More stories

  • in

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference

    As the 2022 United Nations climate change conference, known as COP27, stretched into its final hours on Saturday, Nov. 19, it was uncertain what kind of agreement might emerge from two weeks of intensive international negotiations.

    In the end, COP27 produced mixed results: on the one hand, a historic agreement for wealthy countries to compensate low-income countries for “loss and damage,” but on the other, limited progress on new plans for reducing the greenhouse gas emissions that are warming the planet.

    “We need to drastically reduce emissions now — and this is an issue this COP did not address,” said U.N. Secretary-General António Guterres in a statement at the conclusion of COP27. “A fund for loss and damage is essential — but it’s not an answer if the climate crisis washes a small island state off the map — or turns an entire African country to desert.”

    Throughout the two weeks of the conference, a delegation of MIT students, faculty, and staff was at the Sharm El-Sheikh International Convention Center to observe the negotiations, conduct and share research, participate in panel discussions, and forge new connections with researchers, policymakers, and advocates from around the world.

    Loss and damage

    A key issue coming in to COP27 (COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held for the 27th time) was loss and damage: a term used by the U.N. to refer to harms caused by climate change — either through acute catastrophes like extreme weather events or slower-moving impacts like sea level rise — to which communities and countries are unable to adapt. 

    Ultimately, a deal on loss and damage proved to be COP27’s most prominent accomplishment. Negotiators reached an eleventh-hour agreement to “establish new funding arrangements for assisting developing countries that are particularly vulnerable to the adverse effects of climate change.” 

    “Providing financial assistance to developing countries so they can better respond to climate-related loss and damage is not only a moral issue, but also a pragmatic one,” said Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research, who attended COP27 and participated in side events. “Future emissions growth will be squarely centered in the developing world, and offering support through different channels is key to building the trust needed for more robust global cooperation on mitigation.”

    Youssef Shaker, a graduate student in the MIT Technology and Policy Program and a research assistant with the MIT Energy Initiative, attended the second week of the conference, where he followed the negotiations over loss and damage closely. 

    “While the creation of a fund is certainly an achievement,” Shaker said, “significant questions remain to be answered, such as the size of the funding available as well as which countries receive access to it.” A loss-and-damage fund that is not adequately funded, Shaker noted, “would not be an impactful outcome.” 

    The agreement on loss and damage created a new committee, made up of 24 country representatives, to “operationalize” the new funding arrangements, including identifying funding sources. The committee is tasked with delivering a set of recommendations at COP28, which will take place next year in Dubai.

    Advising the U.N. on net zero

    Though the decisions reached at COP27 did not include major new commitments on reducing emissions from the combustion of fossil fuels, the transition to a clean global energy system was nevertheless a key topic of conversation throughout the conference.

    The Council of Engineers for the Energy Transition (CEET), an independent, international body of engineers and energy systems experts formed to provide advice to the U.N. on achieving net-zero emissions globally by 2050, convened for the first time at COP27. Jessika Trancik, a professor in the MIT Institute for Data, Systems, and Society and a member of CEET, spoke on a U.N.-sponsored panel on solutions for the transition to clean energy.

    Trancik noted that the energy transition will look different in different regions of the world. “As engineers, we need to understand those local contexts and design solutions around those local contexts — that’s absolutely essential to support a rapid and equitable energy transition.”

    At the same time, Trancik noted that there is now a set of “low-cost, ready-to-scale tools” available to every region — tools that resulted from a globally competitive process of innovation, stimulated by public policies in different countries, that dramatically drove down the costs of technologies like solar energy and lithium-ion batteries. The key, Trancik said, is for regional transition strategies to “tap into global processes of innovation.”

    Reinventing climate adaptation

    Elfatih Eltahir, the H. M. King Bhumibol Professor of Hydrology and Climate, traveled to COP27 to present plans for the Jameel Observatory Climate Resilience Early Warning System (CREWSnet), one of the five projects selected in April 2022 as a flagship in MIT’s Climate Grand Challenges initiative. CREWSnet focuses on climate adaptation, the term for adapting to climate impacts that are unavoidable.

    The aim of CREWSnet, Eltahir told the audience during a panel discussion, is “nothing short of reinventing the process of climate change adaptation,” so that it is proactive rather than reactive; community-led; data-driven and evidence-based; and so that it integrates different climate risks, from heat waves to sea level rise, rather than treating them individually.

    “However, it’s easy to talk about these changes,” said Eltahir. “The real challenge, which we are now just launching and engaging in, is to demonstrate that on the ground.” Eltahir said that early demonstrations will happen in a couple of key locations, including southwest Bangladesh, where multiple climate risks — rising sea levels, increasing soil salinity, and intensifying heat waves and cyclones — are combining to threaten the area’s agricultural production.

    Building on COP26

    Some members of MIT’s delegation attended COP27 to advance efforts that had been formally announced at last year’s U.N. climate conference, COP26, in Glasgow, Scotland.

    At an official U.N. side event co-organized by MIT on Nov. 11, Greg Sixt, the director of the Food and Climate Systems Transformation (FACT) Alliance led by the Abdul Latif Jameel Water and Food Systems Lab, provided an update on the alliance’s work since its launch at COP26.

    Food systems are a major source of greenhouse gas emissions — and are increasingly vulnerable to climate impacts. The FACT Alliance works to better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders to make food systems (which include food production, consumption, and waste) more sustainable and resilient. 

    Sixt told the audience that the FACT Alliance now counts over 20 research and stakeholder institutions around the world among its members, but also collaborates with other institutions in an “open network model” to advance work in key areas — such as a new research project exploring how climate scenarios could affect global food supply chains.

    Marcela Angel, research program director for the Environmental Solutions Initiative (ESI), helped convene a meeting at COP27 of the Afro-InterAmerican Forum on Climate Change, which also launched at COP26. The forum works with Afro-descendant leaders across the Americas to address significant environmental issues, including climate risks and biodiversity loss. 

    At the event — convened with the Colombian government and the nonprofit Conservation International — ESI brought together leaders from six countries in the Americas and presented recent work that estimates that there are over 178 million individuals who identify as Afro-descendant living in the Americas, in lands of global environmental importance. 

    “There is a significant overlap between biodiversity hot spots, protected areas, and areas of high Afro-descendant presence,” said Angel. “But the role and climate contributions of these communities is understudied, and often made invisible.”    

