More stories

  • in

    Finding community in high-energy-density physics

    Skylar Dannhoff knew one thing: She did not want to be working alone.

    As an undergraduate at Case Western Reserve University, she had committed to a senior project that often felt like solitary lab work, a feeling heightened by the pandemic. Though it was an enriching experience, she was determined to find a graduate school environment that would foster community, one “with lots of people, lots of collaboration; where it’s impossible to work until 3 a.m. without anyone noticing.” A unique group at the Plasma Science and Fusion Center (PSFC) looked promising: the High-Energy-Density Physics (HEDP) division, a lead partner in the National Nuclear Security Administration’s Center for Excellence at MIT.

    “It was a shot in the dark, just more of a whim than anything,” she says of her request to join HEDP on her application to MIT’s Department of Physics. “And then, somehow, they reached out to me. I told them I’m willing to learn about plasma. I didn’t know anything about it.”

    What she did know was that the HEDP group collaborates with other U.S. laboratories on an approach to creating fusion energy known as inertial confinement fusion (ICF). One version of the technique, known as direct-drive ICF, aims multiple laser beams symmetrically onto a spherical capsule filled with nuclear fuel. The other, indirect-drive ICF, instead aims multiple lasers beams into a gold cylindrical cavity called a hohlraum, within which the spherical fuel capsule is positioned. The laser beams are configured to hit the inner hohlraum wall, generating a “bath” of X-rays, which in turn compress the fuel capsule.

    Imploding the capsule generates intense fusion energy within a tiny fraction of a second (an order of tens of picoseconds). In August 2021, the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) used this method to produce an historic fusion yield of 1.3 megajoules, putting researchers within reach of “ignition,” the point where the self-sustained fusion burn spreads into the surrounding fuel, leading to a high fusion-energy gain.  

    Joining the group just a month before this long-sought success, Dannhoff was impressed more with the response of her new teammates and the ICF community than with the scientific milestone. “I got a better appreciation for people who had spent their entire careers working on this project, just chugging along doing their best, ignoring the naysayers. I was excited for the people.”

    Dannhoff is now working toward extending the success of NIF and other ICF experiments, like the OMEGA laser at the University of Rochester’s Laboratory for Laser Energetics. Under the supervision of Senior Research Scientist Chikang Li, she is studying what happens to the flow of plasma within the hohlraum cavity during indirect ICF experiments, particularly for hohlraums with inner-wall aerogel foam linings. Experiments, over the last decade, have shown just how excruciatingly precise the symmetry in ICF targets must be. The more symmetric the X-ray drive, the more effective the implosion, and it is possible that these foam linings will improve the X-ray symmetry and drive efficiency.

    Dannhoff is specifically interested in studying the behavior of silicon and tantalum-based foam liners. She is as concerned with the challenges of the people at General Atomics (GA) and LLNL who are creating these targets as she is with the scientific outcome.

    “I just had a meeting with GA yesterday,” she notes. “And it’s a really tricky process. It’s kind of pushing the boundaries of what is doable at the moment. I got a much better sense of how demanding this project is for them, how much we’re asking of them.”

    What excites Dannhoff is the teamwork she observes, both at MIT and between ICF institutions around the United States. With roughly 10 graduate students and postdocs down the hall, each with an assigned lead role in lab management, she knows she can consult an expert on almost any question. And collaborators across the country are just an email away. “Any information that people can give you, they will give you, and usually very freely,” she notes. “Everyone just wants to see this work.”

    That Dannhoff is a natural team player is also evidenced in her hobbies. A hockey goalie, she prioritizes playing with MIT’s intramural teams, “because goalies are a little hard to come by. I just play with whoever needs a goalie on that night, and it’s a lot of fun.”

    She is also a member of the radio community, a fellowship she first embraced at Case Western — a moment she describes as a turning point in her life. “I literally don’t know who I would be today if I hadn’t figured out radio is something I’m interested in,” she admits. The MIT Radio Society provided the perfect landing pad for her arrival in Cambridge, full of the kinds of supportive, interesting, knowledgeable students she had befriended as an undergraduate. She credits radio with helping her realize that she could make her greatest contributions to science by focusing on engineering.

    Danhoff gets philosophical as she marvels at the invisible waves that surround us.

    “Not just radio waves: every wave,” she asserts. “The voice is the everywhere. Music, signal, space phenomena: it’s always around. And all we have to do is make the right little device and have the right circuit elements put in the right order to unmix and mix the signals and amplify them. And bada-bing, bada-boom, we’re talking with the universe.”

    “Maybe that epitomizes physics to me,” she adds. “We’re trying to listen to the universe, and it’s talking to us. We just have to come up with the right tools and hear what it’s trying to say.” More

  • in

    3 Questions: Blue hydrogen and the world’s energy systems

    In the past several years, hydrogen energy has increasingly become a more central aspect of the clean energy transition. Hydrogen can produce clean, on-demand energy that could complement variable renewable energy sources such as wind and solar power. That being said, pathways for deploying hydrogen at scale have yet to be fully explored. In particular, the optimal form of hydrogen production remains in question.

    MIT Energy Initiative Research Scientist Emre Gençer and researchers from a wide range of global academic and research institutions recently published “On the climate impacts of blue hydrogen production,” a comprehensive life-cycle assessment analysis of blue hydrogen, a term referring to natural gas-based hydrogen production with carbon capture and storage. Here, Gençer describes blue hydrogen and the role that hydrogen will play more broadly in decarbonizing the world’s energy systems.

    Q: What are the differences between gray, green, and blue hydrogen?

    A: Though hydrogen does not generate any emissions directly when it is used, hydrogen production can have a huge environmental impact. Colors of hydrogen are increasingly used to distinguish different production methods and as a proxy to represent the associated environmental impact. Today, close to 95 percent of hydrogen production comes from fossil resources. As a result, the carbon dioxide (CO2) emissions from hydrogen production are quite high. Gray, black, and brown hydrogen refer to fossil-based production. Gray is the most common form of production and comes from natural gas, or methane, using steam methane reformation but without capturing CO2.

