More stories

  • in

    Preparing students for the new nuclear

    As nuclear power has gained greater recognition as a zero-emission energy source, the MIT Leaders for Global Operations (LGO) program has taken notice.

    Two years ago, LGO began a collaboration with MIT’s Department of Nuclear Science and Engineering (NSE) as a way to showcase the vital contribution of both business savvy and scientific rigor that LGO’s dual-degree graduates can offer this growing field.

    “We saw that the future of fission and fusion required business acumen and management acumen,” says Professor Anne White, NSE department head. “People who are going to be leaders in our discipline, and leaders in the nuclear enterprise, are going to need all of the technical pieces of the puzzle that our engineering department can provide in terms of education and training. But they’re also going to need a much broader perspective on how the technology connects with society through the lens of business.”

    The resulting response has been positive: “Companies are seeing the value of nuclear technology for their operations,” White says, and this often happens in unexpected ways.

    For example, graduate student Santiago Andrade recently completed a research project at Caterpillar Inc., a preeminent manufacturer of mining and construction equipment. Caterpillar is one of more than 20 major companies that partner with the LGO program, offering six-month internships to each student. On the surface, it seemed like an improbable pairing; what could Andrade, who was pursuing his master’s in nuclear science and engineering, do for a manufacturing company? However, Caterpillar wanted to understand the technical and commercial feasibility of using nuclear energy to power mining sites and data centers when wind and solar weren’t viable.

    “They are leaving no stone unturned in the search of financially smart solutions that can support the transition to a clean energy dependency,” Andrade says. “My project, along with many others’, is part of this effort.”

    “The research done through the LGO program with Santiago is enabling Caterpillar to understand how alternative technologies, like the nuclear microreactor, could participate in these markets in the future,” says Brian George, product manager for large electric power solutions at Caterpillar. “Our ability to connect our customers with the research will provide for a more accurate understanding of the potential opportunity, and helps provide exposure for our customers to emerging technologies.”

    With looming threats of climate change, White says, “We’re going to require more opportunities for nuclear technologies to step in and be part of those solutions. A cohort of LGO graduates will come through this program with technical expertise — a master’s degree in nuclear engineering — and an MBA. There’s going to be a tremendous talent pool out there to help companies and governments.”

    Andrade, who completed an undergraduate degree in chemical engineering and had a strong background in thermodynamics, applied to LGO unsure of which track to choose, but he knew he wanted to confront the world’s energy challenge. When MIT Admissions suggested that he join LGO’s new nuclear track, he was intrigued by how it could further his career.

    “Since the NSE department offers opportunities ranging from energy to health care and from quantum engineering to regulatory policy, the possibilities of career tracks after graduation are countless,” he says.

    He was also inspired by the fact that, as he says, “Nuclear is one of the less-popular solutions in terms of our energy transition journey. One of the things that attracted me is that it’s not one of the most popular, but it’s one of the most useful.”

    In addition to his work at Caterpillar, Andrade connected deeply with professors. He worked closely with professors Jacopo Buongiorno and John Parsons as a research assistant, helping them develop a business model to successfully support the deployment of nuclear microreactors. After graduation, he plans to work in the clean energy sector with an eye to innovations in the nuclear energy technology space.

    His LGO classmate, Lindsey Kennington, a control systems engineer, echoes his sentiments: This is a revolutionary time for nuclear technology.

    “Before MIT, I worked on a lot of nuclear waste or nuclear weapons-related projects. All of them were fission-related. I got disillusioned because of all the bureaucracy and the regulation,” Kennington says. “However, now there are a lot of new nuclear technologies coming straight out of MIT. Commonwealth Fusion Systems, a fusion startup, represents a prime example of MIT’s close relationship to new nuclear tech. Small modular reactors are another emerging technology being developed by MIT. Exposure to these cutting-edge technologies was the main sell factor for me.”

    Kennington conducted an internship with National Grid, where she used her expertise to evaluate how existing nuclear power plants could generate hydrogen. At MIT, she studied nuclear and energy policy, which offered her additional perspective that traditional engineering classes might not have provided. Because nuclear power has long been a hot-button issue, Kennington was able to gain nuanced insight about the pathways and roadblocks to its implementation.

    “I don’t think that other engineering departments emphasize that focus on policy quite as much. [Those classes] have been one of the most enriching parts of being in the nuclear department,” she says.

    Most of all, she says, it’s a pivotal time to be part of a new, blossoming program at the forefront of clean energy, especially as fusion research grows more prevalent.

    “We’re at an inflection point,” she says. “Whether or not we figure out fusion in the next five, 10, or 20 years, people are going to be working on it — and it’s a really exciting time to not only work on the science but to actually help the funding and business side grow.”

    White puts it simply.

    “This is not your parents’ nuclear,” she says. “It’s something totally different. Our discipline is evolving so rapidly that people who have technical expertise in nuclear will have a huge advantage in this next generation.” More

  • in

    Responsive design meets responsibility for the planet’s future

    MIT senior Sylas Horowitz kneeled at the edge of a marsh, tinkering with a blue-and-black robot about the size and shape of a shoe box and studded with lights and mini propellers.

    The robot was a remotely operated vehicle (ROV) — an underwater drone slated to collect water samples from beneath a sheet of Arctic ice. But its pump wasn’t working, and its intake line was clogged with sand and seaweed.

    “Of course, something must always go wrong,” Horowitz, a mechanical engineering major with minors in energy studies and environment and sustainability, later blogged about the Falmouth, Massachusetts, field test. By making some adjustments, Horowitz was able to get the drone functioning on site.