    Limiting methane emissions

    Methane is a short-lived but potent greenhouse gas: When released into the atmosphere, it immediately traps about 120 times more heat than carbon dioxide does. More than 150 countries have now signed the Global Methane Pledge, launched at COP26, which aims to reduce methane emissions by at least 30 percent by 2030 compared to 2020 levels.

    Sergey Paltsev, the deputy director of the Joint Program on the Science and Policy of Global Change and a senior research scientist at the MIT Energy Initiative, gave the keynote address at a Nov. 17 event on methane, where he noted the importance of methane reductions from the oil and gas sector to meeting the 2030 goal.

    “The oil and gas sector is where methane emissions reductions could be achieved the fastest,” said Paltsev. “We also need to employ an integrated approach to address methane emissions in all sectors and all regions of the world because methane emissions reductions provide a near-term pathway to avoiding dangerous tipping points in the global climate system.”

    “Keep fighting relentlessly”

    Arina Khotimsky, a senior majoring in materials science and engineering and a co-president of the MIT Energy and Climate Club, attended the first week of COP27. She reflected on the experience in a social media post after returning home. 

    “COP will always have its haters. Is there greenwashing? Of course! Is everyone who should have a say in this process in the room? Not even close,” wrote Khotimsky. “So what does it take for COP to matter? It takes everyone who attended to not only put ‘climate’ on front-page news for two weeks, but to return home and keep fighting relentlessly against climate change. I know that I will.” More

  • in

    MIT Policy Hackathon produces new solutions for technology policy challenges

    Almost three years ago, the Covid-19 pandemic changed the world. Many are still looking to uncover a “new normal.”

    “Instead of going back to normal, [there’s a new generation that] wants to build back something different, something better,” says Jorge Sandoval, a second-year graduate student in MIT’s Technology and Policy Program (TPP) at the Institute for Data, Systems and Society (IDSS). “How do we communicate this mindset to others, that the world cannot be the same as before?”

    This was the inspiration behind “A New (Re)generation,” this year’s theme for the IDSS-student-run MIT Policy Hackathon, which Sandoval helped to organize as the event chair. The Policy Hackathon is a weekend-long, interdisciplinary competition that brings together participants from around the globe to explore potential solutions to some of society’s greatest challenges. 

    Unlike other competitions of its kind, Sandoval says MIT’s event emphasizes a humanistic approach. “The idea of our hackathon is to promote applications of technology that are humanistic or human-centered,” he says. “We take the opportunity to examine aspects of technology in the spaces where they tend to interact with society and people, an opportunity most technical competitions don’t offer because their primary focus is on the technology.”

    The competition started with 50 teams spread across four challenge categories. This year’s categories included Internet and Cybersecurity, Environmental Justice, Logistics, and Housing and City Planning. While some people come into the challenge with friends, Sandoval said most teams form organically during an online networking meeting hosted by MIT.

    “We encourage people to pair up with others outside of their country and to form teams of different diverse backgrounds and ages,” Sandoval says. “We try to give people who are often not invited to the decision-making table the opportunity to be a policymaker, bringing in those with backgrounds in not only law, policy, or politics, but also medicine, and people who have careers in engineering or experience working in nonprofits.”

    Once an in-person event, the Policy Hackathon has gone through its own regeneration process these past three years, according to Sandoval. After going entirely online during the pandemic’s height, last year they successfully hosted the first hybrid version of the event, which served as their model again this year.

    “The hybrid version of the event gives us the opportunity to allow people to connect in a way that is lost if it is only online, while also keeping the wide range of accessibility, allowing people to join from anywhere in the world, regardless of nationality or income, to provide their input,” Sandoval says.

    For Swetha Tadisina, an undergraduate computer science major at Lafayette College and participant in the internet and cybersecurity category, the hackathon was a unique opportunity to meet and work with people much more advanced in their careers. “I was surprised how such a diverse team that had never met before was able to work so efficiently and creatively,” Tadisina says.

    Erika Spangler, a public high school teacher from Massachusetts and member of the environmental justice category’s winning team, says that while each member of “Team Slime Mold” came to the table with a different set of skills, they managed to be in sync from the start — even working across the nine-and-a-half-hour time difference the four-person team faced when working with policy advocate Shruti Nandy from Calcutta, India.

    “We divided the project into data, policy, and research and trusted each other’s expertise,” Spangler says, “Despite having separate areas of focus, we made sure to have regular check-ins to problem-solve and cross-pollinate ideas.”

    During the 48-hour period, her team proposed the creation of an algorithm to identify high-quality brownfields that could be cleaned up and used as sites for building renewable energy. Their corresponding policy sought to mandate additional requirements for renewable energy businesses seeking tax credits from the Inflation Reduction Act.

    “Their policy memo had the most in-depth technical assessment, including deep dives in a few key cities to show the impact of their proposed approach for site selection at a very granular level,” says Amanda Levin, director of policy analysis for the Natural Resources Defense Council (NRDC). Levin acted as both a judge and challenge provider for the environmental justice category.

    “They also presented their policy recommendations in the memo in a well-thought-out way, clearly noting the relevant actor,” she adds. This clarity around what can be done, and who would be responsible for those actions, is highly valuable for those in policy.”

    Levin says the NRDC, one of the largest environmental nonprofits in the United States, provided five “challenge questions,” making it clear that teams did not need to address all of them. She notes that this gave teams significant leeway, bringing a wide variety of recommendations to the table. 

    “As a challenge partner, the work put together by all the teams is already being used to help inform discussions about the implementation of the Inflation Reduction Act,” Levin says. “Being able to tap into the collective intelligence of the hackathon helped uncover new perspectives and policy solutions that can help make an impact in addressing the important policy challenges we face today.”

    While having partners with experience in data science and policy definitely helped, fellow Team Slime Mold member Sara Sheffels, a PhD candidate in MIT’s biomaterials program, says she was surprised how much her experiences outside of science and policy were relevant to the challenge: “My experience organizing MIT’s Graduate Student Union shaped my ideas about more meaningful community involvement in renewables projects on brownfields. It is not meaningful to merely educate people about the importance of renewables or ask them to sign off on a pre-planned project without addressing their other needs.”

    “I wanted to test my limits, gain exposure, and expand my world,” Tadisina adds. “The exposure, friendships, and experiences you gain in such a short period of time are incredible.”

    For Willy R. Vasquez, an electrical and computer engineering PhD student at the University of Texas, the hackathon is not to be missed. “If you’re interested in the intersection of tech, society, and policy, then this is a must-do experience.” More

  • in

    Engineers solve a mystery on the path to smaller, lighter batteries

    A discovery by MIT researchers could finally unlock the door to the design of a new kind of rechargeable lithium battery that is more lightweight, compact, and safe than current versions, and that has been pursued by labs around the world for years.