    There are two ways to move toward cleaner hydrogen production. One is applying carbon capture and storage to the fossil fuel-based hydrogen production processes. Natural gas-based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored, such hydrogen could be a low-carbon energy carrier. The second way to produce cleaner hydrogen is by using electricity to produce hydrogen via electrolysis. In this case, the source of the electricity determines the environmental impact of the hydrogen, with the lowest impact being achieved when electricity is generated from renewable sources, such as wind and solar. This is known as green hydrogen.

    Q: What insights have you gleaned with a life cycle assessment (LCA) of blue hydrogen and other low-carbon energy systems?

    A: Mitigating climate change requires significant decarbonization of the global economy. Accurate estimation of cumulative greenhouse gas (GHG) emissions and its reduction pathways is critical irrespective of the source of emissions. An LCA approach allows the quantification of the environmental life cycle of a commercial product, process, or service impact with all the stages (cradle-to-grave). The LCA-based comparison of alternative energy pathways, fuel options, etc., provides an apples-to-apples comparison of low-carbon energy choices. In the context of low-carbon hydrogen, it is essential to understand the GHG impact of supply chain options. Depending on the production method, contribution of life-cycle stages to the total emissions might vary. For example, with natural gas–based hydrogen production, emissions associated with production and transport of natural gas might be a significant contributor based on its leakage and flaring rates. If these rates are not precisely accounted for, the environmental impact of blue hydrogen can be underestimated. However, the same rationale is also true for electricity-based hydrogen production. If the electricity is not supplied from low-
carbon sources such as wind, solar, or nuclear, the carbon intensity of hydrogen can be significantly underestimated. In the case of nuclear, there are also other environmental impact considerations.

    An LCA approach — if performed with consistent system boundaries — can provide an accurate environmental impact comparison. It should also be noted that these estimations can only be as good as the assumptions and correlations used unless they are supported by measurements. 

    Q: What conditions are needed to make blue hydrogen production most effective, and how can it complement other decarbonization pathways?

    A: Hydrogen is considered one of the key vectors for the decarbonization of hard-to-abate sectors such as heavy-duty transportation. Currently, more than 95 percent of global hydrogen production is fossil-fuel based. In the next decade, massive amounts of hydrogen must be produced to meet this anticipated demand. It is very hard, if not impossible, to meet this demand without leveraging existing production assets. The immediate and relatively cost-effective option is to retrofit existing plants with carbon capture and storage (blue hydrogen).

    The environmental impact of blue hydrogen may vary over large ranges but depends on only a few key parameters: the methane emission rate of the natural gas supply chain, the CO2 removal rate at the hydrogen production plant, and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates, combined with natural gas supply featuring low methane emissions, substantially reduces GHG emissions compared to conventional natural gas reforming. Under these conditions, blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However, neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Processing waste biomass to reduce airborne emissions

    To prepare fields for planting, farmers the world over often burn corn stalks, rice husks, hay, straw, and other waste left behind from the previous harvest. In many places, the practice creates huge seasonal clouds of smog, contributing to air pollution that kills 7 million people globally a year, according to the World Health Organization.

    Annually, $120 billion worth of crop and forest residues are burned in the open worldwide — a major waste of resources in an energy-starved world, says Kevin Kung SM ’13, PhD ’17. Kung is working to transform this waste biomass into marketable products — and capitalize on a billion-dollar global market — through his MIT spinoff company, Takachar.

    Founded in 2015, Takachar develops small-scale, low-cost, portable equipment to convert waste biomass into solid fuel using a variety of thermochemical treatments, including one known as oxygen-lean torrefaction. The technology emerged from Kung’s PhD project in the lab of Ahmed Ghoniem, the Ronald C. Crane (1972) Professor of Mechanical Engineering at MIT.

    Biomass fuels, including wood, peat, and animal dung, are a major source of carbon emissions — but billions of people rely on such fuels for cooking, heating, and other household needs. “Currently, burning biomass generates 10 percent of the primary energy used worldwide, and the process is used largely in rural, energy-poor communities. We’re not going to change that overnight. There are places with no other sources of energy,” Ghoniem says.

    What Takachar’s technology provides is a way to use biomass more cleanly and efficiently by concentrating the fuel and eliminating contaminants such as moisture and dirt, thus creating a “clean-burning” fuel — one that generates less smoke. “In rural communities where biomass is used extensively as a primary energy source, torrefaction will address air pollution head-on,” Ghoniem says.

    Thermochemical treatment densifies biomass at elevated temperatures, converting plant materials that are typically loose, wet, and bulky into compact charcoal. Centralized processing plants exist, but collection and transportation present major barriers to utilization, Kung says. Takachar’s solution moves processing into the field: To date, Takachar has worked with about 5,500 farmers to process 9,000 metric tons of crops.

    Takachar estimates its technology has the potential to reduce carbon dioxide equivalent emissions by gigatons per year at scale. (“Carbon dioxide equivalent” is a measure used to gauge global warming potential.) In recognition, in 2021 Takachar won the first-ever Earthshot Prize in the clean air category, a £1 million prize funded by Prince William and Princess Kate’s Royal Foundation.

    Roots in Kenya

    As Kung tells the story, Takachar emerged from a class project that took him to Kenya — which explains the company’s name, a combination of takataka, which mean “trash” in Swahili, and char, for the charcoal end product.

    It was 2011, and Kung was at MIT as a biological engineering grad student focused on cancer research. But “MIT gives students big latitude for exploration, and I took courses outside my department,” he says. In spring 2011, he signed up for a class known as 15.966 (Global Health Delivery Lab) in the MIT Sloan School of Management. The class brought Kung to Kenya to work with a nongovernmental organization in Nairobi’s Kibera, the largest urban slum in Africa.

    “We interviewed slum households for their views on health, and that’s when I noticed the charcoal problem,” Kung says. The problem, as Kung describes it, was that charcoal was everywhere in Kibera — piled up outside, traded by the road, and used as the primary fuel, even indoors. Its creation contributed to deforestation, and its smoke presented a serious health hazard.

    Eager to address this challenge, Kung secured fellowship support from the MIT International Development Initiative and the Priscilla King Gray Public Service Center to conduct more research in Kenya. In 2012, he formed Takachar as a team and received seed money from the MIT IDEAS Global Challenge, MIT Legatum Center for Development and Entrepreneurship, and D-Lab to produce charcoal from household organic waste. (This work also led to a fertilizer company, Safi Organics, that Kung founded in 2016 with the help of MIT IDEAS. But that is another story.)

