More stories

  • in

    3 Questions: Bridging anthropology and engineering for clean energy in Mongolia

    In 2021, Michael Short, an associate professor of nuclear science and engineering, approached professor of anthropology Manduhai Buyandelger with an unusual pitch: collaborating on a project to prototype a molten salt heat bank in Mongolia, Buyandelger’s country of origin and place of her scholarship. It was also an invitation to forge a novel partnership between two disciplines that rarely overlap. Developed in collaboration with the National University of Mongolia (NUM), the device was built to provide heat for people in colder climates, and in places where clean energy is a challenge. Buyandelger and Short teamed up to launch Anthro-Engineering Decarbonization at the Million-Person Scale, an initiative intended to advance the heat bank idea in Mongolia, and ultimately demonstrate its potential as a scalable clean heat source in comparably challenging sites around the world. This project received funding from the inaugural MIT Climate and Sustainability Consortium Seed Awards program. In order to fund various components of the project, especially student involvement and additional staff, the project also received support from the MIT Global Seed Fund, New Engineering Education Transformation (NEET), Experiential Learning Office, Vice Provost for International Activities, and d’Arbeloff Fund for Excellence in Education.As part of this initiative, the partners developed a special topic course in anthropology to teach MIT undergraduates about Mongolia’s unique energy and climate challenges, as well as the historical, social, and economic context in which the heat bank would ideally find a place. The class 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale) prepares MIT students for a January Independent Activities Period (IAP) trip to the Mongolian capital of Ulaanbaatar, where they embed with Mongolian families, conduct research, and collaborate with their peers. Mongolian students also engaged in the project. Anthropology research scientist and lecturer Lauren Bonilla, who has spent the past two decades working in Mongolia, joined to co-teach the class and lead the IAP trips to Mongolia. With the project now in its third year and yielding some promising solutions on the ground, Buyandelger and Bonilla reflect on the challenges for anthropologists of advancing a clean energy technology in a developing nation with a unique history, politics, and culture. Q: Your roles in the molten salt heat bank project mark departures from your typical academic routine. How did you first approach this venture?Buyandelger: As an anthropologist of contemporary religion, politics, and gender in Mongolia, I have had little contact with the hard sciences or building or prototyping technology. What I do best is listening to people and working with narratives. When I first learned about this device for off-the-grid heating, a host of issues came straight to mind right away that are based on socioeconomic and cultural context of the place. The salt brick, which is encased in steel, must be heated to 400 degrees Celsius in a central facility, then driven to people’s homes. Transportation is difficult in Ulaanbaatar, and I worried about road safety when driving the salt brick to gers [traditional Mongolian homes] where many residents live. The device seemed a bit utopian to me, but I realized that this was an amazing educational opportunity: We could use the heat bank as part of an ethnographic project, so students could learn about the everyday lives of people — crucially, in the dead of winter — and how they might respond to this new energy technology in the neighborhoods of Ulaanbaatar.Bonilla: When I first went to Mongolia in the early 2000s as an undergraduate student, the impacts of climate change were already being felt. There had been a massive migration to the capital after a series of terrible weather events that devastated the rural economy. Coal mining had emerged as a vital part of the economy, and I was interested in how people regarded this industry that both provided jobs and damaged the air they breathed. I am trained as a human geographer, which involves seeing how things happening in a local place correspond to things happening at a global scale. Thinking about climate or sustainability from this perspective means making linkages between social life and environmental life. In Mongolia, people associated coal with national progress. Based on historical experience, they had low expectations for interventions brought by outsiders to improve their lives. So my first take on the molten salt project was that this was no silver bullet solution. At the same time, I wanted to see how we could make this a great project-based learning experience for students, getting them to think about the kind of research necessary to see if some version of the molten salt would work.Q: After two years, what lessons have you and the students drawn from both the class and the Ulaanbaatar field trips?Buyandelger: We wanted to make sure MIT students would not go to Mongolia and act like consultants. We taught them anthropological methods so they could understand the experiences of real people and think about how to bring people and new technologies together. The students, from engineering and anthropological and social science backgrounds, became critical thinkers who could analyze how people live in ger districts. When they stay with families in Ulaanbaatar in January, they not only experience the cold and the pollution, but they observe what people do for work, how parents care for their children, how they cook, sleep, and get from one place to another. This enables them to better imagine and test out how these people might utilize the molten salt heat bank in their homes.Bonilla: In class, students learn that interventions like this often fail because the implementation process doesn’t work, or the technology doesn’t meet people’s real needs. This is where anthropology is so important, because it opens up the wider landscape in which you’re intervening. We had really difficult conversations about the professional socialization of engineers and social scientists. Engineers love to work within boxes, but don’t necessarily appreciate the context in which their invention will serve.As a group, we discussed the provocative notion that engineers construct and anthropologists deconstruct. This makes it seem as if engineers are creators, and anthropologists are brought in as add-ons to consult and critique engineers’ creations. Our group conversation concluded that a project such as ours benefits from an iterative back-and-forth between the techno-scientific and humanistic disciplines.Q: So where does the molten salt brick project stand?Bonilla: Our research in Mongolia helped us produce a prototype that can work: Our partners at NUM are developing a hybrid stove that incorporates the molten salt brick. Supervised by instructor Nathan Melenbrink of MIT’s NEET program, our engineering students have been involved in this prototyping as well.The concept is for a family to heat it up using a coal fire once a day and it warms their home overnight. Based on our anthropological research, we believe that this stove would work better than the device as originally conceived. It won’t eliminate coal use in residences, but it will reduce emissions enough to have a meaningful impact on ger districts in Ulaanbaatar. The challenge now is getting funding to NUM so they can test different salt combinations and stove models and employ local blacksmiths to work on the design.This integrated stove/heat bank will not be the ultimate solution to the heating and pollution crisis in Mongolia. But it will be something that can inspire even more ideas. We feel with this project we are planting all kinds of seeds that will germinate in ways we cannot anticipate. It has sparked new relationships between MIT and Mongolian students, and catalyzed engineers to integrate a more humanistic, anthropological perspective in their work.Buyandelger: Our work illustrates the importance of anthropology in responding to the unpredictable and diverse impacts of climate change. Without our ethnographic research — based on participant observation and interviews, led by Dr. Bonilla, — it would have been impossible to see how the prototyping and modifications could be done, and where the molten salt brick could work and what shape it needed to take. This project demonstrates how indispensable anthropology is in moving engineering out of labs and companies and directly into communities.Bonilla: This is where the real solutions for climate change are going to come from. Even though we need solutions quickly, it will also take time for new technologies like molten salt bricks to take root and grow. We don’t know where the outcomes of these experiments will take us. But there’s so much that’s emerging from this project that I feel very hopeful about. More