    Through a 2020 collaboration between MIT’s Department of Mechanical Engineering and the Woods Hole Oceanographic Institute (WHOI), Horowitz had been assembling and retrofitting the high-performance ROV to measure the greenhouse gases emitted by thawing permafrost.

    The Arctic’s permafrost holds an estimated 1,700 billion metric tons of methane and carbon dioxide — roughly 50 times the amount of carbon tied to fossil fuel emissions in 2019, according to climate research from NASA’s Jet Propulsion Laboratory. WHOI scientists wanted to understand the role the Arctic plays as a greenhouse gas source or sink.

    Horowitz’s ROV would be deployed from a small boat in sub-freezing temperatures to measure carbon dioxide and methane in the water. Meanwhile, a flying drone would sample the air.

    An MIT Student Sustainability Coalition leader and one of the first members of the MIT Environmental Solutions Initiative’s Rapid Response Group, Horowitz has focused on challenges related to clean energy, climate justice, and sustainable development.

    In addition to the ROV, Horowitz has tackled engineering projects through D-Lab, where community partners from around the world work with MIT students on practical approaches to alleviating global poverty. Horowitz worked on fashioning waste bins out of heat-fused recycled plastic for underserved communities in Liberia. Their thesis project, also initiated through D-Lab, is designing and building user-friendly, space- and fuel-efficient firewood cook stoves to improve the lives of women in Santa Catarina Palopó in northern Guatemala.

    Through the Tata-MIT GridEdge Solar Research program, they helped develop flexible, lightweight solar panels to mount on the roofs of street vendors’ e-rickshaws in Bihar, India.

    The thread that runs through Horowitz’s projects is user-centered design that creates a more equitable society. “In the transition to sustainable energy, we want our technology to adapt to the society that we live in,” they say. “Something I’ve learned from the D-Lab projects and also from the ROV project is that when you’re an engineer, you need to understand the societal and political implications of your work, because all of that should get factored into the design.”

    Horowitz describes their personal mission as creating systems and technology that “serve the well-being and longevity of communities and the ecosystems we exist within.

    “I want to relate mechanical engineering to sustainability and environmental justice,” they say. “Engineers need to think about how technology fits into the greater societal context of people in the environment. We want our technology to adapt to the society we live in and for people to be able, based on their needs, to interface with the technology.”

    Imagination and inspiration

    In Dix Hills, New York, a Long Island suburb, Horowitz’s dad is in banking and their mom is a speech therapist. The family hiked together, but Horowitz doesn’t tie their love for the natural world to any one experience. “I like to play in the dirt,” they say. “I’ve always had a connection to nature. It was a kind of childlike wonder.”

    Seeing footage of the massive 2010 oil spill in the Gulf of Mexico caused by an explosion on the Deepwater Horizon oil rig — which occurred when Horowitz was around 10 — was a jarring introduction to how human activity can impact the health of the planet.

    Their first interest was art — painting and drawing portraits, album covers, and more recently, digital images such as a figure watering a houseplant at a window while lightning flashes outside; a neon pink jellyfish in a deep blue sea; and, for an MIT-wide Covid quarantine project, two figures watching the sun set over a Green Line subway platform.

    Art dovetailed into a fascination with architecture, then shifted to engineering. In high school, Horowitz and a friend were co-captains of an all-girls robotics team. “It was just really wonderful, having this community and being able to build stuff,” they say. Horowitz and another friend on the team learned they were accepted to MIT on Pi Day 2018.

    Art, architecture, engineering — “it’s all kind of the same,” Horowitz says. “I like the creative aspect of design, being able to create things out of imagination.”

    Sustaining political awareness

    At MIT, Horowitz connected with a like-minded community of makers. They also launched themself into taking action against environmental injustice.

    In 2022, through the Student Sustainability Coalition (SSC), they encouraged MIT students to get involved in advocating for the Cambridge Green New Deal, legislation aimed at reducing emissions from new large commercial buildings such as those owned by MIT and creating a green jobs training program.

    In February 2022, Horowitz took part in a sit-in in Building 3 as part of MIT Divest, a student-led initiative urging the MIT administration to divest its endowment of fossil fuel companies.

    “I want to see MIT students more locally involved in politics around sustainability, not just the technology side,” Horowitz says. “I think there’s a lot of power from students coming together. They could be really influential.”

    User-oriented design

    The Arctic underwater ROV Horowitz worked on had to be waterproof and withstand water temperatures as low as 5 degrees Fahrenheit. It was tethered to a computer by a 150-meter-long cable that had to spool and unspool without tangling. The pump and tubing that collected water samples had to work without kinking.

    “It was cool, throughout the project, to think, ‘OK, what kind of needs will these scientists have when they’re out in these really harsh conditions in the Arctic? How can I make a machine that will make their field work easier?’

    “I really like being able to design things directly with the users, working within their design constraints,” they say.

    Inevitably, snafus occurred, but in photos and videos taken the day of the Falmouth field tests, Horowitz is smiling. “Here’s a fun unexpected (or maybe quite expected) occurrence!” they reported later. “The plastic mount for the shaft collar [used in the motor’s power transmission] ripped itself apart!” Undaunted, Horowitz jury-rigged a replacement out of sheet metal.

    Horowitz replaced broken wires in the winch-like device that spooled the cable. They added a filter at the intake to prevent sand and plants from clogging the pump.

    With a few more tweaks, the ROV was ready to descend into frigid waters. Last summer, it was successfully deployed on a field run in the Canadian high Arctic. A few months later, Horowitz was slated to attend OCEANS 2022 Hampton Roads, their first professional conference, to present a poster on their contribution to the WHOI permafrost research.