    Meanwhile, Kung had another top priority: finding a topic for his PhD dissertation. Back at MIT, he met Alexander Slocum, the Walter M. May and A. Hazel May Professor of Mechanical Engineering, who on a long walk-and-talk along the Charles River suggested he turn his Kenya work into a thesis. Slocum connected him with Robert Stoner, deputy director for science and technology at the MIT Energy Initiative (MITEI) and founding director of MITEI’s Tata Center for Technology and Design. Stoner in turn introduced Kung to Ghoniem, who became his PhD advisor, while Slocum and Stoner joined his doctoral committee.

    Roots in MIT lab

    Ghoniem’s telling of the Takachar story begins, not surprisingly, in the lab. Back in 2010, he had a master’s student interested in renewable energy, and he suggested the student investigate biomass. That student, Richard Bates ’10, SM ’12, PhD ’16, began exploring the science of converting biomass to more clean-burning charcoal through torrefaction.

    Most torrefaction (also known as low-temperature pyrolysis) systems use external heating sources, but the lab’s goal, Ghoniem explains, was to develop an efficient, self-sustained reactor that would generate fewer emissions. “We needed to understand the chemistry and physics of the process, and develop fundamental scaling models, before going to the lab to build the device,” he says.

    By the time Kung joined the lab in 2013, Ghoniem was working with the Tata Center to identify technology suitable for developing countries and largely based on renewable energy. Kung was able to secure a Tata Fellowship and — building on Bates’ research — develop the small-scale, practical device for biomass thermochemical conversion in the field that launched Takachar.

    This device, which was patented by MIT with inventors Kung, Ghoniem, Stoner, MIT research scientist Santosh Shanbhogue, and Slocum, is self-contained and scalable. It burns a little of the biomass to generate heat; this heat bakes the rest of the biomass, releasing gases; the system then introduces air to enable these gases to combust, which burns off the volatiles and generates more heat, keeping the thermochemical reaction going.

    “The trick is how to introduce the right amount of air at the right location to sustain the process,” Ghoniem explains. “If you put in more air, that will burn the biomass. If you put in less, there won’t be enough heat to produce the charcoal. That will stop the reaction.”

    About 10 percent of the biomass is used as fuel to support the reaction, Kung says, adding that “90 percent is densified into a form that’s easier to handle and utilize.” He notes that the research received financial support from the Abdul Latif Jameel Water and Food Systems Lab and the Deshpande Center for Technological Innovation, both at MIT. Sonal Thengane, another postdoc in Ghoniem’s lab, participated in the effort to scale up the technology at the MIT Bates Lab (no relation to Richard Bates).

    The charcoal produced is more valuable per ton and easier to transport and sell than biomass, reducing transportation costs by two-thirds and giving farmers an additional income opportunity — and an incentive not to burn agricultural waste, Kung says. “There’s more income for farmers, and you get better air quality.”

    Roots in India

    When Kung became a Tata Fellow, he joined a program founded to take on the biggest challenges of the developing world, with a focus on India. According to Stoner, Tata Fellows, including Kung, typically visit India twice a year and spend six to eight weeks meeting stakeholders in industry, the government, and in communities to gain perspective on their areas of study.

    “A unique part of Tata is that you’re considering the ecosystem as a whole,” says Kung, who interviewed hundreds of smallholder farmers, met with truck drivers, and visited existing biomass processing plants during his Tata trips to India. (Along the way, he also connected with Indian engineer Vidyut Mohan, who became Takachar’s co-founder.)

    “It was very important for Kevin to be there walking about, experimenting, and interviewing farmers,” Stoner says. “He learned about the lives of farmers.”

    These experiences helped instill in Kung an appreciation for small farmers that still drives him today as Takachar rolls out its first pilot programs, tinkers with the technology, grows its team (now up to 10), and endeavors to build a revenue stream. So, while Takachar has gotten a lot of attention and accolades — from the IDEAS award to the Earthshot Prize — Kung says what motivates him is the prospect of improving people’s lives.

    The dream, he says, is to empower communities to help both the planet and themselves. “We’re excited about the environmental justice perspective,” he says. “Our work brings production and carbon removal or avoidance to rural communities — providing them with a way to convert waste, make money, and reduce air pollution.”

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Ocean scientists measure sediment plume stirred up by deep-sea-mining vehicle

    What will be the impact to the ocean if humans are to mine the deep sea? It’s a question that’s gaining urgency as interest in marine minerals has grown.

    The ocean’s deep-sea bed is scattered with ancient, potato-sized rocks called “polymetallic nodules” that contain nickel and cobalt — minerals that are in high demand for the manufacturing of batteries, such as for powering electric vehicles and storing renewable energy, and in response to factors such as increasing urbanization. The deep ocean contains vast quantities of mineral-laden nodules, but the impact of mining the ocean floor is both unknown and highly contested.

    Now MIT ocean scientists have shed some light on the topic, with a new study on the cloud of sediment that a collector vehicle would stir up as it picks up nodules from the seafloor.

    The study, appearing today in Science Advances, reports the results of a 2021 research cruise to a region of the Pacific Ocean known as the Clarion Clipperton Zone (CCZ), where polymetallic nodules abound. There, researchers equipped a pre-prototype collector vehicle with instruments to monitor sediment plume disturbances as the vehicle maneuvered across the seafloor, 4,500 meters below the ocean’s surface. Through a sequence of carefully conceived maneuvers. the MIT scientists used the vehicle to monitor its own sediment cloud and measure its properties.

    Their measurements showed that the vehicle created a dense plume of sediment in its wake, which spread under its own weight, in a phenomenon known in fluid dynamics as a “turbidity current.” As it gradually dispersed, the plume remained relatively low, staying within 2 meters of the seafloor, as opposed to immediately lofting higher into the water column as had been postulated.

    “It’s quite a different picture of what these plumes look like, compared to some of the conjecture,” says study co-author Thomas Peacock, professor of mechanical engineering at MIT. “Modeling efforts of deep-sea mining plumes will have to account for these processes that we identified, in order to assess their extent.”