    The key to this potential leap in battery technology is replacing the liquid electrolyte that sits between the positive and negative electrodes with a much thinner, lighter layer of solid ceramic material, and replacing one of the electrodes with solid lithium metal. This would greatly reduce the overall size and weight of the battery and remove the safety risk associated with liquid electrolytes, which are flammable. But that quest has been beset with one big problem: dendrites.

    Dendrites, whose name comes from the Latin for branches, are projections of metal that can build up on the lithium surface and penetrate into the solid electrolyte, eventually crossing from one electrode to the other and shorting out the battery cell. Researchers haven’t been able to agree on what gives rise to these metal filaments, nor has there been much progress on how to prevent them and thus make lightweight solid-state batteries a practical option.

    The new research, being published today in the journal Joule in a paper by MIT Professor Yet-Ming Chiang, graduate student Cole Fincher, and five others at MIT and Brown University, seems to resolve the question of what causes dendrite formation. It also shows how dendrites can be prevented from crossing through the electrolyte.

    Chiang says in the group’s earlier work, they made a “surprising and unexpected” finding, which was that the hard, solid electrolyte material used for a solid-state battery can be penetrated by lithium, which is a very soft metal, during the process of charging and discharging the battery, as ions of lithium move between the two sides.

    This shuttling back and forth of ions causes the volume of the electrodes to change. That inevitably causes stresses in the solid electrolyte, which has to remain fully in contact with both of the electrodes that it is sandwiched between. “To deposit this metal, there has to be an expansion of the volume because you’re adding new mass,” Chiang says. “So, there’s an increase in volume on the side of the cell where the lithium is being deposited. And if there are even microscopic flaws present, this will generate a pressure on those flaws that can cause cracking.”

    Those stresses, the team has now shown, cause the cracks that allow dendrites to form. The solution to the problem turns out to be more stress, applied in just the right direction and with the right amount of force.

    While previously, some researchers thought that dendrites formed by a purely electrochemical process, rather than a mechanical one, the team’s experiments demonstrate that it is mechanical stresses that cause the problem.

    The process of dendrite formation normally takes place deep within the opaque materials of the battery cell and cannot be observed directly, so Fincher developed a way of making thin cells using a transparent electrolyte, allowing the whole process to be directly seen and recorded. “You can see what happens when you put a compression on the system, and you can see whether or not the dendrites behave in a way that’s commensurate with a corrosion process or a fracture process,” he says.

    The team demonstrated that they could directly manipulate the growth of dendrites simply by applying and releasing pressure, causing the dendrites to zig and zag in perfect alignment with the direction of the force.

    Applying mechanical stresses to the solid electrolyte doesn’t eliminate the formation of dendrites, but it does control the direction of their growth. This means they can be directed to remain parallel to the two electrodes and prevented from ever crossing to the other side, and thus rendered harmless.

    In their tests, the researchers used pressure induced by bending the material, which was formed into a beam with a weight at one end. But they say that in practice, there could be many different ways of producing the needed stress. For example, the electrolyte could be made with two layers of material that have different amounts of thermal expansion, so that there is an inherent bending of the material, as is done in some thermostats.

    Another approach would be to “dope” the material with atoms that would become embedded in it, distorting it and leaving it in a permanently stressed state. This is the same method used to produce the super-hard glass used in the screens of smart phones and tablets, Chiang explains. And the amount of pressure needed is not extreme: The experiments showed that pressures of 150 to 200 megapascals were sufficient to stop the dendrites from crossing the electrolyte.

    The required pressure is “commensurate with stresses that are commonly induced in commercial film growth processes and many other manufacturing processes,” so should not be difficult to implement in practice, Fincher adds.

    In fact, a different kind of stress, called stack pressure, is often applied to battery cells, by essentially squishing the material in the direction perpendicular to the battery’s plates — somewhat like compressing a sandwich by putting a weight on top of it. It was thought that this might help prevent the layers from separating. But the experiments have now demonstrated that pressure in that direction actually exacerbates dendrite formation. “We showed that this type of stack pressure actually accelerates dendrite-induced failure,” Fincher says.

    What is needed instead is pressure along the plane of the plates, as if the sandwich were being squeezed from the sides. “What we have shown in this work is that when you apply a compressive force you can force the dendrites to travel in the direction of the compression,” Fincher says, and if that direction is along the plane of the plates, the dendrites “will never get to the other side.”

    That could finally make it practical to produce batteries using solid electrolyte and metallic lithium electrodes. Not only would these pack more energy into a given volume and weight, but they would eliminate the need for liquid electrolytes, which are flammable materials.

    Having demonstrated the basic principles involved, the team’s next step will be to try to apply these to the creation of a functional prototype battery, Chiang says, and then to figure out exactly what manufacturing processes would be needed to produce such batteries in quantity. Though they have filed for a patent, the researchers don’t plan to commercialize the system themselves, he says, as there are already companies working on the development of solid-state batteries. “I would say this is an understanding of failure modes in solid-state batteries that we believe the industry needs to be aware of and try to use in designing better products,” he says.

    The research team included Christos Athanasiou and Brian Sheldon at Brown University, and Colin Gilgenbach, Michael Wang, and W. Craig Carter at MIT. The work was supported by the U.S. National Science Foundation, the U.S. Department of Defense, the U.S. Defense Advanced Research Projects Agency, and the U.S. Department of Energy. More

  • in

    3 Questions: Robert Stoner unpacks US climate and infrastructure laws

    This month, the 2022 United Nations Climate Change Conference (COP27) takes place in Sharm El Sheikh, Egypt, bringing together governments, experts, journalists, industry, and civil society to discuss climate action to enable countries to collectively sharply limit anthropogenic climate change. As MIT Energy Initiative Deputy Director for Science and Technology Robert Stoner attends the conference, he takes a moment to speak about the climate and infrastructure laws enacted in the last year in the United States, and about the impact these laws can have in the global energy transition.

    Q: COP27 is now underway. Can you set the scene?