    Ultimately, Horowitz hopes to pursue a career in renewable energy, sustainable design, or sustainable agriculture, or perhaps graduate studies in data science or econometrics to quantify environmental justice issues such as the disproportionate exposure to pollution among certain populations and the effect of systemic changes designed to tackle these issues.

    After completing their degree this month, Horowitz will spend six months with MIT International Science and Technology Initiatives (MISTI), which fosters partnerships with industry leaders and host organizations around the world.

    Horowitz is thinking of working with a renewable energy company in Denmark, one of the countries they toured during a summer 2019 field trip led by the MIT Energy Initiative’s Director of Education Antje Danielson. They were particularly struck by Samsø, the world’s first carbon-neutral island, run entirely on renewable energy. “It inspired me to see what’s out there when I was a sophomore,” Horowitz says. They’re ready to see where inspiration takes them next.

    This article appears in the Winter 2023 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    To decarbonize the chemical industry, electrify it

    The chemical industry is the world’s largest industrial energy consumer and the third-largest source of industrial emissions, according to the International Energy Agency. In 2019, the industrial sector as a whole was responsible for 24 percent of global greenhouse gas emissions. And yet, as the world races to find pathways to decarbonization, the chemical industry has been largely untouched.

    “When it comes to climate action and dealing with the emissions that come from the chemical sector, the slow pace of progress is partly technical and partly driven by the hesitation on behalf of policymakers to overly impact the economic competitiveness of the sector,” says Dharik Mallapragada, a principal research scientist at the MIT Energy Initiative.

    With so many of the items we interact with in our daily lives — from soap to baking soda to fertilizer — deriving from products of the chemical industry, the sector has become a major source of economic activity and employment for many nations, including the United States and China. But as the global demand for chemical products continues to grow, so do the industry’s emissions.

    New sustainable chemical production methods need to be developed and deployed and current emission-intensive chemical production technologies need to be reconsidered, urge the authors of a new paper published in Joule. Researchers from DC-MUSE, a multi-institution research initiative, argue that electrification powered by low-carbon sources should be viewed more broadly as a viable decarbonization pathway for the chemical industry. In this paper, they shine a light on different potential methods to do just that.

    “Generally, the perception is that electrification can play a role in this sector — in a very narrow sense — in that it can replace fossil fuel combustion by providing the heat that the combustion is providing,” says Mallapragada, a member of DC-MUSE. “What we argue is that electrification could be much more than that.”

    The researchers outline four technological pathways — ranging from more mature, near-term options to less technologically mature options in need of research investment — and present the opportunities and challenges associated with each.

    The first two pathways directly replace fossil fuel-produced heat (which facilitates the reactions inherent in chemical production) with electricity or electrochemically generated hydrogen. The researchers suggest that both options could be deployed now and potentially be used to retrofit existing facilities. Electrolytic hydrogen is also highlighted as an opportunity to replace fossil fuel-produced hydrogen (a process that emits carbon dioxide) as a critical chemical feedstock. In 2020, fossil-based hydrogen supplied nearly all hydrogen demand (90 megatons) in the chemical and refining industries — hydrogen’s largest consumers.

    The researchers note that increasing the role of electricity in decarbonizing the chemical industry will directly affect the decarbonization of the power grid. They stress that to successfully implement these technologies, their operation must coordinate with the power grid in a mutually beneficial manner to avoid overburdening it. “If we’re going to be serious about decarbonizing the sector and relying on electricity for that, we have to be creative in how we use it,” says Mallapragada. “Otherwise we run the risk of having addressed one problem, while creating a massive problem for the grid in the process.”

    Electrified processes have the potential to be much more flexible than conventional fossil fuel-driven processes. This can reduce the cost of chemical production by allowing producers to shift electricity consumption to times when the cost of electricity is low. “Process flexibility is particularly impactful during stressed power grid conditions and can help better accommodate renewable generation resources, which are intermittent and are often poorly correlated with daily power grid cycles,” says Yury Dvorkin, an associate research professor at the Johns Hopkins Ralph O’Connor Sustainable Energy Institute. “It’s beneficial for potential adopters because it can help them avoid consuming electricity during high-price periods.”

    Dvorkin adds that some intermediate energy carriers, such as hydrogen, can potentially be used as highly efficient energy storage for day-to-day operations and as long-term energy storage. This would help support the power grid during extreme events when traditional and renewable generators may be unavailable. “The application of long-duration storage is of particular interest as this is a key enabler of a low-emissions society, yet not widespread beyond pumped hydro units,” he says. “However, as we envision electrified chemical manufacturing, it is important to ensure that the supplied electricity is sourced from low-emission generators to prevent emissions leakages from the chemical to power sector.” 

    The next two pathways introduced — utilizing electrochemistry and plasma — are less technologically mature but have the potential to replace energy- and carbon-intensive thermochemical processes currently used in the industry. By adopting electrochemical processes or plasma-driven reactions instead, chemical transformations can occur at lower temperatures and pressures, potentially enhancing efficiency. “These reaction pathways also have the potential to enable more flexible, grid-responsive plants and the deployment of modular manufacturing plants that leverage distributed chemical feedstocks such as biomass waste — further enhancing sustainability in chemical manufacturing,” says Miguel Modestino, the director of the Sustainable Engineering Initiative at the New York University Tandon School of Engineering.

    A large barrier to deep decarbonization of chemical manufacturing relates to its complex, multi-product nature. But, according to the researchers, each of these electricity-driven pathways supports chemical industry decarbonization for various feedstock choices and end-of-life disposal decisions. Each should be evaluated in comprehensive techno-economic and environmental life cycle assessments to weigh trade-offs and establish suitable cost and performance metrics.