    The study’s co-authors include lead author Carlos Muñoz-Royo, Raphael Ouillon, and Souha El Mousadik of MIT; and Matthew Alford of the Scripps Institution of Oceanography.

    Deep-sea maneuvers

    To collect polymetallic nodules, some mining companies are proposing to deploy tractor-sized vehicles to the bottom of the ocean. The vehicles would vacuum up the nodules along with some sediment along their path. The nodules and sediment would then be separated inside of the vehicle, with the nodules sent up through a riser pipe to a surface vessel, while most of the sediment would be discharged immediately behind the vehicle.

    Peacock and his group have previously studied the dynamics of the sediment plume that associated surface operation vessels may pump back into the ocean. In their current study, they focused on the opposite end of the operation, to measure the sediment cloud created by the collectors themselves.

    In April 2021, the team joined an expedition led by Global Sea Mineral Resources NV (GSR), a Belgian marine engineering contractor that is exploring the CCZ for ways to extract metal-rich nodules. A European-based science team, Mining Impacts 2, also conducted separate studies in parallel. The cruise was the first in over 40 years to test a “pre-prototype” collector vehicle in the CCZ. The machine, called Patania II, stands about 3 meters high, spans 4 meters wide, and is about one-third the size of what a commercial-scale vehicle is expected to be.

    While the contractor tested the vehicle’s nodule-collecting performance, the MIT scientists monitored the sediment cloud created in the vehicle’s wake. They did so using two maneuvers that the vehicle was programmed to take: a “selfie,” and a “drive-by.”

    Both maneuvers began in the same way, with the vehicle setting out in a straight line, all its suction systems turned on. The researchers let the vehicle drive along for 100 meters, collecting any nodules in its path. Then, in the “selfie” maneuver, they directed the vehicle to turn off its suction systems and double back around to drive through the cloud of sediment it had just created. The vehicle’s installed sensors measured the concentration of sediment during this “selfie” maneuver, allowing the scientists to monitor the cloud within minutes of the vehicle stirring it up.

    Play video

    A movie of the Patania II pre-prototype collector vehicle entering, driving through, and leaving the low-lying turbidity current plume as part of a selfie operation. For scale, the instrumentation post attached to the front of the vehicle reaches about 3m above the seabed. The movie is sped up by a factor of 20. Credit: Global Sea Mineral Resources

    For the “drive-by” maneuver, the researchers placed a sensor-laden mooring 50 to 100 meters from the vehicle’s planned tracks. As the vehicle drove along collecting nodules, it created a plume that eventually spread past the mooring after an hour or two. This “drive-by” maneuver enabled the team to monitor the sediment cloud over a longer timescale of several hours, capturing the plume evolution.

    Out of steam

    Over multiple vehicle runs, Peacock and his team were able to measure and track the evolution of the sediment plume created by the deep-sea-mining vehicle.

    “We saw that the vehicle would be driving in clear water, seeing the nodules on the seabed,” Peacock says. “And then suddenly there’s this very sharp sediment cloud coming through when the vehicle enters the plume.”

    From the selfie views, the team observed a behavior that was predicted by some of their previous modeling studies: The vehicle stirred up a heavy amount of sediment that was dense enough that, even after some mixing with the surrounding water, it generated a plume that behaved almost as a separate fluid, spreading under its own weight in what’s known as a turbidity current.

    “The turbidity current spreads under its own weight for some time, tens of minutes, but as it does so, it’s depositing sediment on the seabed and eventually running out of steam,” Peacock says. “After that, the ocean currents get stronger than the natural spreading, and the sediment transitions to being carried by the ocean currents.”

    By the time the sediment drifted past the mooring, the researchers estimate that 92 to 98 percent of the sediment either settled back down or remained within 2 meters of the seafloor as a low-lying cloud. There is, however, no guarantee that the sediment always stays there rather than drifting further up in the water column. Recent and future studies by the research team are looking into this question, with the goal of consolidating understanding for deep-sea mining sediment plumes.

    “Our study clarifies the reality of what the initial sediment disturbance looks like when you have a certain type of nodule mining operation,” Peacock says. “The big takeaway is that there are complex processes like turbidity currents that take place when you do this kind of collection. So, any effort to model a deep-sea-mining operation’s impact will have to capture these processes.”

    “Sediment plumes produced by deep-seabed mining are a major concern with regards to environmental impact, as they will spread over potentially large areas beyond the actual site of mining and affect deep-sea life,” says Henko de Stigter, a marine geologist at the Royal Netherlands Institute for Sea Research, who was not involved in the research. “The current paper provides essential insight in the initial development of these plumes.”

    This research was supported, in part, by the National Science Foundation, ARPA-E, the 11th Hour Project, the Benioff Ocean Initiative, and Global Sea Mineral Resources. The funders had no role in any aspects of the research analysis, the research team states. More

  • in

    3 Questions: Janelle Knox-Hayes on producing renewable energy that communities want

    Wind power accounted for 8 percent of U.S. electricity consumption in 2020, and is growing rapidly in the country’s energy portfolio. But some projects, like the now-defunct Cape Wind proposal for offshore power in Massachusetts, have run aground due to local opposition. Are there ways to avoid this in the future?

    MIT professors Janelle Knox-Hayes and Donald Sadoway think so. In a perspective piece published today in the journal Joule, they and eight other professors call for a new approach to wind-power deployment, one that engages communities in a process of “co-design” and adapts solutions to local needs. That process, they say, could spur additional creativity in renewable energy engineering, while making communities more amenable to existing technologies. In addition to Knox-Hayes and Sadoway, the paper’s co-authors are Michael J. Aziz of Harvard University; Dennice F. Gayme of Johns Hopkins University; Kathryn Johnson of the Colorado School of Mines; Perry Li of the University of Minnesota; Eric Loth of the University of Virginia; Lucy Y. Pao of the University of Colorado; Jessica Smith of the Colorado School of Mines; and Sonya Smith of Howard University.

    Knox-Hayes is the Lister Brothers Associate Professor of Economic Geography and Planning in MIT’s Department of Urban Studies and Planning, and an expert on the social and political context of renewable energy adoption; Sadoway is the John F. Elliott Professor of Materials Chemistry in MIT’s Department of Materials Science and Engineering, and a leading global expert on developing new forms of energy storage. MIT News spoke with Knox-Hayes about the topic.