    A: There’s a lot of interest among vulnerable countries about compensation for the impacts climate change has had on them, or “loss and damage,” a topic that the United States refused to address last year at COP26, for fear of opening up a floodgate and leaving U.S. taxpayers exposed to unlimited liability for our past (and future) emissions. This is a crucial issue of fairness for developed countries — and, well, of acknowledging our common humanity. But in a sense, it’s also a sideshow, and addressing it won’t prevent a climate catastrophe — we really need to focus on mitigation. With the passage of the bipartisan Infrastructure Investment and Jobs Act and the Inflation Reduction Act (IRA), the United States is now in a strong position to twist some arms. These laws are largely about subsidizing the deployment of low-carbon technologies — pretty much all of them. We’re going to do a lot in the United States in the next decade that will lead to dramatic cost reductions for these technologies and enable other countries with fewer resources to adopt them as well. It’s exactly the leadership role the United States has needed to assume. Now we have the opportunity to rally the rest of the world and get other countries to commit to more ambitious decarbonization goals, and to build practical programs that take advantage of the investable pathways we’re going to create for public and private actors.

    But that alone won’t get us there — money is still a huge problem, especially in emerging markets and developing countries. And I don’t think the institutions we rely on to help these countries fund infrastructure — energy and everything else — are adequately funded. Nor do these institutions have the right structures, incentives, and staffing to fund low-carbon development in these countries rapidly enough or on the necessary scale. I’m talking about the World Bank, for instance, but the other multilateral organizations have similar issues. I frankly don’t think the multilaterals can be reformed or sufficiently redirected on a short enough time frame. We definitely need new leadership for these organizations, and I think we probably need to quickly establish new multilaterals with new people, more money, and a clarity of purpose that is likely beyond what can be achieved incrementally. I don’t know if this is going to be an active public discussion at COP27, but I hope it takes place somewhere soon. Given the strong role our government plays in financing and selecting the leadership of these institutions, perhaps this is another opportunity for the United States to demonstrate courage and leadership.

    Q: What “investable pathways” are you talking about?

    A: Well, the pathways we’re implicitly trying to pursue with the Infrastructure Act and IRA are pretty clear, and I’ll come back to them. But first let me describe the landscape: There are three main sources of demand for energy in the economy — industry (meaning chemical production, fuel for electricity generation, cement production, materials and manufacturing, and so on), transportation (cars, trucks, ships, planes, and trains), and buildings (for heating and cooling, mostly). That’s about it, and these three sectors account for 75 percent of our total greenhouse gas emissions. So the pathways are all about how to decarbonize these three end-use sectors. There are a lot of technologies — some that exist, some that don’t — that will have to be brought to bear. And so it can be a little overwhelming to try to imagine how it will all transpire, but it’s pretty clear at a high level what our options are:

    First, generate a lot of low-carbon electricity and electrify as many industrial processes, vehicles, and building heating systems as we can.
    Second, develop and deploy at massive scale technologies that can capture carbon dioxide from smokestacks, or the air, and put it somewhere that it can never escape from — in other words, carbon capture and sequestration, or CCS.
    Third, for end uses like aviation that really need to use fuels because of their extraordinary energy density, develop low-carbon alternatives to fossil fuels.
    And fourth is energy efficiency across the board — but I don’t really count that as a separate pathway per se.
    So, by “investable pathways” I mean specific ways to pursue these options that will attract investors. What the Infrastructure Act and the IRA do is deploy carrots (in the form of subsidies) in a variety of ways to close the gap between what it costs to deploy technologies like CCS that aren’t yet at a commercial stage because they’re immature, and what energy markets will tolerate. A similar situation occurs for low-carbon production of hydrogen, one of the leading low-carbon fuel candidates. We can make it by splitting water with electricity (electrolysis), but that costs too much with present-day technology; or we can make it more cheaply by separating it from methane (which is what natural gas mainly is), but that creates CO2 that has to be transported and sequestered somewhere. And then we have to store the hydrogen until we’re ready to use it, and transport it by pipeline to the industrial facilities where it will be used. That requires infrastructure that doesn’t exist — pipelines, compression stations, big tanks! Come to think of it, the demand for all that hydrogen doesn’t exist either — at least not if industry has to pay what it actually costs.

    So, one very important thing these new acts do is subsidize production of hydrogen in various ways — and subsidize the creation of a CCS industry. The other thing they do is subsidize the deployment at enormous scale of low-carbon energy technologies. Some of them are already pretty cheap, like solar and wind, but they need to be supported by a lot of storage on the grid (which we don’t yet have) and by other sorts of grid infrastructure that, again, don’t exist. So, they now get subsidized, too, along with other carbon-free and low-carbon generation technologies — basically all of them. The idea is that by stimulating at-scale deployment of all these established and emerging technologies, and funding demonstrations of novel infrastructure — effectively lowering the cost of supply of low-carbon energy in the form of electricity and fuels — we will draw out the private sector to build out much more of the connective infrastructure and invest in new industrial processes, new home heating systems, and low-carbon transportation. This subsidized build-out will take place over a decade and then phase out as costs fall — hopefully, leaving the foundation for a thriving low-carbon energy economy in its wake, along with crucial technologies and knowledge that will benefit the whole world.

    Q: Is all of the federal investment in energy infrastructure in the United States relevant to the energy crisis in Europe right now?

    A: Not in a direct way — Europe is a near-term catastrophe with a long-term challenge that is in many ways more difficult than ours because Europe doesn’t have the level of primary energy resources like oil and gas that we have in abundance. Energy costs more in Europe, especially absent Russian pipelines. In a way, the narrowing of Europe’s options creates an impetus to invest in low-carbon technologies sooner than otherwise. The result either way will be expensive energy and quite a lot of economic suffering for years. The near-term challenge is to protect people from high energy prices. The big spikes in electricity prices we see now are driven by the natural gas market disruption, which will eventually dissipate as new sources of electricity come online (Sweden, for example, just announced a plan to develop new nuclear, and we’re seeing other countries like Germany soften their stance on nuclear) — and gas markets will sort themselves out. Meanwhile governments are trying to shield their people with electricity price caps and other subsidies, but that’s enormously burdensome.

    The EU recently announced gas price caps for imported gas to try to eliminate price-gouging by importers and reduce the subsidy burden. That may help to lower downstream prices, or it may make matters worse by reducing the flow of gas into the EU and fueling scarcity pricing, and ultimately adding to the subsidy burden. A lot people are quite reasonably suggesting that if electricity prices are subject to crazy behavior in gas markets, then why not disconnect from the grid and self-generate? Wouldn’t that also help reduce demand for gas overall and also reduce CO2 emissions? It would. But it’s expensive to put solar panels on your roof and batteries in your basement — so for those rich enough to do this, it would lead to higher average electricity costs that would live on far into the future, even when grid prices eventually come down.