    Regardless of the pathway chosen, the researchers stress the need for active research and development and deployment of these technologies. They also emphasize the importance of workforce training and development running in parallel to technology development. As André Taylor, the director of DC-MUSE, explains, “There is a healthy skepticism in the industry regarding electrification and adoption of these technologies, as it involves processing chemicals in a new way.” The workforce at different levels of the industry hasn’t necessarily been exposed to ideas related to the grid, electrochemistry, or plasma. The researchers say that workforce training at all levels will help build greater confidence in these different solutions and support customer-driven industry adoption.

    “There’s no silver bullet, which is kind of the standard line with all climate change solutions,” says Mallapragada. “Each option has pros and cons, as well as unique advantages. But being aware of the portfolio of options in which you can use electricity allows us to have a better chance of success and of reducing emissions — and doing so in a way that supports grid decarbonization.”

    This work was supported, in part, by the Alfred P. Sloan Foundation. More

  • in

    MIT scientists contribute to National Ignition Facility fusion milestone

    On Monday, Dec. 5, at around 1 a.m., a tiny sphere of deuterium-tritium fuel surrounded by a cylindrical can of gold called a hohlraum was targeted by 192 lasers at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in California. Over the course of billionths of a second, the lasers fired, generating X-rays inside the gold can, and imploding the sphere of fuel.

    On that morning, for the first time ever, the lasers delivered 2.1 megajoules of energy and yielded 3.15 megajoules in return, achieving a historic fusion energy gain well above 1 — a result verified by diagnostic tools developed by the MIT Plasma Science and Fusion Center (PSFC). The use of these tools and their importance was referenced by Arthur Pak, a LLNL staff scientist who spoke at a U.S. Department of Energy press event on Dec. 13 announcing the NIF’s success.

    Johan Frenje, head of the PSFC High-Energy-Density Physics division, notes that this milestone “will have profound implications for laboratory fusion research in general.”

    Since the late 1950s, researchers worldwide have pursued fusion ignition and energy gain in a laboratory, considering it one of the grand challenges of the 21st century. Ignition can only be reached when the internal fusion heating power is high enough to overcome the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop that very rapidly increases the plasma temperature. In the case of inertial confinement fusion, the method used at the NIF, ignition can initiate a “fuel burn propagation” into the surrounding dense and cold fuel, and when done correctly, enable fusion-energy gain.

    Frenje and his PSFC division initially designed dozens of diagnostic systems that were implemented at the NIF, including the vitally important magnetic recoil neutron spectrometer (MRS), which measures the neutron energy spectrum, the data from which fusion yield, plasma ion temperature, and spherical fuel pellet compression (“fuel areal density”) can be determined. Overseen by PSFC Research Scientist Maria Gatu Johnson since 2013, the MRS is one of two systems at the NIF relied upon to measure the absolute neutron yield from the Dec. 5 experiment because of its unique ability to accurately interpret an implosion’s neutron signals.

    “Before the announcement of this historic achievement could be made, the LLNL team wanted to wait until Maria had analyzed the MRS data to an adequate level for a fusion yield to be determined,” says Frenje.

    Response around MIT to NIF’s announcement has been enthusiastic and hopeful. “This is the kind of breakthrough that ignites the imagination,” says Vice President for Research Maria Zuber, “reminding us of the wonder of discovery and the possibilities of human ingenuity. Although we have a long, hard path ahead of us before fusion can deliver clean energy to the electrical grid, we should find much reason for optimism in today’s announcement. Innovation in science and technology holds great power and promise to address some of the world’s biggest challenges, including climate change.”

    Frenje also credits the rest of the team at the PSFC’s High-Energy-Density Physics division, the Laboratory for Laser Energetics at the University of Rochester, LLNL, and other collaborators for their support and involvement in this research, as well as the National Nuclear Security Administration of the Department of Energy, which has funded much of their work since the early 1990s. He is also proud of the number of MIT PhDs that have been generated by the High-Energy-Density Physics Division and subsequently hired by LLNL, including the experimental lead for this experiment, Alex Zylstra PhD ’15.

    “This is really a team effort,” says Frenje. “Without the scientific dialogue and the extensive know-how at the HEDP Division, the critical contributions made by the MRS system would not have happened.” More

  • in

    Pursuing a practical approach to research

    Koroush Shirvan, the John Clark Hardwick Career Development Professor in the Department of Nuclear Science and Engineering (NSE), knows that the nuclear industry has traditionally been wary of innovations until they are shown to have proven utility. As a result, he has relentlessly focused on practical applications in his research, work that has netted him the 2022 Reactor Technology Award from the American Nuclear Society. “The award has usually recognized practical contributions to the field of reactor design and has not often gone to academia,” Shirvan says.

    One of these “practical contributions” is in the field of accident-tolerant fuels, a program launched by the U.S. Nuclear Regulatory Commission in the wake of the 2011 Fukushima Daiichi incident. The goal within this program, says Shirvan, is to develop new forms of nuclear fuels that can tolerate heat. His team, with students from over 16 countries, is working on numerous possibilities that range in composition and method of production.

    Another aspect of Shirvan’s research focuses on how radiation impacts heat transfer mechanisms in the reactor. The team found fuel corrosion to be the driving force. “[The research] informs how nuclear fuels perform in the reactor, from a practical point of view,” Shirvan says.

    Optimizing nuclear reactor design

    A summer internship when Shirvan was an undergraduate at the University of Florida at Gainesville seeded his drive to focus on practical applications in his studies. A nearby nuclear utility was losing millions because of crud accumulating on fuel rods. Over time, the company was solving the problem by using more fuel, before it had extracted all the life from earlier batches.

