by 2030. There are 17 SDGs containing 169 targets, of which 113 (65 percent) require actions to be taken concerning energy systems.

    Now, can we equate education with action? The answer is yes, but only if it is done correctly. From the behavioral change literature, we know that knowledge alone is not enough to change behavior. So, one important part of our education program is practice and experience through research, internships, stakeholder engagement, and other avenues. At a minimum, education must give the learner the knowledge, skills, and courage to be ready to jump into action, but ideally, practice is a part of the offering. We also want our learners to go out into the world and share what they know and do. If done right, education is an energy transition accelerator.

    At MITEI, our learners are not just MIT students. We are creating online offerings based on residential MIT courses to train global professionals, policymakers, and students in research methods and tools to support and accelerate the energy transition. These are free and open to learners worldwide. We have five courses available now, with more to come.

    Our latest program is a collaboration with MIT’s Center for Energy and Environmental Policy Research (CEEPR): Climate Action through Education, or CATE. This is a teach-the-teacher program for high school curriculum and is a part of the MIT Climate Action Plan. The aim is to develop interdisciplinary, solutions-focused climate change curricula for U.S. high school teachers with components in history/social science, English/language arts, math, science, and computer science.

    We are rapidly expanding our programming. In the online space, for our global learners, we are bundling courses for professional development certificates; for our undergraduates, we are redesigning the energy studies minor to reflect what we have learned over the past 12 years; and for our graduate students, we are adding a new program that allows them to garner industry experience related to the energy transition. Meanwhile, CATE is creating a support network for the teachers who adopt the curriculum. We are also working on creating an energy and climate alliance with other universities around the world.

    On the Institute level, I am a member of the Climate Education Working Group, a subgroup of the Climate Nucleus, where we discuss and will soon recommend further climate action the Institute can take. Stay tuned for that.

    Q: You mentioned that you are leading an effort to create a consortium of energy and climate education programs at universities around the world. How does this effort fit into MITEI’s educational mission?

    A: Yes, we are currently calling it the “Energy and Climate Education Alliance.” The background to this is that the problem we are facing — transitioning the entire global energy system from high carbon emissions to low, no, and negative carbon emissions — is global, huge, and urgent. Following the proverbial “many hands make light work,” we believe that the success of this very complex task is accomplished quicker with more participants. There is, of course, more to this as well. The complexity of the problem is such that (1) MIT doesn’t have all the expertise needed to accomplish the educational needs of the climate and energy crisis, (2) there is a definite local and regional component to capacity building, and (3) collaborations with universities around the world will make our mission-driven work more efficient. Finally, these collaborations will be advantageous for our students as they will be able to learn from real-world case studies that are not U.S.-based and maybe even visit other universities abroad, do internships, and engage in collaborative research projects. Also, students from those universities will be able to come here and experience MIT’s unique intellectual environment.

    Right now, we are very much in the beginning stages of creating the alliance. We have signed a collaboration agreement with the Technical University of Berlin, Germany, and are engaged in talks with other European and Southeast Asian universities. Some of the collaborations we are envisioning relate to course development, student exchange, collaborative research, and course promotion. We are very excited about this collaboration. It fits well into MIT’s ambition to take climate action outside of the university, while still staying within our educational mission.

    Q: It is clear to me from this conversation that MITEI’s education program is undertaking a number of initiatives to prepare MIT students and interested learners outside of the Institute to take an active role in climate action. But, the reality is that despite our rapidly changing climate and the immediate need to decarbonize our global economy, climate denialism and a lack of climate and energy understanding persist in the greater global population. What do you think must be done, and what can MITEI do, to increase climate and energy literacy broadly?

    A: I think the basic problem is not necessarily a lack of understanding but an abundance of competing issues that people are dealing with every day. Poverty, personal health, unemployment, inflation, pandemics, housing, wars — all are very immediate problems people have. And climate change is perceived to be in the future.