  • in

    Aligning economic and regulatory frameworks for today’s nuclear reactor technology

    Liam Hines ’22 didn’t move to Sarasota, Florida, until high school, but he’s a Floridian through and through. He jokes that he’s even got a floral shirt, what he calls a “Florida formal,” for every occasion.Which is why it broke his heart when toxic red algae used to devastate the Sunshine State’s coastline, including at his favorite beach, Caspersen. The outbreak made headline news during his high school years, with the blooms destroying marine wildlife and adversely impacting the state’s tourism-driven economy.In Florida, Hines says, environmental awareness is pretty high because everyday citizens are being directly impacted by climate change. After all, it’s hard not to worry when beautiful white sand beaches are covered in dead fish. Ongoing concerns about the climate cemented Hines’ resolve to pick a career that would have a strong “positive environmental impact.” He chose nuclear, as he saw it as “a green, low-carbon-emissions energy source with a pretty straightforward path to implementation.”

    Liam Hines: Ensuring that nuclear policy keeps up with nuclear technology.

    Undergraduate studies at MITKnowing he wanted a career in the sciences, Hines applied and got accepted to MIT for undergraduate studies in fall 2018. An orientation program hosted by the Department of Nuclear Science and Engineering (NSE) sold him on the idea of pursuing the field. “The department is just a really tight-knit community, and that really appealed to me,” Hines says.During his undergraduate years, Hines realized he needed a job to pay part of his bills. “Instead of answering calls at the dorm front desk or working in the dining halls, I decided I’m going to become a licensed nuclear operator onsite,” he says. “Reactor operations offer so much hands-on experience with real nuclear systems. It doesn’t hurt that it pays better.” Becoming a licensed nuclear reactor operator is hard work, however, involving a year-long training process studying maintenance, operations, and equipment oversight. A bonus: The job, supervising the MIT Nuclear Reactor Laboratory, taught him the fundamentals of nuclear physics and engineering.Always interested in research, Hines got an early start by exploring the regulatory challenges of advanced fusion systems. There have been questions related to licensing requirements and the safety consequences of the onsite radionuclide inventory. Hines’ undergraduate research work involved studying precedent for such fusion facilities and comparing them to experimental facilities such as the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory.Doctoral focus on legal and regulatory frameworksWhen scientists want to make technologies as safe as possible, they have to do two things in concert: First they evaluate the safety of the technology, and then make sure legal and regulatory structures take into account the evolution of these advanced technologies. Hines is taking such a two-pronged approach to his doctoral work on nuclear fission systems.Under the guidance of Professor Koroush Shirvan, Hines is conducting systems modeling of various reactor cores that include graphite, and simulating operations under long time spans. He then studies radionuclide transport from low-level waste facilities — the consequences of offsite storage after 50 or 100 or even 10,000 years of storage. The work has to make sure to hit safety and engineering margins, but also tread a fine line. “You want to make sure you’re not over-engineering systems and adding undue cost, but also making sure to assess the unique hazards of these advanced technologies as accurately as possible,” Hines says.On a parallel track, under Professor Haruko Wainwright’s advisement, Hines is applying the current science on radionuclide geochemistry to track radionuclide wastes and map their profile for hazards. One of the challenges fission reactors face is that existing low-level waste regulations were fine-tuned to old reactors. Regulations have not kept up: “Now that we have new technologies with new wastes, some of the hazards of the new waste are completely missed by existing standards,” Hines says. He is working to seal these gaps.A philosophy-driven outlookHines is grateful for the dynamic learning environment at NSE. “A lot of the faculty have that go-getter attitude,” he points out, impressed by the entrepreneurial spirit on campus. “It’s made me confident to really tackle the things that I care about.”An ethics class as an undergraduate made Hines realize there were discussions in class he could apply to the nuclear realm, especially when it came to teasing apart the implications of the technology — where the devices would be built and who they would serve. He eventually went on to double-major in NSE and philosophy.The framework style of reading and reasoning involved in studying philosophy is particularly relevant in his current line of work, where he has to extract key points regarding nuclear regulatory issues. Much like philosophy discussions today that involve going over material that has been discussed for centuries and framing them through new perspectives, nuclear regulatory issues too need to take the long view.“In philosophy, we have to insert ourselves into very large conversations. Similarly, in nuclear engineering, you have to understand how to take apart the discourse that’s most relevant to your research and frame it,” Hines says. This technique is especially necessary because most of the time the nuclear regulatory issues might seem like wading in the weeds of nitty-gritty technical matters, but they can have a huge impact on the public and public perception, Hines adds.As for Florida, Hines visits every chance he can get. The red tide still surfaces but not as consistently as it once did. And since he started his job as a nuclear operator in his undergraduate days, Hines has progressed to senior reactor operator. This time around he gets to sign off on the checklists. “It’s much like when I was shift lead at Dunkin’ Donuts in high school,” Hines says, “everyone is kind of doing the same thing, but you get to be in charge for the afternoon.” More