    So, an interesting idea is taking hold, with considerable encouragement from national governments — the idea of “energy communities,” basically, towns or cities that encourage local firms and homeowners to install solar and batteries, and make some sort of business arrangement with the local utility to allow the community to disconnect from the national grid at times of high prices and self-supply — in other words, use the utility’s wires to sell locally generated power locally. It’s interesting to think about — it takes less battery storage to handle the intermittency of solar when you have a lot of generators and consumers, so forming a community helps lower costs, and with a good deal from the utility for using their wires, it might not be that much more expensive. And of course, when the national grid is working well and prices are normal, the community would reconnect and buy power cheaply, while selling back its self-generated power to the grid. There are also potentially important social benefits that might accrue in these energy communities, too. It’s not a dumb idea, and we’ll see some interesting experimentation in this area in the coming years — as usual, the Germans are enthusiastic! More

  • in

    Advancing the energy transition amidst global crises

    “The past six years have been the warmest on the planet, and our track record on climate change mitigation is drastically short of what it needs to be,” said Robert C. Armstrong, MIT Energy Initiative (MITEI) director and the Chevron Professor of Chemical Engineering, introducing MITEI’s 15th Annual Research Conference.

    At the symposium, participants from academia, industry, and finance acknowledged the deepening difficulties of decarbonizing a world rocked by geopolitical conflicts and suffering from supply chain disruptions, energy insecurity, inflation, and a persistent pandemic. In spite of this grim backdrop, the conference offered evidence of significant progress in the energy transition. Researchers provided glimpses of a low-carbon future, presenting advances in such areas as long-duration energy storage, carbon capture, and renewable technologies.

    In his keynote remarks, Ernest J. Moniz, the Cecil and Ida Green Professor of Physics and Engineering Systems Emeritus, founding director of MITEI, and former U.S. secretary of energy, highlighted “four areas that have materially changed in the last year” that could shake up, and possibly accelerate, efforts to address climate change.

    Extreme weather seems to be propelling the public and policy makers of both U.S. parties toward “convergence … at least in recognition of the challenge,” Moniz said. He perceives a growing consensus that climate goals will require — in diminishing order of certainty — firm (always-on) power to complement renewable energy sources, a fuel (such as hydrogen) flowing alongside electricity, and removal of atmospheric carbon dioxide (CO2).

    Russia’s invasion of Ukraine, with its “weaponization of natural gas” and global energy impacts, underscores the idea that climate, energy security, and geopolitics “are now more or less recognized widely as one conversation.” Moniz pointed as well to new U.S. laws on climate change and infrastructure that will amplify the role of science and technology and “address the drive to technological dominance by China.”

    The rapid transformation of energy systems will require a comprehensive industrial policy, Moniz said. Government and industry must select and rapidly develop low-carbon fuels, firm power sources (possibly including nuclear power), CO2 removal systems, and long-duration energy storage technologies. “We will need to make progress on all fronts literally in this decade to come close to our goals for climate change mitigation,” he concluded.

    Global cooperation?

    Over two days, conference participants delved into many of the issues Moniz raised. In one of the first panels, scholars pondered whether the international community could forge a coordinated climate change response. The United States’ rift with China, especially over technology trade policies, loomed large.

    “Hatred of China is a bipartisan hobby and passion, but a blanket approach isn’t right, even for the sake of national security,” said Yasheng Huang, the Epoch Foundation Professor of Global Economics and Management at the MIT Sloan School of Management. “Although the United States and China working together would have huge effects for both countries, it is politically unpalatable in the short term,” said F. Taylor Fravel, the Arthur and Ruth Sloan Professor of Political Science and director of the MIT Security Studies Program. John E. Parsons, deputy director for research at the MIT Center for Energy and Environmental Policy Research, suggested that the United States should use this moment “to get our own act together … and start doing things,” such as building nuclear power plants in a cost-effective way.

    Debating carbon removal

    Several panels took up the matter of carbon emissions and the most promising technologies for contending with them. Charles Harvey, MIT professor of civil and environmental engineering, and Howard Herzog, a senior research engineer at MITEI, set the stage early, debating whether capturing carbon was essential to reaching net-zero targets.

    “I have no trouble getting to net zero without carbon capture and storage,” said David Keith, the Gordon McKay Professor of Applied Physics at Harvard University, in a subsequent roundtable. Carbon capture seems more risky to Keith than solar geoengineering, which involves injecting sulfur into the stratosphere to offset CO2 and its heat-trapping impacts.

    There are new ways of moving carbon from where it’s a problem to where it’s safer. Kripa K. Varanasi, MIT professor of mechanical engineering, described a process for modulating the pH of ocean water to remove CO2. Timothy Krysiek, managing director for Equinor Ventures, talked about construction of a 900-kilometer pipeline transporting CO2 from northern Germany to a large-scale storage site located in Norwegian waters 3,000 meters below the seabed. “We can use these offshore Norwegian assets as a giant carbon sink for Europe,” he said.

    A startup showcase featured additional approaches to the carbon challenge. Mantel, which received MITEI Seed Fund money, is developing molten salt material to capture carbon for long-term storage or for use in generating electricity. Verdox has come up with an electrochemical process for capturing dilute CO2 from the atmosphere.

    But while much of the global warming discussion focuses on CO2, other greenhouse gases are menacing. Another panel discussed measuring and mitigating these pollutants. “Methane has 82 times more warming power than CO2 from the point of emission,” said Desirée L. Plata, MIT associate professor of civil and environmental engineering. “Cutting methane is the strongest lever we have to slow climate change in the next 25 years — really the only lever.”

    Steven Hamburg, chief scientist and senior vice president of the Environmental Defense Fund, cautioned that emission of hydrogen molecules into the atmosphere can cause increases in other greenhouse gases such as methane, ozone, and water vapor. As researchers and industry turn to hydrogen as a fuel or as a feedstock for commercial processes, “we will need to minimize leakage … or risk increasing warming,” he said.

    Supply chains, markets, and new energy ventures

    In panels on energy storage and the clean energy supply chain, there were interesting discussions of challenges ahead. High-density energy materials such as lithium, cobalt, nickel, copper, and vanadium for grid-scale energy storage, electric vehicles (EVs), and other clean energy technologies, can be difficult to source. “These often come from water-stressed regions, and we need to be super thoughtful about environmental stresses,” said Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering. She also noted that in light of the explosive growth in demand for metals such as lithium, recycling EVs won’t be of much help. “The amount of material coming back from end-of-life batteries is minor,” she said, until EVs are much further along in their adoption cycle.