    Q: What is the core problem you are addressing in this article?

    A: It is problematic to act as if technology can only be engineered in a silo and then delivered to society. To solve problems like climate change, we need to see technology as a socio-technical system, which is integrated from its inception into society. From a design standpoint, that begins with conversations, values assessments, and understanding what communities need.  If we can do that, we will have a much easier time delivering the technology in the end.

    What we have seen in the Northeast, in trying to meet our climate objectives and energy efficiency targets, is that we need a lot of offshore wind, and a lot of projects have stalled because a community was saying “no.” And part of the reason communities refuse projects is because they that they’ve never been properly consulted. What form does the technology take, and how would it operate within a community? That conversation can push the boundaries of engineering.

    Q: The new paper makes the case for a new practice of “co-design” in the field of renewable energy. You call this the “STEP” process, standing for all the socio-technical-political-economic issues that an engineering project might encounter. How would you describe the STEP idea? And to what extent would industry be open to new attempts to design an established technology?

    A: The idea is to bring together all these elements in an interdisciplinary process, and engage stakeholders. The process could start with a series of community forums where we bring everyone together, and do a needs assessment, which is a common practice in planning. We might see that offshore wind energy needs to be considered in tandem with the local fishing industry, or servicing the installations, or providing local workforce training. The STEP process allows us to take a step back, and start with planners, policymakers, and community members on the ground.

    It is also about changing the nature of research and practice and teaching, so that students are not just in classrooms, they are also learning to work with communities. I think formalizing that piece is important. We are starting now to really feel the impacts of climate change, so we have to confront the reality of breaking through political boundaries, even in the United States. That is the only way to make this successful, and that comes back to how can technology be co-designed.

    At MIT, innovation is the spirit of the endeavor, and that is why MIT has so many industry partners engaged in initiatives like MITEI [the MIT Energy Initiative] and the Climate Consortium. The value of the partnership is that MIT pushes the boundaries of what is possible. It is the idea that we can advance and we can do something incredible, we can innovate the future. What we are suggesting with this work is that innovation isn’t something that happens exclusively in a laboratory, but something that is very much built in partnership with communities and other stakeholders.

    Q: How much does this approach also apply to solar power, as the other leading type of renewable energy? It seems like communities also wrestle with where to locate solar arrays, or how to compensate homeowners, communities, and other solar hosts for the power they generate.

    A: I would not say solar has the same set of challenges, but rather that renewable technologies face similar challenges. With solar, there are also questions of access and siting. Another big challenge is to create financing models that provide value and opportunity at different scales. For example, is solar viable for tenants in multi-family units who want to engage with clean energy? This is a similar question for micro-wind opportunities for buildings. With offshore wind, a restriction is that if it is within sightlines, it might be problematic. But there are exciting technologies that have enabled deep wind, or the establishment of floating turbines up to 50 kilometers offshore. Storage solutions such as hydro-pneumatic energy storage, gravity energy storage or buoyancy storage can help maintain the transmission rate while reducing the number of transmission lines needed.

    In a lot of communities, the reality of renewables is that if you can generate your own energy, you can establish a level of security and resilience that feeds other benefits. 

    Nevertheless, as demonstrated in the Cape Wind case, technology [may be rejected] unless a community is involved from the beginning. Community involvement also creates other opportunities. Suppose, for example, that high school students are working as interns on renewable energy projects with engineers at great universities from the region. This provides a point of access for families and allows them to take pride in the systems they create.  It gives a further sense of purpose to the technology system, and vests the community in the system’s success. It is the difference between, “It was delivered to me,” and “I built it.” For researchers the article is a reminder that engineering and design are more successful if they are inclusive. Engineering and design processes are also meant to be accessible and fun. More

  • in

    Computing for the health of the planet

    The health of the planet is one of the most important challenges facing humankind today. From climate change to unsafe levels of air and water pollution to coastal and agricultural land erosion, a number of serious challenges threaten human and ecosystem health.

    Ensuring the health and safety of our planet necessitates approaches that connect scientific, engineering, social, economic, and political aspects. New computational methods can play a critical role by providing data-driven models and solutions for cleaner air, usable water, resilient food, efficient transportation systems, better-preserved biodiversity, and sustainable sources of energy.

    The MIT Schwarzman College of Computing is committed to hiring multiple new faculty in computing for climate and the environment, as part of MIT’s plan to recruit 20 climate-focused faculty under its climate action plan. This year the college undertook searches with several departments in the schools of Engineering and Science for shared faculty in computing for health of the planet, one of the six strategic areas of inquiry identified in an MIT-wide planning process to help focus shared hiring efforts. The college also undertook searches for core computing faculty in the Department of Electrical Engineering and Computer Science (EECS).

    The searches are part of an ongoing effort by the MIT Schwarzman College of Computing to hire 50 new faculty — 25 shared with other academic departments and 25 in computer science and artificial intelligence and decision-making. The goal is to build capacity at MIT to help more deeply infuse computing and other disciplines in departments.

    Four interdisciplinary scholars were hired in these searches. They will join the MIT faculty in the coming year to engage in research and teaching that will advance physical understanding of low-carbon energy solutions, Earth-climate modeling, biodiversity monitoring and conservation, and agricultural management through high-performance computing, transformational numerical methods, and machine-learning techniques.

    “By coordinating hiring efforts with multiple departments and schools, we were able to attract a cohort of exceptional scholars in this area to MIT. Each of them is developing and using advanced computational methods and tools to help find solutions for a range of climate and environmental issues,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Warren Ellis Professor of Electrical Engineering and Computer Science. “They will also help strengthen cross-departmental ties in computing across an important, critical area for MIT and the world.”

    “These strategic hires in the area of computing for climate and the environment are an incredible opportunity for the college to deepen its academic offerings and create new opportunity for collaboration across MIT,” says Anantha P. Chandrakasan, dean of the MIT School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “The college plays a pivotal role in MIT’s overarching effort to hire climate-focused faculty — introducing the critical role of computing to address the health of the planet through innovative research and curriculum.”