  • in

    Study of disordered rock salts leads to battery breakthrough

    For the past decade, disordered rock salt has been studied as a potential breakthrough cathode material for use in lithium-ion batteries and a key to creating low-cost, high-energy storage for everything from cell phones to electric vehicles to renewable energy storage.A new MIT study is making sure the material fulfills that promise.Led by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering, a team of researchers describe a new class of partially disordered rock salt cathode, integrated with polyanions — dubbed disordered rock salt-polyanionic spinel, or DRXPS — that delivers high energy density at high voltages with significantly improved cycling stability.“There is typically a trade-off in cathode materials between energy density and cycling stability … and with this work we aim to push the envelope by designing new cathode chemistries,” says Yimeng Huang, a postdoc in the Department of Nuclear Science and Engineering and first author of a paper describing the work published today in Nature Energy. “(This) material family has high energy density and good cycling stability because it integrates two major types of cathode materials, rock salt and polyanionic olivine, so it has the benefits of both.”Importantly, Li adds, the new material family is primarily composed of manganese, an earth-abundant element that is significantly less expensive than elements like nickel and cobalt, which are typically used in cathodes today.“Manganese is at least five times less expensive than nickel, and about 30 times less expensive than cobalt,” Li says. “Manganese is also the one of the keys to achieving higher energy densities, so having that material be much more earth-abundant is a tremendous advantage.”A possible path to renewable energy infrastructureThat advantage will be particularly critical, Li and his co-authors wrote, as the world looks to build the renewable energy infrastructure needed for a low- or no-carbon future.Batteries are a particularly important part of that picture, not only for their potential to decarbonize transportation with electric cars, buses, and trucks, but also because they will be essential to addressing the intermittency issues of wind and solar power by storing excess energy, then feeding it back into the grid at night or on calm days, when renewable generation drops.Given the high cost and relative rarity of materials like cobalt and nickel, they wrote, efforts to rapidly scale up electric storage capacity would likely lead to extreme cost spikes and potentially significant materials shortages.“If we want to have true electrification of energy generation, transportation, and more, we need earth-abundant batteries to store intermittent photovoltaic and wind power,” Li says. “I think this is one of the steps toward that dream.”That sentiment was shared by Gerbrand Ceder, the Samsung Distinguished Chair in Nanoscience and Nanotechnology Research and a professor of materials science and engineering at the University of California at Berkeley.“Lithium-ion batteries are a critical part of the clean energy transition,” Ceder says. “Their continued growth and price decrease depends on the development of inexpensive, high-performance cathode materials made from earth-abundant materials, as presented in this work.”Overcoming obstacles in existing materialsThe new study addresses one of the major challenges facing disordered rock salt cathodes — oxygen mobility.While the materials have long been recognized for offering very high capacity — as much as 350 milliampere-hour per gram — as compared to traditional cathode materials, which typically have capacities of between 190 and 200 milliampere-hour per gram, it is not very stable.The high capacity is contributed partially by oxygen redox, which is activated when the cathode is charged to high voltages. But when that happens, oxygen becomes mobile, leading to reactions with the electrolyte and degradation of the material, eventually leaving it effectively useless after prolonged cycling.To overcome those challenges, Huang added another element — phosphorus — that essentially acts like a glue, holding the oxygen in place to mitigate degradation.“The main innovation here, and the theory behind the design, is that Yimeng added just the right amount of phosphorus, formed so-called polyanions with its neighboring oxygen atoms, into a cation-deficient rock salt structure that can pin them down,” Li explains. “That allows us to basically stop the percolating oxygen transport due to strong covalent bonding between phosphorus and oxygen … meaning we can both utilize the oxygen-contributed capacity, but also have good stability as well.”That ability to charge batteries to higher voltages, Li says, is crucial because it allows for simpler systems to manage the energy they store.“You can say the quality of the energy is higher,” he says. “The higher the voltage per cell, then the less you need to connect them in series in the battery pack, and the simpler the battery management system.”Pointing the way to future studiesWhile the cathode material described in the study could have a transformative impact on lithium-ion battery technology, there are still several avenues for study going forward.Among the areas for future study, Huang says, are efforts to explore new ways to fabricate the material, particularly for morphology and scalability considerations.“Right now, we are using high-energy ball milling for mechanochemical synthesis, and … the resulting morphology is non-uniform and has small average particle size (about 150 nanometers). This method is also not quite scalable,” he says. “We are trying to achieve a more uniform morphology with larger particle sizes using some alternate synthesis methods, which would allow us to increase the volumetric energy density of the material and may allow us to explore some coating methods … which could further improve the battery performance. The future methods, of course, should be industrially scalable.”In addition, he says, the disordered rock salt material by itself is not a particularly good conductor, so significant amounts of carbon — as much as 20 weight percent of the cathode paste — were added to boost its conductivity. If the team can reduce the carbon content in the electrode without sacrificing performance, there will be higher active material content in a battery, leading to an increased practical energy density.“In this paper, we just used Super P, a typical conductive carbon consisting of nanospheres, but they’re not very efficient,” Huang says. “We are now exploring using carbon nanotubes, which could reduce the carbon content to just 1 or 2 weight percent, which could allow us to dramatically increase the amount of the active cathode material.”Aside from decreasing carbon content, making thick electrodes, he adds, is yet another way to increase the practical energy density of the battery. This is another area of research that the team is working on.“This is only the beginning of DRXPS research, since we only explored a few chemistries within its vast compositional space,” he continues. “We can play around with different ratios of lithium, manganese, phosphorus, and oxygen, and with various combinations of other polyanion-forming elements such as boron, silicon, and sulfur.”With optimized compositions, more scalable synthesis methods, better morphology that allows for uniform coatings, lower carbon content, and thicker electrodes, he says, the DRXPS cathode family is very promising in applications of electric vehicles and grid storage, and possibly even in consumer electronics, where the volumetric energy density is very important.This work was supported with funding from the Honda Research Institute USA Inc. and the Molecular Foundry at Lawrence Berkeley National Laboratory, and used resources of the National Synchrotron Light Source II at Brookhaven National Laboratory and the Advanced Photon Source at Argonne National Laboratory.  More