    The United States is a very bottom-up country, where corporations offer what people buy, and politicians advocate for what voters want and what money buys. Of course, this is overly simplified, but as long as we don’t come up with mechanisms to achieve a monumental shift in consumer and voter behavior, we are up against these immediate pressures. However, we are seeing some movement in this area due to rising gas and heating oil prices and the many natural disasters we are encountering now. People are starting to understand that climate change will hit their pocketbook, whether or not we have a carbon tax. The recent Florida hurricane damage, wildfires in the west, extreme summer temperatures, frequent droughts, increasing numbers of poisonous and disease-carrying insects — they all illustrate the relationship between climate change, health, and financial damage. Fewer and fewer people will be able to deny the existence of climate change because they will either be directly affected or know someone who is.

    The question is one of speed and scale. The more we can help to make the connections even more visible and understood, the faster we get to the general acceptance that this is real. Research projects like CEEPR’s Roosevelt Project, which develops action plans to help communities deal with industrial upheaval in the context of the energy transition, are contributing to this effect, as are studies related to climate change and national security. This is a fast-moving world, and our research findings need to be translated as we speak. A real problem in education is that we have the tendency to teach the tried and true. Our education programs have to become much nimbler, which means curricula have to be updated frequently, and that is expensive. And of course, the speed and magnitude of our efforts are dependent on the funding we can attract, and fundraising for education is more difficult than fundraising for research.

    However, let me pivot: You alluded to the fact that this is a global problem. The immediate pressures of poverty and hunger are a matter of survival in many parts of the world, and when it comes to surviving another day, who cares if climate change will render your fields unproductive in 20 years? Or if the weather turns your homeland into a lake, will you think about lobbying your government to reduce carbon emissions, or will you ask for help to rebuild your existence? On the flip side, politicians and government authorities in those areas have to deal with extremely complex situations, balancing local needs with global demands. We should learn from them. What we need is to listen. What do these areas of the world need most, and how can climate action be included in the calculations? The Global Commission to End Energy Poverty, a collaboration between MITEI and the Rockefeller Foundation to bring electricity to the billion people across the globe who currently live without it, is a good example of what we are already doing. Both our online education program and the Energy and Climate Education Alliance aim to go in this direction.

    The struggle and challenge to solve climate change can be pretty depressing, and there are many days when I feel despondent about the speed and progress we are making in saving the future of humanity. But, the prospect of contributing to such a large mission, even if the education team can only nudge us a tiny bit away from the business-as-usual scenario, is exciting. In particular, working on an issue like this at MIT is amazing. So much is happening here, and there don’t seem to be intellectual limits; in fact, thinking big is encouraged. It is very refreshing when one has encountered the old “you can’t do this” too often in the past. I want our students to take this attitude with them and go out there and think big. More

  • in

    Study: Carbon-neutral pavements are possible by 2050, but rapid policy and industry action are needed

    Almost 2.8 million lane-miles, or about 4.6 million lane-kilometers, of the United States are paved.

    Roads and streets form the backbone of our built environment. They take us to work or school, take goods to their destinations, and much more.

    However, a new study by MIT Concrete Sustainability Hub (CSHub) researchers shows that the annual greenhouse gas (GHG) emissions of all construction materials used in the U.S. pavement network are 11.9 to 13.3 megatons. This is equivalent to the emissions of a gasoline-powered passenger vehicle driving about 30 billion miles in a year.

    As roads are built, repaved, and expanded, new approaches and thoughtful material choices are necessary to dampen their carbon footprint. 

    The CSHub researchers found that, by 2050, mixtures for pavements can be made carbon-neutral if industry and governmental actors help to apply a range of solutions — like carbon capture — to reduce, avoid, and neutralize embodied impacts. (A neutralization solution is any compensation mechanism in the value chain of a product that permanently removes the global warming impact of the processes after avoiding and reducing the emissions.) Furthermore, nearly half of pavement-related greenhouse gas (GHG) savings can be achieved in the short term with a negative or nearly net-zero cost.