    Placement of fuel rods in nuclear reactors is a complex problem with many factors — the life of the fuel, location of hot spots — affecting outcomes. Nuclear reactors change their configuration of fuel rods every 18-24 months to optimize close to 15-20 constraints, leading to roughly 200-800 assemblies. The mind-boggling nature of the problem means that plants have to rely on experienced engineers.

    During his internship, Shirvan optimized the program used to place fuel rods in the reactor. He found that certain rods in assemblies were more prone to the crud deposits, and reworked their configurations, optimizing for these rods’ performance instead of adding assemblies.

    In recent years, Shirvan has applied a branch of artificial intelligence — reinforcement learning — to the configuration problem and created a software program used by the largest U.S. nuclear utility. “This program gives even a layperson the ability to reconfigure the fuels and the reactor without having expert knowledge,” Shirvan says.

    From advanced math to counting jelly beans

    Shirvan’s own expertise in nuclear science and engineering developed quite organically. He grew up in Tehran, Iran, and when he was 14 the family moved to Gainesville, where Shirvan’s aunt and family live. He remembers an awkward couple of years at the new high school where he was grouped in with newly arrived international students, and placed in entry-level classes. “I went from doing advanced mathematics in Iran to counting jelly beans,” he laughs.

    Shirvan applied to the University of Florida for his undergraduate studies since it made economic sense; the school gave full scholarships to Floridian students who received a certain minimum SAT score. Shirvan qualified. His uncle, who was a professor in the nuclear engineering department then, encouraged Shirvan to take classes in the department. Under his uncle’s mentorship, the courses Shirvan took, and his internship, cemented his love of the interdisciplinary approach that the field demanded.

    Having always known that he wanted to teach — he remembers finishing his math tests early in Tehran so he could earn the reward of being class monitor — Shirvan knew graduate school was next. His uncle encouraged him to apply to MIT and to the University of Michigan, home to reputable programs in the field. Shirvan chose MIT because “only at MIT was there a program on nuclear design. There were faculty dedicated to designing new reactors, looking at multiple disciplines, and putting all of that together.” He went on to pursue his master’s and doctoral studies at NSE under the supervision of Professor Mujid Kazimi, focusing on compact pressurized and boiling water reactor designs. When Kazimi passed away suddenly in 2015, Shirvan was a research scientist, and switched to tenure track to guide the professor’s team.

    Another project that Shirvan took in 2015: leadership of MIT’s course on nuclear reactor technology for utility executives. Offered only by the Institute, the program is an introduction to nuclear engineering and safety for personnel who might not have much background in the area. “It’s a great course because you get to see what the real problems are in the energy sector … like grid stability,” Shirvan says.

    A multipronged approach to savings

    Another very real problem nuclear utilities face is cost. Contrary to what one hears on the news, one of the biggest stumbling blocks to building new nuclear facilities in the United States is cost, which today can be up to three times that of renewables, Shirvan says. While many approaches such as advanced manufacturing have been tried, Shirvan believes that the solution to decrease expenditures lies in designing more compact reactors.

    His team has developed an open-source advanced nuclear cost tool and has focused on two different designs: a small water reactor using compact steam technology and a horizontal gas reactor. Compactness also means making fuels more efficient, as Shirvan’s work does, and in improving the heat exchange device. It’s all back to the basics and bringing “commercial viable arguments in with your research,” Shirvan explains.

    Shirvan is excited about the future of the U.S. nuclear industry, and that the 2022 Inflation Reduction Act grants the same subsidies to nuclear as it does for renewables. In this new level playing field, advanced nuclear still has a long way to go in terms of affordability, he admits. “It’s time to push forward with cost-effective design,” Shirvan says, “I look forward to supporting this by continuing to guide these efforts with research from my team.” More

  • in

    Decarbonization amid global crises

    A global pandemic. Russia’s invasion of Ukraine. Inflation. The first-ever serious challenge to the peaceful transfer of power in the United States.

    Forced to face a seemingly unending series of once-in-a-generation crises, how can the world continue to focus attention on goals around carbon emissions and climate change? That was the question posed by Philip R. Sharp, the former president of Resources for the Future and a former 10-term member of the U.S. House of Representatives from Indiana, during his MIT Energy Initiative Fall Colloquium address, entitled “The prospects for decarbonization in America: Will global and domestic crises disrupt our plans?”

    Perhaps surprisingly, Sharp sounded an optimistic note in his answer. Despite deep political divisions in the United States, he noted, Congress has passed five major pieces of legislation — under both presidents Donald Trump and Joseph Biden — aimed at accelerating decarbonization efforts. Rather than hampering movement to combat climate change, Sharp said, domestic and global crises have seemed to galvanize support, create new incentives for action, and even unify political rivals around the cause.

    “Almost everybody is dealing with, to some degree, the absolutely profound, churning events that we are amidst now. Most of them are unexpected, and therefore [we’re] not prepared for [them], and they have had a profound shaking of our thinking,” Sharp said. “The conventional wisdom has not held up in almost all of these areas, and therefore it makes it much more difficult for us to think we know how to predict an uncertain future, and [it causes us to] question our own ability as a nation — or anywhere — to actually take on these challenges. And obviously, climate change is one of the most important.”

    However, Sharp continued, these challenges have, in some instances, spurred action. The war in Ukraine, he noted, has upset European energy markets, but it has also highlighted the importance of countries achieving a more energy-independent posture through renewables. “In America,” he added, “we’ve actually seen absolutely stunning … behavior by the United States Congress, of all places.”