  • in

    MIT engineers’ new theory could improve the design and operation of wind farms

    The blades of propellers and wind turbines are designed based on aerodynamics principles that were first described mathematically more than a century ago. But engineers have long realized that these formulas don’t work in every situation. To compensate, they have added ad hoc “correction factors” based on empirical observations.Now, for the first time, engineers at MIT have developed a comprehensive, physics-based model that accurately represents the airflow around rotors even under extreme conditions, such as when the blades are operating at high forces and speeds, or are angled in certain directions. The model could improve the way rotors themselves are designed, but also the way wind farms are laid out and operated. The new findings are described today in the journal Nature Communications, in an open-access paper by MIT postdoc Jaime Liew, doctoral student Kirby Heck, and Michael Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering.“We’ve developed a new theory for the aerodynamics of rotors,” Howland says. This theory can be used to determine the forces, flow velocities, and power of a rotor, whether that rotor is extracting energy from the airflow, as in a wind turbine, or applying energy to the flow, as in a ship or airplane propeller. “The theory works in both directions,” he says.Because the new understanding is a fundamental mathematical model, some of its implications could potentially be applied right away. For example, operators of wind farms must constantly adjust a variety of parameters, including the orientation of each turbine as well as its rotation speed and the angle of its blades, in order to maximize power output while maintaining safety margins. The new model can provide a simple, speedy way of optimizing those factors in real time.“This is what we’re so excited about, is that it has immediate and direct potential for impact across the value chain of wind power,” Howland says.Modeling the momentumKnown as momentum theory, the previous model of how rotors interact with their fluid environment — air, water, or otherwise — was initially developed late in the 19th century. With this theory, engineers can start with a given rotor design and configuration, and determine the maximum amount of power that can be derived from that rotor — or, conversely, if it’s a propeller, how much power is needed to generate a given amount of propulsive force.Momentum theory equations “are the first thing you would read about in a wind energy textbook, and are the first thing that I talk about in my classes when I teach about wind power,” Howland says. From that theory, physicist Albert Betz calculated in 1920 the maximum amount of energy that could theoretically be extracted from wind. Known as the Betz limit, this amount is 59.3 percent of the kinetic energy of the incoming wind.But just a few years later, others found that the momentum theory broke down “in a pretty dramatic way” at higher forces that correspond to faster blade rotation speeds or different blade angles, Howland says. It fails to predict not only the amount, but even the direction of changes in thrust force at higher rotation speeds or different blade angles: Whereas the theory said the force should start going down above a certain rotation speed or blade angle, experiments show the opposite — that the force continues to increase. “So, it’s not just quantitatively wrong, it’s qualitatively wrong,” Howland says.The theory also breaks down when there is any misalignment between the rotor and the airflow, which Howland says is “ubiquitous” on wind farms, where turbines are constantly adjusting to changes in wind directions. In fact, in an earlier paper in 2022, Howland and his team found that deliberately misaligning some turbines slightly relative to the incoming airflow within a wind farm significantly improves the overall power output of the wind farm by reducing wake disturbances to the downstream turbines.In the past, when designing the profile of rotor blades, the layout of wind turbines in a farm, or the day-to-day operation of wind turbines, engineers have relied on ad hoc adjustments added to the original mathematical formulas, based on some wind tunnel tests and experience with operating wind farms, but with no theoretical underpinnings.Instead, to arrive at the new model, the team analyzed the interaction of airflow and turbines using detailed computational modeling of the aerodynamics. They found that, for example, the original model had assumed that a drop in air pressure immediately behind the rotor would rapidly return to normal ambient pressure just a short way downstream. But it turns out, Howland says, that as the thrust force keeps increasing, “that assumption is increasingly inaccurate.”And the inaccuracy occurs very close to the point of the Betz limit that theoretically predicts the maximum performance of a turbine — and therefore is just the desired operating regime for the turbines. “So, we have Betz’s prediction of where we should operate turbines, and within 10 percent of that operational set point that we think maximizes power, the theory completely deteriorates and doesn’t work,” Howland says.Through their modeling, the researchers also found a way to compensate for the original formula’s reliance on a one-dimensional modeling that assumed the rotor was always precisely aligned with the airflow. To do so, they used fundamental equations that were developed to predict the lift of three-dimensional wings for aerospace applications.The researchers derived their new model, which they call a unified momentum model, based on theoretical analysis, and then validated it using computational fluid dynamics modeling. In followup work not yet published, they are doing further validation using wind tunnel and field tests.Fundamental understandingOne interesting outcome of the new formula is that it changes the calculation of the Betz limit, showing that it’s possible to extract a bit more power than the original formula predicted. Although it’s not a significant change — on the order of a few percent — “it’s interesting that now we have a new theory, and the Betz limit that’s been the rule of thumb for a hundred years is actually modified because of the new theory,” Howland says. “And that’s immediately useful.” The new model shows how to maximize power from turbines that are misaligned with the airflow, which the Betz limit cannot account for.The aspects related to controlling both individual turbines and arrays of turbines can be implemented without requiring any modifications to existing hardware in place within wind farms. In fact, this has already happened, based on earlier work from Howland and his collaborators two years ago that dealt with the wake interactions between turbines in a wind farm, and was based on the existing, empirically based formulas.“This breakthrough is a natural extension of our previous work on optimizing utility-scale wind farms,” he says, because in doing that analysis, they saw the shortcomings of the existing methods for analyzing the forces at work and predicting power produced by wind turbines. “Existing modeling using empiricism just wasn’t getting the job done,” he says.In a wind farm, individual turbines will sap some of the energy available to neighboring turbines, because of wake effects. Accurate wake modeling is important both for designing the layout of turbines in a wind farm, and also for the operation of that farm, determining moment to moment how to set the angles and speeds of each turbine in the array.Until now, Howland says, even the operators of wind farms, the manufacturers, and the designers of the turbine blades had no way to predict how much the power output of a turbine would be affected by a given change such as its angle to the wind without using empirical corrections. “That’s because there was no theory for it. So, that’s what we worked on here. Our theory can directly tell you, without any empirical corrections, for the first time, how you should actually operate a wind turbine to maximize its power,” he says.Because the fluid flow regimes are similar, the model also applies to propellers, whether for aircraft or ships, and also for hydrokinetic turbines such as tidal or river turbines. Although they didn’t focus on that aspect in this research, “it’s in the theoretical modeling naturally,” he says.The new theory exists in the form of a set of mathematical formulas that a user could incorporate in their own software, or as an open-source software package that can be freely downloaded from GitHub. “It’s an engineering model developed for fast-running tools for rapid prototyping and control and optimization,” Howland says. “The goal of our modeling is to position the field of wind energy research to move more aggressively in the development of the wind capacity and reliability necessary to respond to climate change.”The work was supported by the National Science Foundation and Siemens Gamesa Renewable Energy. More