    The research team, led by Hessam AzariJafari, MIT CSHub’s deputy director, closed gaps in our understanding of the impacts of pavements decisions by developing a dynamic model quantifying the embodied impact of future pavements materials demand for the U.S. road network. 

    The team first split the U.S. road network into 10-mile (about 16 kilometer) segments, forecasting the condition and performance of each. They then developed a pavement management system model to create benchmarks helping to understand the current level of emissions and the efficacy of different decarbonization strategies. 

    This model considered factors such as annual traffic volume and surface conditions, budget constraints, regional variation in pavement treatment choices, and pavement deterioration. The researchers also used a life-cycle assessment to calculate annual state-level emissions from acquiring pavement construction materials, considering future energy supply and materials procurement.

    The team considered three scenarios for the U.S. pavement network: A business-as-usual scenario in which technology remains static, a projected improvement scenario aligned with stated industry and national goals, and an ambitious improvement scenario that intensifies or accelerates projected strategies to achieve carbon neutrality. 

    If no steps are taken to decarbonize pavement mixtures, the team projected that GHG emissions of construction materials used in the U.S. pavement network would increase by 19.5 percent by 2050. Under the projected scenario, there was an estimated 38 percent embodied impact reduction for concrete and 14 percent embodied impact reduction for asphalt by 2050.

    The keys to making the pavement network carbon neutral by 2050 lie in multiple places. Fully renewable energy sources should be used for pavement materials production, transportation, and other processes. The federal government must contribute to the development of these low-carbon energy sources and carbon capture technologies, as it would be nearly impossible to achieve carbon neutrality for pavements without them. 

    Additionally, increasing pavements’ recycled content and improving their design and production efficiency can lower GHG emissions to an extent. Still, neutralization is needed to achieve carbon neutrality.

    Making the right pavement construction and repair choices would also contribute to the carbon neutrality of the network. For instance, concrete pavements can offer GHG savings across the whole life cycle as they are stiffer and stay smoother for longer, meaning they require less maintenance and have a lesser impact on the fuel efficiency of vehicles. 

    Concrete pavements have other use-phase benefits including a cooling effect through an intrinsically high albedo, meaning they reflect more sunlight than regular pavements. Therefore, they can help combat extreme heat and positively affect the earth’s energy balance through positive radiative forcing, making albedo a potential neutralization mechanism.

    At the same time, a mix of fixes, including using concrete and asphalt in different contexts and proportions, could produce significant GHG savings for the pavement network; decision-makers must consider scenarios on a case-by-case basis to identify optimal solutions. 

    In addition, it may appear as though the GHG emissions of materials used in local roads are dwarfed by the emissions of interstate highway materials. However, the study found that the two road types have a similar impact. In fact, all road types contribute heavily to the total GHG emissions of pavement materials in general. Therefore, stakeholders at the federal, state, and local levels must be involved if our roads are to become carbon neutral. 

    The path to pavement network carbon-neutrality is, therefore, somewhat of a winding road. It demands regionally specific policies and widespread investment to help implement decarbonization solutions, just as renewable energy initiatives have been supported. Providing subsidies and covering the costs of premiums, too, are vital to avoid shifts in the market that would derail environmental savings.

    When planning for these shifts, we must recall that pavements have impacts not just in their production, but across their entire life cycle. As pavements are used, maintained, and eventually decommissioned, they have significant impacts on the surrounding environment.

    If we are to meet climate goals such as the Paris Agreement, which demands that we reach carbon-neutrality by 2050 to avoid the worst impacts of climate change, we — as well as industry and governmental stakeholders — must come together to take a hard look at the roads we use every day and work to reduce their life cycle emissions. 

    The study was published in the International Journal of Life Cycle Assessment. In addition to AzariJafari, the authors include Fengdi Guo of the MIT Department of Civil and Environmental Engineering; Jeremy Gregory, executive director of the MIT Climate and Sustainability Consortium; and Randolph Kirchain, director of the MIT CSHub. More