    Arvind Sanger, founder and managing partner of Geosphere Capital, said that the United States should be developing its own rare earths and minerals, although gaining the know-how will take time, and overcoming “NIMBYism” (not in my backyard-ism) is a challenge. Sanger emphasized that we must continue to use “denser sources of energy” to catalyze the energy transition over the next decade. In particular, Sanger noted that “for every transition technology, steel is needed,” and steel is made in furnaces that use coal and natural gas. “It’s completely woolly-headed to think we can just go to a zero-fossil fuel future in a hurry,” he said.

    The topic of power markets occupied another panel, which focused on ways to ensure the distribution of reliable and affordable zero-carbon energy. Integrating intermittent resources such as wind and solar into the grid requires a suite of retail markets and new digital tools, said Anuradha Annaswamy, director of MIT’s Active-Adaptive Control Laboratory. Tim Schittekatte, a postdoc at the MIT Sloan School of Management, proposed auctions as a way of insuring consumers against periods of high market costs.

    Another panel described the very different investment needs of new energy startups, such as longer research and development phases. Hooisweng Ow, technology principal at Eni Next LLC Ventures, which is developing drilling technology for geothermal energy, recommends joint development and partnerships to reduce risk. Michael Kearney SM ’11, PhD ’19, SM ’19 is a partner at The Engine, a venture firm built by MIT investing in path-breaking technology to solve the toughest challenges in climate and other problems. Kearney believes the emergence of new technologies and markets will bring on “a labor transition on an order of magnitude never seen before in this country,” he said. “Workforce development is not a natural zone for startups … and this will have to change.”

    Supporting the global South

    The opportunities and challenges of the energy transition look quite different in the developing world. In conversation with Robert Armstrong, Luhut Binsar Pandjaitan, the coordinating minister for maritime affairs and investment of the Republic of Indonesia, reported that his “nation is rich with solar, wind, and energy transition minerals like nickel and copper,” but cannot on its own tackle developing renewable energy or reducing carbon emissions and improving grid infrastructure. “Education is a top priority, and we are very far behind in high technologies,” he said. “We need help and support from MIT to achieve our target,” he said.

    Technologies that could springboard Indonesia and other nations of the global South toward their climate goals are emerging in MITEI-supported projects and at young companies MITEI helped spawn. Among the promising innovations unveiled at the conference are new materials and designs for cooling buildings in hot climates and reducing the environmental costs of construction, and a sponge-like substance that passively sucks moisture out of the air to lower the energy required for running air conditioners in humid climates.

    Other ideas on the move from lab to market have great potential for industrialized nations as well, such as a computational framework for maximizing the energy output of ocean-based wind farms; a process for using ammonia as a renewable fuel with no CO2 emissions; long-duration energy storage derived from the oxidation of iron; and a laser-based method for unlocking geothermal steam to drive power plants. More

  • in

    Machine learning facilitates “turbulence tracking” in fusion reactors

    Fusion, which promises practically unlimited, carbon-free energy using the same processes that power the sun, is at the heart of a worldwide research effort that could help mitigate climate change.

    A multidisciplinary team of researchers is now bringing tools and insights from machine learning to aid this effort. Scientists from MIT and elsewhere have used computer-vision models to identify and track turbulent structures that appear under the conditions needed to facilitate fusion reactions.

    Monitoring the formation and movements of these structures, called filaments or “blobs,” is important for understanding the heat and particle flows exiting from the reacting fuel, which ultimately determines the engineering requirements for the reactor walls to meet those flows. However, scientists typically study blobs using averaging techniques, which trade details of individual structures in favor of aggregate statistics. Individual blob information must be tracked by marking them manually in video data. 

    The researchers built a synthetic video dataset of plasma turbulence to make this process more effective and efficient. They used it to train four computer vision models, each of which identifies and tracks blobs. They trained the models to pinpoint blobs in the same ways that humans would.

    When the researchers tested the trained models using real video clips, the models could identify blobs with high accuracy — more than 80 percent in some cases. The models were also able to effectively estimate the size of blobs and the speeds at which they moved.

    Because millions of video frames are captured during just one fusion experiment, using machine-learning models to track blobs could give scientists much more detailed information.

    “Before, we could get a macroscopic picture of what these structures are doing on average. Now, we have a microscope and the computational power to analyze one event at a time. If we take a step back, what this reveals is the power available from these machine-learning techniques, and ways to use these computational resources to make progress,” says Theodore Golfinopoulos, a research scientist at the MIT Plasma Science and Fusion Center and co-author of a paper detailing these approaches.

    His fellow co-authors include lead author Woonghee “Harry” Han, a physics PhD candidate; senior author Iddo Drori, a visiting professor in the Computer Science and Artificial Intelligence Laboratory (CSAIL), faculty associate professor at Boston University, and adjunct at Columbia University; as well as others from the MIT Plasma Science and Fusion Center, the MIT Department of Civil and Environmental Engineering, and the Swiss Federal Institute of Technology at Lausanne in Switzerland. The research appears today in Nature Scientific Reports.

    Heating things up

    For more than 70 years, scientists have sought to use controlled thermonuclear fusion reactions to develop an energy source. To reach the conditions necessary for a fusion reaction, fuel must be heated to temperatures above 100 million degrees Celsius. (The core of the sun is about 15 million degrees Celsius.)

    A common method for containing this super-hot fuel, called plasma, is to use a tokamak. These devices utilize extremely powerful magnetic fields to hold the plasma in place and control the interaction between the exhaust heat from the plasma and the reactor walls.

    However, blobs appear like filaments falling out of the plasma at the very edge, between the plasma and the reactor walls. These random, turbulent structures affect how energy flows between the plasma and the reactor.

    “Knowing what the blobs are doing strongly constrains the engineering performance that your tokamak power plant needs at the edge,” adds Golfinopoulos.

    Researchers use a unique imaging technique to capture video of the plasma’s turbulent edge during experiments. An experimental campaign may last months; a typical day will produce about 30 seconds of data, corresponding to roughly 60 million video frames, with thousands of blobs appearing each second. This makes it impossible to track all blobs manually, so researchers rely on average sampling techniques that only provide broad characteristics of blob size, speed, and frequency.

    “On the other hand, machine learning provides a solution to this by blob-by-blob tracking for every frame, not just average quantities. This gives us much more knowledge about what is happening at the boundary of the plasma,” Han says.

    He and his co-authors took four well-established computer vision models, which are commonly used for applications like autonomous driving, and trained them to tackle this problem.