  • in

    More durable metals for fusion power reactors

    For many decades, nuclear fusion power has been viewed as the ultimate energy source. A fusion power plant could generate carbon-free energy at a scale needed to address climate change. And it could be fueled by deuterium recovered from an essentially endless source — seawater.Decades of work and billions of dollars in research funding have yielded many advances, but challenges remain. To Ju Li, the TEPCO Professor in Nuclear Science and Engineering and a professor of materials science and engineering at MIT, there are still two big challenges. The first is to build a fusion power plant that generates more energy than is put into it; in other words, it produces a net output of power. Researchers worldwide are making progress toward meeting that goal.The second challenge that Li cites sounds straightforward: “How do we get the heat out?” But understanding the problem and finding a solution are both far from obvious.Research in the MIT Energy Initiative (MITEI) includes development and testing of advanced materials that may help address those challenges, as well as many other challenges of the energy transition. MITEI has multiple corporate members that have been supporting MIT’s efforts to advance technologies required to harness fusion energy.The problem: An abundance of helium, a destructive forceKey to a fusion reactor is a superheated plasma — an ionized gas — that’s reacting inside a vacuum vessel. As light atoms in the plasma combine to form heavier ones, they release fast neutrons with high kinetic energy that shoot through the surrounding vacuum vessel into a coolant. During this process, those fast neutrons gradually lose their energy by causing radiation damage and generating heat. The heat that’s transferred to the coolant is eventually used to raise steam that drives an electricity-generating turbine.The problem is finding a material for the vacuum vessel that remains strong enough to keep the reacting plasma and the coolant apart, while allowing the fast neutrons to pass through to the coolant. If one considers only the damage due to neutrons knocking atoms out of position in the metal structure, the vacuum vessel should last a full decade. However, depending on what materials are used in the fabrication of the vacuum vessel, some projections indicate that the vacuum vessel will last only six to 12 months. Why is that? Today’s nuclear fission reactors also generate neutrons, and those reactors last far longer than a year.The difference is that fusion neutrons possess much higher kinetic energy than fission neutrons do, and as they penetrate the vacuum vessel walls, some of them interact with the nuclei of atoms in the structural material, giving off particles that rapidly turn into helium atoms. The result is hundreds of times more helium atoms than are present in a fission reactor. Those helium atoms look for somewhere to land — a place with low “embedding energy,” a measure that indicates how much energy it takes for a helium atom to be absorbed. As Li explains, “The helium atoms like to go to places with low helium embedding energy.” And in the metals used in fusion vacuum vessels, there are places with relatively low helium embedding energy — namely, naturally occurring openings called grain boundaries.Metals are made up of individual grains inside which atoms are lined up in an orderly fashion. Where the grains come together there are gaps where the atoms don’t line up as well. That open space has relatively low helium embedding energy, so the helium atoms congregate there. Worse still, helium atoms have a repellent interaction with other atoms, so the helium atoms basically push open the grain boundary. Over time, the opening grows into a continuous crack, and the vacuum vessel breaks.That congregation of helium atoms explains why the structure fails much sooner than expected based just on the number of helium atoms that are present. Li offers an analogy to illustrate. “Babylon is a city of a million people. But the claim is that 100 bad persons can destroy the whole city — if all those bad persons work at the city hall.” The solution? Give those bad persons other, more attractive places to go, ideally in their own villages.To Li, the problem and possible solution are the same in a fusion reactor. If many helium atoms go to the grain boundary at once, they can destroy the metal wall. The solution? Add a small amount of a material that has a helium embedding energy even lower than that of the grain boundary. And over the past two years, Li and his team have demonstrated — both theoretically and experimentally — that their diversionary tactic works. By adding nanoscale particles of a carefully selected second material to the metal wall, they’ve found they can keep the helium atoms that form from congregating in the structurally vulnerable grain boundaries in the metal.Looking for helium-absorbing compoundsTo test their idea, So Yeon Kim ScD ’23 of the Department of Materials Science and Engineering and Haowei Xu PhD ’23 of the Department of Nuclear Science and Engineering acquired a sample composed of two materials, or “phases,” one with a lower helium embedding energy than the other. They and their collaborators then implanted helium ions into the sample at a temperature similar to that in a fusion reactor and watched as