    The four new faculty members are:

    Sara Beery will join MIT as an assistant professor in the Faculty of Artificial Intelligence and Decision-Making in EECS in September 2023. Beery received her PhD in computing and mathematical sciences at Caltech in 2022, where she was advised by Pietro Perona. Her research focuses on building computer vision methods that enable global-scale environmental and biodiversity monitoring across data modalities, tackling real-world challenges including strong spatiotemporal correlations, imperfect data quality, fine-grained categories, and long-tailed distributions. She partners with nongovernmental organizations and government agencies to deploy her methods in the wild worldwide and works toward increasing the diversity and accessibility of academic research in artificial intelligence through interdisciplinary capacity building and education.

    Priya Donti will join MIT as an assistant professor in the faculties of Electrical Engineering and Artificial Intelligence and Decision-Making in EECS in academic year 2023-24. Donti recently finished her PhD in the Computer Science Department and the Department of Engineering and Public Policy at Carnegie Mellon University, co-advised by Zico Kolter and Inês Azevedo. Her work focuses on machine learning for forecasting, optimization, and control in high-renewables power grids. Specifically, her research explores methods to incorporate the physics and hard constraints associated with electric power systems into deep learning models. Donti is also co-founder and chair of Climate Change AI, a nonprofit initiative to catalyze impactful work at the intersection of climate change and machine learning that is currently running through the Cornell Tech Runway Startup Postdoc Program.

    Ericmoore Jossou will join MIT as an assistant professor in a shared position between the Department of Nuclear Science and Engineering and the faculty of electrical engineering in EECS in July 2023. He is currently an assistant scientist at the Brookhaven National Laboratory, a U.S. Department of Energy-affiliated lab that conducts research in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience, and national security. His research at MIT will focus on understanding the processing-structure-properties correlation of materials for nuclear energy applications through advanced experiments, multiscale simulations, and data science. Jossou obtained his PhD in mechanical engineering in 2019 from the University of Saskatchewan.

    Sherrie Wang will join MIT as an assistant professor in a shared position between the Department of Mechanical Engineering and the Institute for Data, Systems, and Society in academic year 2023-24. Wang is currently a Ciriacy-Wantrup Postdoctoral Fellow at the University of California at Berkeley, hosted by Solomon Hsiang and the Global Policy Lab. She develops machine learning for Earth observation data. Her primary application areas are improving agricultural management and forecasting climate phenomena. She obtained her PhD in computational and mathematical engineering from Stanford University in 2021, where she was advised by David Lobell. More

  • in

    3Q: How MIT is working to reduce carbon emissions on our campus

    Fast Forward: MIT’s Climate Action Plan for the Decade, launched in May 2021, charges MIT to eliminate its direct carbon emissions by 2050. Setting an interim goal of net zero emissions by 2026 is an important step to getting there. Joe Higgins, vice president for campus services and stewardship, speaks here about the coordinated, multi-team effort underway to address the Institute’s carbon-reduction goals, the challenges and opportunities in getting there, and creating a blueprint for a carbon-free campus in 2050.

    Q: The Fast Forward plan laid out specific goals for MIT to address its own carbon footprint. What has been the strategy to tackle these priorities?

    A: The launch of the Fast Forward Climate Action Plan empowered teams at MIT to expand the scope of our carbon reduction tasks beyond the work we’ve been doing to date. The on-campus activities called for in the plan range from substantially expanding our electric vehicle infrastructure on campus, to increasing our rooftop solar installations, to setting impact goals for food, water, and waste systems. Another strategy utilizes artificial intelligence to further reduce energy consumption and emissions from our buildings. When fully implemented, these systems will adjust a building’s temperature setpoints throughout the day while maintaining occupant comfort, and will use occupancy data, weather forecasts, and carbon intensity projections from the grid to make more efficient use of energy. 

    We have tremendous momentum right now thanks to the progress made over the past decade by our teams — which include planners, designers, engineers, construction managers, and sustainability and operations experts. Since 2014, our efforts to advance energy efficiency and incorporate renewable energy have reduced net emissions on campus by 20% (from a 2014 baseline) despite significant campus growth. One of our current goals is to further reduce energy use in high-intensity research buildings — 20 of our campus buildings consume more than 50% of our energy. To reduce energy usage in these buildings we have major energy retrofit projects in design or in planning for buildings 32, 46, 68, 76, E14, and E25, and we expect this work will reduce overall MIT emissions by an additional 10 to 15%.

    Q: The Fast Forward plan acknowledges the challenges we face in our efforts to reach our campus emission reduction goals, in part due to the current state of New England’s electrical grid. How does MIT’s district energy system factor into our approach? 

    A: MIT’s district energy system is a network of underground pipes and power lines that moves energy from the Central Utilities Plant (CUP) around to the vast majority of Institute buildings to provide electricity, heating, and air conditioning. Using a closed-loop, central-source system like this enables MIT to operate more efficiently by using less energy to heat and cool its buildings and labs, and by maintaining better load control to accommodate seasonal variations in peak demand.

    When the new MIT campus was built in Cambridge in 1916, it included a centralized state-of-the-art steam and electrical power plant that would service the campus buildings. This central district energy approach allowed MIT to avoid having individual furnaces in each building and to easily incorporate progressively cleaner fuel sources campus-wide over the years. After starting with coal as a primary energy source, MIT transitioned to fuel oil, then to natural gas, and then to cogeneration in 1995 — and each step has made the campus more energy efficient. Our continuous investment in a centralized infrastructure has facilitated our ability to improve energy efficiency while adding capacity; as new technologies become available, we can implement them across the entire campus. Our district energy system is very adaptable to seasonal variations in demand for cooling, heating and electricity, and builds upon decades of centralized investments in energy-efficient infrastructure.

    This past year, MIT completed a major upgrade of the district energy system whereby the majority of buildings on campus now benefit from the most advanced cogeneration technology for combined heating, cooling, and power delivery. This system generates electrical power that produces 15 to 25% less carbon than the current New England grid. We also have the ability to export power during times when the grid is most stressed, which contributes to the resiliency of local energy systems. On the flip side, any time the grid is a cleaner option, MIT is able to import a higher amount of electricity from the utility by distributing this energy through our centralized system. In fact, it’s important to note that we have the ability to import 100% of our electrical energy from the grid as it becomes cleaner. We anticipate that this will happen as the next major wave of technology innovation unfolds and the abundance of offshore wind and other renewable resources increases as anticipated by the end of this decade. As the grid gets greener, our adaptable district energy system will bring us closer to meeting our decarbonization goals.