    Simulating blobs

    To train these models, they created a vast dataset of synthetic video clips that captured the blobs’ random and unpredictable nature.

    “Sometimes they change direction or speed, sometimes multiple blobs merge, or they split apart. These kinds of events were not considered before with traditional approaches, but we could freely simulate those behaviors in the synthetic data,” Han says.

    Creating synthetic data also allowed them to label each blob, which made the training process more effective, Drori adds.

    Using these synthetic data, they trained the models to draw boundaries around blobs, teaching them to closely mimic what a human scientist would draw.

    Then they tested the models using real video data from experiments. First, they measured how closely the boundaries the models drew matched up with actual blob contours.

    But they also wanted to see if the models predicted objects that humans would identify. They asked three human experts to pinpoint the centers of blobs in video frames and checked to see if the models predicted blobs in those same locations.

    The models were able to draw accurate blob boundaries, overlapping with brightness contours which are considered ground-truth, about 80 percent of the time. Their evaluations were similar to those of human experts, and successfully predicted the theory-defined regime of the blob, which agrees with the results from a traditional method.

    Now that they have shown the success of using synthetic data and computer vision models for tracking blobs, the researchers plan to apply these techniques to other problems in fusion research, such as estimating particle transport at the boundary of a plasma, Han says.

    They also made the dataset and models publicly available, and look forward to seeing how other research groups apply these tools to study the dynamics of blobs, says Drori.

    “Prior to this, there was a barrier to entry that mostly the only people working on this problem were plasma physicists, who had the datasets and were using their methods. There is a huge machine-learning and computer-vision community. One goal of this work is to encourage participation in fusion research from the broader machine-learning community toward the broader goal of helping solve the critical problem of climate change,” he adds.

    This research is supported, in part, by the U.S. Department of Energy and the Swiss National Science Foundation. More

  • in

    Doubling down on sustainability innovation in Kendall Square

    From its new headquarters in Cambridge’s Kendall Square, The Engine is investing in a number of “tough tech” startups seeking to transform the world’s energy systems. A few blocks away, the startup Inari is using gene editing to improve seeds’ resilience to climate change. On the MIT campus nearby, researchers are working on groundbreaking innovations to meet the urgent challenges our planet faces.

    Kendall Square is known as the biotech capital of the world, but as the latest annual meeting of the Kendal Square Association (KSA) made clear, it’s also a thriving hub of sustainability-related innovation.

    The Oct. 20 event, which began at MIT’s Welcome Center before moving to the MIT Museum for a panel discussion, brought together professionals from across Cambridge’s prolific innovation ecosystem — not just entrepreneurs working at startups, but also students, restaurant and retail shop owners, and people from local nonprofits.

    Titled “[Re] Imagining a Sustainable Future,” the meeting highlighted advances in climate change technologies that are afoot in Kendall Square, to help inspire and connect the community as it works toward common sustainability goals.

    “Our focus is on building a better future together — and together is the most important word there,” KSA Executive Director Beth O’Neill Maloney said in her opening remarks. “This is an incredibly innovative ecosystem and community that’s making changes that affect us here in Kendall Square and far, far beyond.”

    The pace of change

    The main event of the evening was a panel discussion moderated by Lee McGuire, the chief communications officer of the Broad Institute of MIT and Harvard. The panel featured Stuart Brown, chief financial officer at Inari; Emily Knight, chief operating officer at The Engine; and Joe Higgins, vice president for campus services and stewardship at MIT.

    “Sustainability is obviously one of the most important — if not the most important — challenge facing us as a society today,” said McGuire, opening the discussion. “Kendall Square is known for its work in biotech, life sciences, AI, and climate, and the more we dug into it the more we realized how interconnected all of those things are. The talent in Kendall Square wants to work on problems relevant for humanity, and the tools and skills you need for that can be very similar depending on the problem you’re working on.”

    Higgins, who oversees the creation of programs to reduce MIT’s environmental impact and improve the resilience of campus operations, focused on the enormity of the problem humanity is facing. He showed the audience a map of the U.S. power grid, with power plants and transmission lines illuminated in a complex web across the country, to underscore the scale of electrification that will be needed to mitigate the worst effects of climate change.

    “The U.S. power grid is the largest machine ever made by mankind,” Higgins said. “It’s been developed over 100 years; it has 7,000 generating plants that feed into it every day; it has 7 million miles of cable and wires; there are transformers and substations; and it lives in every single one of your walls. But people don’t think about it that much.”

    Many cities, states, and organizations like MIT have made commitments to shift to 100 percent clean energy in coming decades. Higgins wanted the audience to try to grasp what that’s going to take.

    “Hundreds of millions of devices and equipment across the planet are going to have to be swapped from fossil fuel to electric-based,” Higgins said. “Our cars, appliances, processes in industry, like making steel and concrete, are going to need to come from this grid. It’ll need to undergo a major modernization and transformation. The good news is it’s already changing.”

    Multiple panelists pointed to developments like the passing of the Inflation Reduction Act to show there was progress being made in reaching urgent sustainability goals.

    “There is a tide change coming, and it’s not only being driven by private capital,” Knight said. “There’s a huge opportunity here, and it’s a really important part of this [Kendall Square] ecosystem.”

    Chief among the topics of discussion was technology development. Even as leaders implement today’s technologies to decarbonize, people in Kendall Square keep a close eye on the new tech being developed and commercialized nearby.

    “I was trying to think about where we are with gene editing,” Brown said. “CRISPR’s been around for 10 years. Compare that to video games. Pong was the first video game when it came out in 1972. Today you have Chess.com using artificial intelligence to power chess games. On gene editing and a lot of these other technologies, we’re much closer to Pong than we are to where it’s going to be. We just can’t imagine today the technology changes we’re going to see over the next five to 10 years.”

    In that regard, Knight discussed some of the promising portfolio companies of The Engine, which invests in early stage, technologically innovative companies. In particular, she highlighted two companies seeking to transform the world’s energy systems with entirely new, 100 percent clean energy sources. MIT spinout Commonwealth Fusion Systems is working on nuclear fusion reactors that could provide abundant, safe, and constant streams of clean energy to our grids, while fellow MIT spinout Quaise Energy is seeking to harvest a new kind of deep geothermal energy using millimeter wave drilling technology.

    “All of our portfolio companies have a focus on sustainability in one way or another,” Knight said. “People who are working on these very hard technologies will change the world.”

    Knight says the kind of collaboration championed by the KSA is important for startups The Engine invests in.