bubbles of helium formed. Transmission electron microscope images confirmed that the helium bubbles occurred predominantly in the phase with the lower helium embedding energy. As Li notes, “All the damage is in that phase — evidence that it protected the phase with the higher embedding energy.”Having confirmed their approach, the researchers were ready to search for helium-absorbing compounds that would work well with iron, which is often the principal metal in vacuum vessel walls. “But calculating helium embedding energy for all sorts of different materials would be computationally demanding and expensive,” says Kim. “We wanted to find a metric that is easy to compute and a reliable indicator of helium embedding energy.”They found such a metric: the “atomic-scale free volume,” which is basically the maximum size of the internal vacant space available for helium atoms to potentially settle. “This is just the radius of the largest sphere that can fit into a given crystal structure,” explains Kim. “It is a simple calculation.” Examination of a series of possible helium-absorbing ceramic materials confirmed that atomic free volume correlates well with helium embedding energy. Moreover, many of the ceramics they investigated have higher free volume, thus lower embedding energy, than the grain boundaries do.However, in order to identify options for the nuclear fusion application, the screening needed to include some other factors. For example, in addition to the atomic free volume, a good second phase must be mechanically robust (able to sustain a load); it must not get very radioactive with neutron exposure; and it must be compatible — but not too cozy — with the surrounding metal, so it disperses well but does not dissolve into the metal. “We want to disperse the ceramic phase uniformly in the bulk metal to ensure that all grain boundary regions are close to the dispersed ceramic phase so it can provide protection to those regions,” says Li. “The two phases need to coexist, so the ceramic won’t either clump together or totally dissolve in the iron.”Using their analytical tools, Kim and Xu examined about 50,000 compounds and identified 750 potential candidates. Of those, a good option for inclusion in a vacuum vessel wall made mainly of iron was iron silicate.Experimental testingThe researchers were ready to examine samples in the lab. To make the composite material for proof-of-concept demonstrations, Kim and collaborators dispersed nanoscale particles of iron silicate into iron and implanted helium into that composite material. She took X-ray diffraction (XRD) images before and after implanting the helium and also computed the XRD patterns. The ratio between the implanted helium and the dispersed iron silicate was carefully controlled to allow a direct comparison between the experimental and computed XRD patterns. The measured XRD intensity changed with the helium implantation exactly as the calculations had predicted. “That agreement confirms that atomic helium is being stored within the bulk lattice of the iron silicate,” says Kim.To follow up, Kim directly counted the number of helium bubbles in the composite. In iron samples without the iron silicate added, grain boundaries were flanked by many helium bubbles. In contrast, in the iron samples with the iron silicate ceramic phase added, helium bubbles were spread throughout the material, with many fewer occurring along the grain boundaries. Thus, the iron silicate had provided sites with low helium-embedding energy that lured the helium atoms away from the grain boundaries, protecting those vulnerable openings and preventing cracks from opening up and causing the vacuum vessel to fail catastrophically.The researchers conclude that adding just 1 percent (by volume) of iron silicate to the iron walls of the vacuum vessel will cut the number of helium bubbles in half and also reduce their diameter by 20 percent — “and having a lot of small bubbles is OK if they’re not in the grain boundaries,” explains Li.Next stepsThus far, Li and his team have gone from computational studies of the problem and a possible solution to experimental demonstrations that confirm their approach. And they’re well on their way to commercial fabrication of components. “We’ve made powders that are compatible with existing commercial 3D printers and are preloaded with helium-absorbing ceramics,” says Li. The helium-absorbing nanoparticles are well dispersed and should provide sufficient helium uptake to protect the vulnerable grain boundaries in the structural metals of the vessel walls. While Li confirms that there’s more scientific and engineering work to be done, he, along with Alexander O’Brien PhD ’23 of the Department of Nuclear Science and Engineering and Kang Pyo So, a former postdoc in the same department, have already developed a startup company that’s ready to 3D print structural materials that can meet all the challenges faced by the vacuum vessel inside a fusion reactor.This research was supported by Eni S.p.A. through the MIT Energy Initiative. Additional support was provided by a Kwajeong Scholarship; the U.S. Department of Energy (DOE) Laboratory Directed Research and Development program at Idaho National Laboratory; U.S. DOE Lawrence Livermore National Laboratory; and Creative Materials Discovery Program through the National Research Foundation of Korea. More