    MIT’s ability to adapt its system and use new technologies is crucial right now as we work in collaboration with faculty, students, industry experts, peer institutions, and the cities of Cambridge and Boston to evaluate various strategies, opportunities, and constraints. In terms of evolving into a next-generation district energy system, we are reviewing options such as electric steam boilers and industrial-scale heat pumps, thermal batteries, geothermal exchange, micro-reactors, bio-based fuels, and green hydrogen produced from renewable energy. We are preparing to incorporate the most beneficial technologies into a blueprint that will get us to our 2050 goal.

    Q: What is MIT doing in the near term to reach the carbon-reduction goals of the climate action plan?

    A: In the near term, we are exploring several options, including enabling large-scale renewable energy projects and investing in verified carbon offset projects that reduce, avoid, or sequester carbon. In 2016, MIT joined a power purchase agreement (PPA) partnership that enabled the construction of a 650-acre solar farm in North Carolina and resulted in the early retirement of a nearby coal plant. We’ve documented a huge emissions savings from this, and we’re exploring how to do something similar on a much larger scale with a broader group of partners. As we seek out collaborative opportunities that enable the development of new renewable energy sources, we hope to provide a model for other institutions and organizations, as the original PPA did. Because PPAs accelerate the de-carbonization of regional electricity grids, they can have an enormous and far-reaching impact. We see these partnerships as an important component of achieving net zero emissions on campus as well as accelerating the de-carbonization of regional power grids — a transformation that must take place to reach zero emissions by 2050.

    Other near-term initiatives include enabling community solar power projects in Massachusetts to support the state’s renewable energy goals and provide opportunities for more property owners (municipalities, businesses, homeowners, etc.) to purchase affordable renewable energy. MIT is engaged with three of these projects; one of them is in operation today in Middleton, and the two others are scheduled to be built soon on Cape Cod.

    We’re joining the commonwealth and its cities, its organizations and utility providers on an unprecedented journey — the global transition to a clean energy system. Along the way, everything is going to change as technologies and the grid continue to evolve. Our focus is on both the near term and the future, as we plan a path into the next energy era. More

  • in

    MIT accelerates efforts on path to carbon reduction goals

    Under its “Fast Forward” climate action plan, which was announced in May 2021, MIT has set a goal of eliminating direct emissions from its campus by 2050. An important near-term milestone will be achieving net-zero emissions by 2026. Many other colleges and universities have set similar targets. What does it take to achieve such a dramatic reduction?

    Since 2014, when MIT launched a five-year plan for action on climate change, net campus emissions have been cut by 20 percent. To meet the 2026 target, and ultimately achieve zero direct emissions by 2050, the Institute is making its campus buildings dramatically more energy efficient, transitioning to electric vehicles (EVs), and enabling large-scale renewable energy projects, among other strategies.

    “This is an ‘all-in’ moment for MIT, and we’re taking comprehensive steps to address our carbon footprint,” says Glen Shor, executive vice president and treasurer. “Reducing our emissions to zero will be challenging, but it’s the right aspiration.”

    “As an energy-intensive campus in an urban setting, our ability to achieve this goal will, in part, depend on the capacity of the local power grid to support the electrification of buildings and transportation, and how ‘green’ that grid electricity will become over time,” says Joe Higgins, MIT’s vice president for campus services and stewardship. “It will also require breakthrough technology improvements and new public policies to drive their adoption. Many of those tech breakthroughs are being developed by our own faculty, and our teams are planning scenarios in anticipation of their arrival.”

    Working toward an energy-efficient campus

    The on-campus reductions have come primarily from a major upgrade to MIT’s Central Utilities Plant, which provides electricity, heating, and cooling for about 80 percent of all Institute buildings. The upgraded plant, which uses advanced cogeneration technology, became fully operational at the end of 2021 and is meeting campus energy needs at greater efficiency and lower carbon intensity (on average 15 to 25 percent cleaner) compared to the regional electricity grid. Carbon reductions from the increased efficiency provided by the enhanced plant are projected to counter the added greenhouse gas emissions caused by recently completed and planned construction and operation of new buildings on campus, especially energy-intensive laboratory buildings.

    Energy from the plant is delivered to campus buildings through MIT’s district energy system, a network of underground pipes and power lines providing electricity, heating, and air conditioning. With this adaptable system, MIT can introduce new technologies as they become available to increase the system’s energy efficiency. The system enables MIT to export power when the regional grid is under stress and to import electricity from the power grid as it becomes cleaner, likely over the next decade as the availability of offshore wind and renewable resources increases. “At the same time, we are reviewing additional technology options such as industrial-scale heat pumps, thermal batteries, geothermal exchange, microreactors, bio-based fuels, and green hydrogen produced from renewable energy,” Higgins says.

    Along with upgrades to the plant, MIT is gradually converting existing steam-based heating systems into more efficient hot-water systems. This long-term project to lower campus emissions requires replacing the vast network of existing steam pipes and infrastructure, and will be phased in as systems need to be replaced. Currently MIT has four buildings that are on a hot-water system, with five more buildings transitioning to hot water by the fall of 2022.  

    Minimizing emissions by implementing meaningful building efficiency standards has been an ongoing strategy in MIT’s climate mitigation efforts. In 2016, MIT made a commitment that all new campus construction and major renovation projects must earn at least Leadership in Energy and Environmental Design (LEED) Gold certification. To date, 24 spaces and buildings at MIT have earned a LEED designation, a performance-based rating system of a building’s environmental attributes associated with its design, construction, operations, and management.

    Current efficiency efforts focus on reducing energy in the 20 buildings that account for more than 50 percent of MIT’s energy usage. One such project under construction aims to improve energy efficiency in Building 46, which houses the Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory and is the biggest energy user on the campus because of its large size and high concentration of lab spaces. Interventions include optimizing ventilation systems that will significantly reduce energy use while improving occupant comfort, and working with labs to implement programs such as fume hood hibernation and equipment adjustments. For example, raising ultralow freezer set points by 10 degrees can reduce their energy consumption by as much as 40 percent. Together, these measures are projected to yield a 35 percent reduction in emissions for Building 46, which would contribute to reducing campus-level emissions by 2 percent.