    “What we’ve witnessed is, [Congress] put out incredible … sums of money under the previous administration, and then under this administration, to deal with the Covid crisis,” Sharp added later in his talk. “And then the United States government came together — red and blue — to support the Ukrainians against Russia. It saddens me to say, it seems to take a Russian invasion or the Chinese probing us economically to get us moving. But we are moving, and these things are happening.”

    Congressional action

    Sharp cautioned against getting “caught up” in the familiar viewpoint that Congress, in its current incarnation, is fundamentally incapable of passing meaningful legislation. He pointed, in particular, to the passage of five laws over the previous two years:

    The 2020 Energy Act, which has been characterized as a “down payment on fighting climate change.”
    The Infrastructure Investment and Jobs Act (sometimes called the “bipartisan infrastructure bill”), which calls for investments in passenger rail, electric vehicle infrastructure, electric school buses, and other clean-energy measures;
    The CHIPS and Science Act, a $280 billion effort to revitalize the American semiconductor industry, which some analysts say could direct roughly one-quarter of its funding toward accelerating zero-carbon industries and conducting climate research;
    The Inflation Reduction Act (called by some “the largest climate legislation in U.S. history”), which includes tax credits, incentives, and other provisions to help private companies tackle climate change, increase investments in renewable energy, and enhance energy efficiency; and
    The Kigali Amendment to the Montreal Protocol, ratified by the Senate to little fanfare in September, under which the United States agreed to reduce the consumption and production of hydrofluorocarbons (HFCs).
    “It is a big deal,” Sharp said of the dramatic increase in federal climate action. “It is very significant actions that are being taken — more than what we would expect, or I would expect, out of the Congress at any one time.”

    Along with the many billions of dollars of climate-related investments included in the legislation, Sharp said, these new laws will have a number of positive “spillover” effects.

    “This enables state governments, in their policies, to be more aggressive,” Sharp said. “Why? Because it makes it cheaper for some of the investments that they will try to force within their state.” Another “pretty obvious” spillover effect, Sharp said, is that the new laws will enhance U.S. credibility in international negotiations. Finally, he said, these public investments will make the U.S. economy more competitive in international markets for clean-energy technology — particularly as the United States seeks to compete against China in the space.

    “[Competition with China] has become a motivator in American politics, like it or not,” Sharp said. “There is no question that it is causing and bringing together [politicians] across blue [states] and red [states].”

    Holding onto progress

    Even in an uncertain political climate in which Democrats and Republicans seem unable to agree on basic facts, recent funding commitments are likely to survive, no matter which party controls Congress and the presidency, Sharp said. That’s because most of the legislation relies on broadly popular “carrots” that reward investments in decarbonization, rather than less popular “sticks” that create new restrictions or punishments for companies that fail to decarbonize.

    “Politically, the impact of this is very significant,” Sharp said. “It is so much easier in politics to give away tax [credits] than it is to penalize or put requirements onto people. The fact is that these tax credits are more likely to be politically sustained than other forms of government intervention. That, at least, has been the history.”

    Sharp stressed the importance of what he called “civil society” — institutions such as universities, nonprofits, churches, and other organizations that are apart from government and business — in promoting decarbonization efforts. “[Those groups] can act highly independently, and therefore, they can drive for things that others are not willing to do. Now this does not always work to good purposes. Partly, this diversity and this decentralization in civil society … led to deniers and others being able to stop some climate action. But now my view is, this is starting to all move in the right direction, in a very dynamic and a very important way. What we have seen over the last few years is a big uptick in philanthropy related to climate.”

    Looking ahead

    Sharp’s optimism even extended to the role of social media. He suggested that the “Wild West” era of social platforms may be ending, pointing to the celebrities who have recently lost valuable business partnerships for spreading hate speech and disinformation. “We’re now a lot more alert to the dangers,” he said.

    Some in the audience questioned Sharp about specific paths toward decarbonization, but Sharp said that progress will require a number of disparate approaches — some of which will inevitably have a greater impact than others. “The current policy, and the policy embedded in this [new] legislation … is all about doing both,” he said. “It’s all about advancing [current] technologies into the marketplace, and at the same time driving for breakthroughs.”

    Above all, Sharp stressed the need for continued collective action around climate change. “The fact is, we’re all contributors to some degree,” he said. “But we also all can do something. In my view, this is clearly not a time for hand-wringing. This is a time for action. People have to roll up their sleeves, and go to work, and not roll them down anytime soon.” More

  • in

    Mining for the clean energy transition

    In a world powered increasingly by clean energy, drilling for oil and gas will gradually give way to digging for metals and minerals. Today, the “critical minerals” used to make electric cars, solar panels, wind turbines, and grid-scale battery storage are facing soaring demand — and some acute bottlenecks as miners race to catch up.

    According to a report from the International Energy Agency, by 2040, the worldwide demand for copper is expected to roughly double; demand for nickel and cobalt will grow at least sixfold; and the world’s hunger for lithium could reach 40 times what we use today.

    “Society is looking to the clean energy transition as a way to solve the environmental and social harms of climate change,” says Scott Odell, a visiting scientist at the MIT Environmental Solutions Initiative (ESI), where he helps run the ESI Mining, Environment, and Society Program, who is also a visiting assistant professor at George Washington University. “Yet mining the materials needed for that transition would also cause social and environmental impacts. So we need to look for ways to reduce our demand for minerals, while also improving current mining practices to minimize social and environmental impacts.”

    ESI recently hosted the inaugural MIT Conference on Mining, Environment, and Society to discuss how the clean energy transition may affect mining and the people and environments in mining areas. The conference convened representatives of mining companies, environmental and human rights groups, policymakers, and social and natural scientists to identify key concerns and possible collaborative solutions.