  • in

    Going Dutch on climate

    When MIT senior Rudiba Laiba saw that stores in the Netherlands eschewed plastic bags to save the planet, her first thought was, “that doesn’t happen in Bangladesh.”Laiba is one of eight MIT students who traveled to the Netherlands in June as part of an MIT Energy Initiative (MITEI)-sponsored trip to experience first-hand the country’s approach to the energy transition. The Netherlands aims to be carbon neutral by 2050, making it one of the top 10 countries leading the charge on climate change, according to U.S. News and World Report.MITEI sponsored the week-long trip to allow undergraduate and graduate students to collaboratively explore clean energy efforts with researchers, corporate leaders, and nongovernmental organizations. The students heard about projects ranging from creating hydrogen pipelines in the North Sea to climate-proofing a fuel-guzzling, asphalt-dense neighborhood.Felipe Abreu from Kissimmee, Florida, a rising second-year student studying materials science and engineering, is working this summer on ways to melt and reuse metal scraps discarded in manufacturing processes. “When MITEI put out this notice about visiting the Netherlands, I wanted to see if there were more advanced approaches to renewable energy that I’d never been exposed to,” Abreu says.Laiba notes that her native Bangladesh has not yet achieved the Netherlands’ nearly universal buy-in to tackling climate change, even though this South Asian country, like the Netherlands, is particularly vulnerable to rising sea levels due to topography and high population density.Laiba, who spent part of her childhood in New York City and lived in Bangladesh from ages 8 to 18, calls Bangladesh “on the front lines of climate change.“Even if I didn’t want to care about climate change, I had to, because I would see the effects of it,” she says.Key playersThe MIT students conducted hands-on exercises on how to switch from traditional energy sources to zero-carbon technologies. “We talked a lot about infrastructure, particularly how to repurpose natural gas infrastructure for hydrogen,” says Antje Danielson, director of education at MITEI, who led the trip with Em Schule, MITEI research and programming assistant. “The students were challenged to grapple with real-world decision-making.”The northern section of the Netherlands is known as the “hydrogen valley” of Europe. At the University of Groningen and Hanze University School of Applied Sciences, also in Groningen, the students heard about how the region profiles itself as a world capital for the energy transition through its push toward a hydrogen-based economy and its state-of-the-art global climate models.Erick Liang, a rising junior from Boston’s Roslindale neighborhood pursuing a dual major in nuclear science and engineering and physics, was intrigued by a massive wind farm in the port city of Eemshaven, one of the group’s first stops in the north of the country. “It was impressive as an engineering challenge, because they must have figured out ways to cheaply and effectively manufacture all these wind turbines,” he says.They visited German energy company RWE, which is generating 15 percent of Eemshaven’s electricity from biomass, replacing coal.Laiba, who is majoring in molecular biology and electrical engineering and computer science with a minor in business management, was intrigued by a presentation on biofuels. “It piqued my interest to see if they would use biomass on a large scale” because of the challenges and unpredictability associated with it as a fuel source.In Paddepoel, the students toured the first of several neighborhoods that once lacked greenery and used fossil fuel-based heating systems and now aim to generate more energy than they consume.“The students got to see what the size of the district heating pipes would be, and how they go through people’s gardens into the houses. We talked about the physical impact on the neighborhood of installing these pipes, as well as the potential social and political implications connected to a really difficult transition like this,” Danielson says.Going greenGreen hydrogen promises to be a key player in the energy transition, and Netherlands officials say they have committed to the new infrastructure and business models needed to move ahead with hydrogen as a fuel source.The students explored how green hydrogen differs from fossil fuel-generated hydrogen. They saw how Dutch companies grappled with siting hydrogen production facilities and handling hydrogen as a gas, which, unlike natural gas, does not yet have a detectable artificial odor. The students heard from energy network operator Gasunie about the science and engineering behind repurposing existing natural gas pipelines for a hydrogen network in the North Sea, and were challenged to solve the puzzle of combining hydrogen production with offshore wind energy. In the port of Rotterdam, they saw how the startup Battolyser Systems — which is working with Delft University of Technology on an electrolysis device that splits water into hydrogen and oxygen and doubles as a battery — is transitioning from lab bench to market.Laiba was impressed by how much capital was going into high-risk ventures and startups, “not only because they’re trying to make something revolutionary, but also