    Over the past decade, in addition to whole building intervention programs, the campus has taken targeted measures in over 100 campus buildings to add building insulation, replace old, inefficient windows, transition to energy-efficient lighting and mechanical systems, optimize lab ventilation systems, and install solar panels on solar-ready rooftops on campus — and will increase the capacity of renewable energy installations on campus by a minimum of 400 percent by 2026. These smaller scale contributions to overall emissions reductions are essential steps in a comprehensive campus effort.

    Electrification of buildings and vehicles

    With an eye to designing for “the next energy era,” says Higgins, MIT is looking to large-scale electrification of its buildings and district energy systems to reduce building use-associated emissions. Currently under renovation, the Metropolitan Storage Warehouse — which will house the MIT School of Architecture and Planning (SA+P) and the newly established MIT Morningside Academy for Design — will be the first building on campus to undergo this transformation by using electric heat pumps as its main heating and supplemental cooling source. The project team, consisting of campus engineering and construction teams as well as the designers, is working with SA+P faculty to design this innovative electrification project. The solution will move excess heat from the district energy infrastructure and nearby facilities to supply the heat pump system, creating a solution that uses less energy — resulting in fewer carbon emissions. 

    Next to building energy use, emissions from on-campus vehicles are a key target for reduction; one of the goals in the “Fast Forward” plan is the electrification of on-campus vehicles. This includes the expansion of electric vehicle charging stations, and work has begun on the promised 200 percent expansion of the number of stations on campus, from 120 to 360. Sites are being evaluated to make sure that all members of the MIT community have easy access to these facilities.

    The electrification also includes working toward replacing existing MIT-owned vehicles, from shuttle buses and vans to pickup trucks and passenger cars, as well as grounds maintenance equipment. Shu Yang Zhang, a junior in the Department of Materials Science and Engineering, is part of an Office of Sustainability student research team that carried out an evaluation of the options available for each type of vehicle and compared both their lifecycle costs and emissions.

    Zhang says the team examined “the specifics of the vehicles that we own, looking at key measures such as fuel economy and cargo capacity,” and determined what alternatives exist in each category. The team carried out a study of the costs for replacing existing vehicles with EVs on the market now, versus buying new gas vehicles or leaving the existing ones in place. They produced a set of specific recommendations about fleet vehicle replacement and charging infrastructure installation on campus that supports both commuters and an MIT EV fleet in the future. According to their estimates, Zhang says, “the costs should be not drastically different” in the long run for the new electric vehicles.

    Strength in numbers

    While a panoply of measures has contributed to the successful offsetting of emissions so far, the biggest single contributor was MIT’s creation of an innovative, collaborative power purchase agreement (PPA) that enabled the construction of a large solar farm in North Carolina, which in turn contributed to the early retirement of a large coal-fired power plant in that region. MIT is committed to buying 73 percent of the power generated by the new facility, which is equivalent to approximately 40 percent of the Institute’s electricity use.

    That PPA, which was a collaboration between three institutions, provided a template that has already been emulated by other institutions, in many cases enabling smaller organizations to take part in such a plan and achieve greater offsets of their carbon emissions than might have been possible acting on their own. Now, MIT is actively pursuing new, larger variations on that plan, which may include a wider variety of organizational participants, perhaps including local governments as well as institutions and nonprofits. The hope is that, as was the case with the original PPA, such collaborations could provide a model that other institutions and organizations may adopt as well.

    Strategic portfolio agreements like the PPA will help achieve net zero emissions on campus while accelerating the decarbonization of regional electricity grids — a transformation critical to achieving net zero emissions, alongside all the work that continues to reduce the direct emissions from the campus itself.

    “PPAs play an important role in MIT’s net zero strategy and have an immediate and significant impact in decarbonization of regional power grids by enabling renewable energy projects,” says Paul L. Joskow, the Elizabeth and James Killian Professor of Economics. “Many well-known U.S. companies and organizations that are seeking to enable and purchase CO2-free electricity have turned to long-term PPAs selected through a competitive procurement process to help to meet their voluntary internal decarbonization commitments. While there are still challenges regarding organizational procurements — including proper carbon emissions mitigation accounting, optimal contract design, and efficient integration into wholesale electricity markets — we are optimistic that MIT’s efforts and partnerships will contribute to resolving some of these issues.”

    Addressing indirect sources of emissions

    MIT’s examination of emissions is not limited to the campus itself but also the indirect sources associated with the Institute’s operations, research, and education. Of these indirect emissions, the three major ones are business travel, purchased goods and services, and construction of buildings, which are collectively larger than the total direct emissions from campus.

    The strategic sourcing team in the Office of the Vice President for Finance has been working to develop opportunities and guidelines for making it easier to purchase sustainable products, for everything from office paper to electronics to lab equipment. Jeremy Gregory, executive director of MIT’s Climate and Sustainability Consortium, notes that MIT’s characteristic independent spirit resists placing limits on what products researchers can buy, but, he says, “we have opportunities to centralize some of our efforts and empower our community to choose low-impact alternatives when making procurement decisions.”

    The path forward

    The process of identifying and implementing MIT’s carbon reductions will be supported, in part, by the Carbon Footprint Working Group, which was launched by the Climate Nucleus, a new body MIT created to manage the implementation of the “Fast Forward” climate plan. The nucleus includes a broad representation from MIT’s departments, labs, and centers that are working on climate change issues. “We’ve created this internal structure in an effort to integrate operational expertise with faculty and student research innovations,” says Director of Sustainability Julie Newman.

    Whatever measures end up being adopted to reduce energy and associated emissions, their results will be made available continuously to members of the MIT community in real-time, through a campus data gateway, Newman says — a degree of transparency that is exceptional in higher education. “If you’re interested in supporting all these efforts and following this,” she says, “you can track the progress via Energize MIT,” a set of online visualizations that display various measures of MIT’s energy usage and greenhouse gas emissions over time. More