    “We know these companies need a lot of people around them, whether from government, academia, advisors, corporate partners, anyone who can help them on their path, because for a lot of them this is a new path and a new market,” Knight said.

    Reasons for hope

    The KSA is made up of over 150 organizations across Kendall Square. From major employers like Sanofi, Pfizer, MIT, and the Broad Institute to local nonprofit organizations, startups, and independent shops and restaurants, the KSA represents the entire Kendall ecosystem.

    O’Neill Maloney celebrated a visible example of sustainability in Kendall Square early on by the Charles River Conservancy, which has built a floating wetland designed to naturally remove harmful algae blooms from Charles River.

    Other examples of sustainability work in the neighborhood can be found at MIT. Under its “Fast Forward” climate action plan, the Institute has set a goal of eliminating direct emissions from its campus by 2050, including a near-term milestone of achieving net-zero emissions by 2026. Since 2014, when MIT launched a five-year plan for action on climate change, net campus emissions have already been cut by 20 percent by making its campus buildings more energy efficient, transitioning to electric vehicles, and enabling large-scale renewable energy projects, among other strategies.

    In the face of a daunting global challenge, such milestones are reason for optimism.

    “If anybody’s going to be able to do this [shift to 100 percent clean energy] and show how it can be done at an urban, city scale, it’s probably MIT and the city of Cambridge,” McGuire said. “We have a lot of good ingredients to figure this out.”

    Throughout the night, many speakers, attendees, and panelists echoed that sentiment. They said they see plenty of reasons for hope.

    “I’m absolutely optimistic,” Higgins said. “I’m seeing utility companies working with businesses working with regulators — people are coming together on this topic. And one of these new technologies being commercialized is going to change things before 2030, whether its fusion, deep geothermal, small modular nuclear reactors, the technology is just moving so quickly.” More

  • in

    Finding community in high-energy-density physics

    Skylar Dannhoff knew one thing: She did not want to be working alone.

    As an undergraduate at Case Western Reserve University, she had committed to a senior project that often felt like solitary lab work, a feeling heightened by the pandemic. Though it was an enriching experience, she was determined to find a graduate school environment that would foster community, one “with lots of people, lots of collaboration; where it’s impossible to work until 3 a.m. without anyone noticing.” A unique group at the Plasma Science and Fusion Center (PSFC) looked promising: the High-Energy-Density Physics (HEDP) division, a lead partner in the National Nuclear Security Administration’s Center for Excellence at MIT.

    “It was a shot in the dark, just more of a whim than anything,” she says of her request to join HEDP on her application to MIT’s Department of Physics. “And then, somehow, they reached out to me. I told them I’m willing to learn about plasma. I didn’t know anything about it.”

    What she did know was that the HEDP group collaborates with other U.S. laboratories on an approach to creating fusion energy known as inertial confinement fusion (ICF). One version of the technique, known as direct-drive ICF, aims multiple laser beams symmetrically onto a spherical capsule filled with nuclear fuel. The other, indirect-drive ICF, instead aims multiple lasers beams into a gold cylindrical cavity called a hohlraum, within which the spherical fuel capsule is positioned. The laser beams are configured to hit the inner hohlraum wall, generating a “bath” of X-rays, which in turn compress the fuel capsule.

    Imploding the capsule generates intense fusion energy within a tiny fraction of a second (an order of tens of picoseconds). In August 2021, the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) used this method to produce an historic fusion yield of 1.3 megajoules, putting researchers within reach of “ignition,” the point where the self-sustained fusion burn spreads into the surrounding fuel, leading to a high fusion-energy gain.  

    Joining the group just a month before this long-sought success, Dannhoff was impressed more with the response of her new teammates and the ICF community than with the scientific milestone. “I got a better appreciation for people who had spent their entire careers working on this project, just chugging along doing their best, ignoring the naysayers. I was excited for the people.”

    Dannhoff is now working toward extending the success of NIF and other ICF experiments, like the OMEGA laser at the University of Rochester’s Laboratory for Laser Energetics. Under the supervision of Senior Research Scientist Chikang Li, she is studying what happens to the flow of plasma within the hohlraum cavity during indirect ICF experiments, particularly for hohlraums with inner-wall aerogel foam linings. Experiments, over the last decade, have shown just how excruciatingly precise the symmetry in ICF targets must be. The more symmetric the X-ray drive, the more effective the implosion, and it is possible that these foam linings will improve the X-ray symmetry and drive efficiency.

    Dannhoff is specifically interested in studying the behavior of silicon and tantalum-based foam liners. She is as concerned with the challenges of the people at General Atomics (GA) and LLNL who are creating these targets as she is with the scientific outcome.

    “I just had a meeting with GA yesterday,” she notes. “And it’s a really tricky process. It’s kind of pushing the boundaries of what is doable at the moment. I got a much better sense of how demanding this project is for them, how much we’re asking of them.”

    What excites Dannhoff is the teamwork she observes, both at MIT and between ICF institutions around the United States. With roughly 10 graduate students and postdocs down the hall, each with an assigned lead role in lab management, she knows she can consult an expert on almost any question. And collaborators across the country are just an email away. “Any information that people can give you, they will give you, and usually very freely,” she notes. “Everyone just wants to see this work.”

    That Dannhoff is a natural team player is also evidenced in her hobbies. A hockey goalie, she prioritizes playing with MIT’s intramural teams, “because goalies are a little hard to come by. I just play with whoever needs a goalie on that night, and it’s a lot of fun.”

    She is also a member of the radio community, a fellowship she first embraced at Case Western — a moment she describes as a turning point in her life. “I literally don’t know who I would be today if I hadn’t figured out radio is something I’m interested in,” she admits. The MIT Radio Society provided the perfect landing pad for her arrival in Cambridge, full of the kinds of supportive, interesting, knowledgeable students she had befriended as an undergraduate. She credits radio with helping her realize that she could make her greatest contributions to science by focusing on engineering.

    Danhoff gets philosophical as she marvels at the invisible waves that surround us.

    “Not just radio waves: every wave,” she asserts. “The voice is the everywhere. Music, signal, space phenomena: it’s always around. And all we have to do is make the right little device and have the right circuit elements put in the right order to unmix and mix the signals and amplify them. And bada-bing, bada-boom, we’re talking with the universe.”

    “Maybe that epitomizes physics to me,” she adds. “We’re trying to listen to the universe, and it’s talking to us. We just have to come up with the right tools and hear what it’s trying to say.” More