    “We can’t replace an abusive fossil fuel industry with an abusive mining industry that expands as we move through the energy transition,” said Jim Wormington, a senior researcher at Human Rights Watch, in a panel on the first day of the conference. “There’s a recognition from governments, civil society, and companies that this transition potentially has a really significant human rights and social cost, both in terms of emissions […] but also for communities and workers who are on the front lines of mining.”

    That focus on communities and workers was consistent throughout the three-day conference, as participants outlined the economic and social dimensions of standing up large numbers of new mines. Corporate mines can bring large influxes of government revenue and local investment, but the income is volatile and can leave policymakers and communities stranded when production declines or mineral prices fall. On the other hand, “artisanal” mining operations are an important source of critical minerals, but are hard to regulate and subject to abuses from brokers. And large reserves of minerals are found in conservation areas, regions with fragile ecosystems and experiencing water shortages that can be exacerbated by mining, in particular on Indigenous-controlled lands and other places where mine openings are deeply fraught.

    “One of the real triggers of conflict is a dissatisfaction with the current model of resource extraction,” said Jocelyn Fraser of the University of British Columbia in a panel discussion. “One that’s failed to support the long-term sustainable development of regions that host mining operations, and yet imposes significant local social and environmental impacts.”

    All these challenges point toward solutions in policy and in mining companies’ relationships with the communities where they work. Participants highlighted newer models of mining governance that can create better incentives for the ways mines operate — from full community ownership of mines to recognizing community rights to the benefits of mining to end-of-life planning for mines at the time they open.

    Many of the conference speakers also shared technological innovations that may help reduce mining challenges. Some operations are investing in desalination as alternative water sources in water-scarce regions; low-carbon alternatives are emerging to many of the fossil fuel-powered heavy machines that are mainstays of the industry; and work is being done to reclaim valuable minerals from mine tailings, helping to minimize both waste and the need to open new extraction sites.

    Increasingly, the mining industry itself is recognizing that reforms will allow it to thrive in a rapid clean-energy transition. “Decarbonization is really a profitability imperative,” said Kareemah Mohammed, managing director for sustainability services at the technology consultancy Accenture, on the conference’s second day. “It’s about securing a low-cost and steady supply of either minerals or metals, but it’s also doing so in an optimal way.”

    The three-day conference attracted over 350 attendees, from large mining companies, industry groups, consultancies, multilateral institutions, universities, nongovernmental organizations (NGOs), government, and more. It was held entirely virtually, a choice that helped make the conference not only truly international — participants joined from over 27 countries on six continents — but also accessible to members of nonprofits and professionals in the developing world.

    “Many people are concerned about the environmental and social challenges of supplying the clean energy revolution, and we’d heard repeatedly that there wasn’t a forum for government, industry, academia, NGOs, and communities to all sit at the same table and explore collaborative solutions,” says Christopher Noble, ESI’s director of corporate engagement. “Convening, and researching best practices, are roles that universities can play. The conversations at this conference have generated valuable ideas and consensus to pursue three parallel programs: best-in-class models for community engagement, improving ESG metrics and their use, and civil-society contributions to government/industry relations. We are developing these programs to keep the momentum going.”

    The MIT Conference on Mining, Environment, and Society was funded, in part, by Accenture, as part of the MIT/Accenture Convergence Initiative. Additional funding was provided by the Inter-American Development Bank. More

  • in

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference

    As the 2022 United Nations climate change conference, known as COP27, stretched into its final hours on Saturday, Nov. 19, it was uncertain what kind of agreement might emerge from two weeks of intensive international negotiations.

    In the end, COP27 produced mixed results: on the one hand, a historic agreement for wealthy countries to compensate low-income countries for “loss and damage,” but on the other, limited progress on new plans for reducing the greenhouse gas emissions that are warming the planet.

    “We need to drastically reduce emissions now — and this is an issue this COP did not address,” said U.N. Secretary-General António Guterres in a statement at the conclusion of COP27. “A fund for loss and damage is essential — but it’s not an answer if the climate crisis washes a small island state off the map — or turns an entire African country to desert.”

    Throughout the two weeks of the conference, a delegation of MIT students, faculty, and staff was at the Sharm El-Sheikh International Convention Center to observe the negotiations, conduct and share research, participate in panel discussions, and forge new connections with researchers, policymakers, and advocates from around the world.

    Loss and damage

    A key issue coming in to COP27 (COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held for the 27th time) was loss and damage: a term used by the U.N. to refer to harms caused by climate change — either through acute catastrophes like extreme weather events or slower-moving impacts like sea level rise — to which communities and countries are unable to adapt. 

    Ultimately, a deal on loss and damage proved to be COP27’s most prominent accomplishment. Negotiators reached an eleventh-hour agreement to “establish new funding arrangements for assisting developing countries that are particularly vulnerable to the adverse effects of climate change.” 

    “Providing financial assistance to developing countries so they can better respond to climate-related loss and damage is not only a moral issue, but also a pragmatic one,” said Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research, who attended COP27 and participated in side events. “Future emissions growth will be squarely centered in the developing world, and offering support through different channels is key to building the trust needed for more robust global cooperation on mitigation.”

    Youssef Shaker, a graduate student in the MIT Technology and Policy Program and a research assistant with the MIT Energy Initiative, attended the second week of the conference, where he followed the negotiations over loss and damage closely. 

    “While the creation of a fund is certainly an achievement,” Shaker said, “significant questions remain to be answered, such as the size of the funding available as well as which countries receive access to it.” A loss-and-damage fund that is not adequately funded, Shaker noted, “would not be an impactful outcome.” 

    The agreement on loss and damage created a new committee, made up of 24 country representatives, to “operationalize” the new funding arrangements, including identifying funding sources. The committee is tasked with delivering a set of recommendations at COP28, which will take place next year in Dubai.

    Advising the U.N. on net zero

    Though the decisions reached at COP27 did not include major new commitments on reducing emissions from the combustion of fossil fuels, the transition to a clean global energy system was nevertheless a key topic of conversation throughout the conference.

    The Council of Engineers for the Energy Transition (CEET), an independent, international body of engineers and energy systems experts formed to provide advice to the U.N. on achieving net-zero emissions globally by 2050, convened for the first time at COP27. Jessika Trancik, a professor in the MIT Institute for Data, Systems, and Society and a member of CEET, spoke on a U.N.-sponsored panel on solutions for the transition to clean energy.

    Trancik noted that the energy transition will look different in different regions of the world. “As engineers, we need to understand those local contexts and design solutions around those local contexts — that’s absolutely essential to support a rapid and equitable energy transition.”

    At the same time, Trancik noted that there is now a set of “low-cost, ready-to-scale tools” available to every region — tools that resulted from a globally competitive process of innovation, stimulated by public policies in different countries, that dramatically drove down the costs of technologies like solar energy and lithium-ion batteries. The key, Trancik said, is for regional transition strategies to “tap into global processes of innovation.”

    Reinventing climate adaptation

    Elfatih Eltahir, the H. M. King Bhumibol Professor of Hydrology and Climate, traveled to COP27 to present plans for the Jameel Observatory Climate Resilience Early Warning System (CREWSnet), one of the five projects selected in April 2022 as a flagship in MIT’s Climate Grand Challenges initiative. CREWSnet focuses on climate adaptation, the term for adapting to climate impacts that are unavoidable.

    The aim of CREWSnet, Eltahir told the audience during a panel discussion, is “nothing short of reinventing the process of climate change adaptation,” so that it is proactive rather than reactive; community-led; data-driven and evidence-based; and so that it integrates different climate risks, from heat waves to sea level rise, rather than treating them individually.

    “However, it’s easy to talk about these changes,” said Eltahir. “The real challenge, which we are now just launching and engaging in, is to demonstrate that on the ground.” Eltahir said that early demonstrations will happen in a couple of key locations, including southwest Bangladesh, where multiple climate risks — rising sea levels, increasing soil salinity, and intensifying heat waves and cyclones — are combining to threaten the area’s agricultural production.

    Building on COP26

    Some members of MIT’s delegation attended COP27 to advance efforts that had been formally announced at last year’s U.N. climate conference, COP26, in Glasgow, Scotland.

    At an official U.N. side event co-organized by MIT on Nov. 11, Greg Sixt, the director of the Food and Climate Systems Transformation (FACT) Alliance led by the Abdul Latif Jameel Water and Food Systems Lab, provided an update on the alliance’s work since its launch at COP26.

    Food systems are a major source of greenhouse gas emissions — and are increasingly vulnerable to climate impacts. The FACT Alliance works to better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders to make food systems (which include food production, consumption, and waste) more sustainable and resilient. 

    Sixt told the audience that the FACT Alliance now counts over 20 research and stakeholder institutions around the world among its members, but also collaborates with other institutions in an “open network model” to advance work in key areas — such as a new research project exploring how climate scenarios could affect global food supply chains.

    Marcela Angel, research program director for the Environmental Solutions Initiative (ESI), helped convene a meeting at COP27 of the Afro-InterAmerican Forum on Climate Change, which also launched at COP26. The forum works with Afro-descendant leaders across the Americas to address significant environmental issues, including climate risks and biodiversity loss. 

    At the event — convened with the Colombian government and the nonprofit Conservation International — ESI brought together leaders from six countries in the Americas and presented recent work that estimates that there are over 178 million individuals who identify as Afro-descendant living in the Americas, in lands of global environmental importance. 

    “There is a significant overlap between biodiversity hot spots, protected areas, and areas of high Afro-descendant presence,” said Angel. “But the role and climate contributions of these communities is understudied, and often made invisible.”    

    Limiting methane emissions

    Methane is a short-lived but potent greenhouse gas: When released into the atmosphere, it immediately traps about 120 times more heat than carbon dioxide does. More than 150 countries have now signed the Global Methane Pledge, launched at COP26, which aims to reduce methane emissions by at least 30 percent by 2030 compared to 2020 levels.

    Sergey Paltsev, the deputy director of the Joint Program on the Science and Policy of Global Change and a senior research scientist at the MIT Energy Initiative, gave the keynote address at a Nov. 17 event on methane, where he noted the importance of methane reductions from the oil and gas sector to meeting the 2030 goal.

    “The oil and gas sector is where methane emissions reductions could be achieved the fastest,” said Paltsev. “We also need to employ an integrated approach to address methane emissions in all sectors and all regions of the world because methane emissions reductions provide a near-term pathway to avoiding dangerous tipping points in the global climate system.”

    “Keep fighting relentlessly”

    Arina Khotimsky, a senior majoring in materials science and engineering and a co-president of the MIT Energy and Climate Club, attended the first week of COP27. She reflected on the experience in a social media post after returning home. 

    “COP will always have its haters. Is there greenwashing? Of course! Is everyone who should have a say in this process in the room? Not even close,” wrote Khotimsky. “So what does it take for COP to matter? It takes everyone who attended to not only put ‘climate’ on front-page news for two weeks, but to return home and keep fighting relentlessly against climate change. I know that I will.” More