because society needs to accept and use” their products.Abreu says that at Battolyser Systems, “I saw people my age on the forefront of green hydrogen, trying to make a difference.”The students visited the Global Center on Adaptation’s carbon-neutral floating offices and learned how this international organization supports climate adaptation actions around the world and the practice of mitigation.Also in Rotterdam, international marine contractor Van Oord took students to view a ship that installs wind turbines and explained how their new technology reduces the sound shockwave impact of the installations on marine life.At the Port of Rotterdam, the students heard about the challenges faced by Europe’s largest port in terms of global shipping and choosing the fuels of the future. The speaker tasked the MIT students with coming up with a plan to transition the privately owned, owner-inhabited barges that ply the region’s inland waterways to a zero-carbon system.“The Port Authority uses this exercise to illustrate the enormous complexity faced by companies in the energy transition,” Danielson says. “The fact that our students performed really well on the spot shows that we are doing something right at MIT.”Defining a path forwardLiang, Abreu, and Laiba were struck by how the Netherlands has come together as a country over climate change. “In the U.S., a lot of people disagree with the concept of climate change as a whole,” Liang says. “But in the Netherlands, everyone is on the same page that this is an issue that we should be working toward. They’re capable of seeing a path forward and trying to take action whenever possible.”Liang, a member of the MIT Solar Electric Vehicle Team, is doing undergraduate research sponsored by MITEI this summer, working to accelerate fusion manufacturing and development at the MIT Plasma Science and Fusion Center. He’s improving 3D printing processes to manufacture components that can accommodate the high temperatures and small space within a tokamak reactor, which uses magnetic fields to confine plasma and produce controlled thermonuclear fusion.“I personally would like to try finding a new solution” to achieving carbon neutrality, he says. That solution, to Liang, is fusion energy, with some entities hoping to demonstrate net energy gain through fusion in the next five years.Laiba is a researcher with the MIT Office of Sustainability, looking at ways to quantify and reduce the level of MIT’s Scope 3 greenhouse gas emissions. Scope 3 emissions are tied to the purchase of goods that use fossil fuels in their manufacture. She says, ​“Whatever I decide to do in the future will involve making a more sustainable future. And to me, renewable energy is the driving force behind that.”In the Netherlands, she says, “what we learned through the entire trip was that renewable energy powers the country to a large amount. Things I could see tangibly was Starbucks having paper cups even for our iced drinks, which I think would flop very hard in the U.S. I don’t think society’s ready for that yet.”Abreu says, “In America, sustainability has always been in the back seat while other things take the forefront. So going to a country where everybody you talk to has a stake (in sustainability) and actually cares, and they’re all pushing together for this common goal, it was inspiring. It gave me hope.” More

  • in

    AI method radically speeds predictions of materials’ thermal properties

    It is estimated that about 70 percent of the energy generated worldwide ends up as waste heat.If scientists could better predict how heat moves through semiconductors and insulators, they could design more efficient power generation systems. However, the thermal properties of materials can be exceedingly difficult to model.The trouble comes from phonons, which are subatomic particles that carry heat. Some of a material’s thermal properties depend on a measurement called the phonon dispersion relation, which can be incredibly hard to obtain, let alone utilize in the design of a system.A team of researchers from MIT and elsewhere tackled this challenge by rethinking the problem from the ground up. The result of their work is a new machine-learning framework that can predict phonon dispersion relations up to 1,000 times faster than other AI-based techniques, with comparable or even better accuracy. Compared to more traditional, non-AI-based approaches, it could be 1 million times faster.This method could help engineers design energy generation systems that produce more power, more efficiently. It could also be used to develop more efficient microelectronics, since managing heat remains a major bottleneck to speeding up electronics.“Phonons are the culprit for the thermal loss, yet obtaining their properties is notoriously challenging, either computationally or experimentally,” says Mingda Li, associate professor of nuclear science and engineering and senior author of a paper on this technique.Li is joined on the paper by co-lead authors Ryotaro Okabe, a chemistry graduate student; and Abhijatmedhi Chotrattanapituk, an electrical engineering and computer science graduate student; Tommi Jaakkola, the Thomas Siebel Professor of Electrical Engineering and Computer Science at MIT; as well as others at MIT, Argonne National Laboratory, Harvard University, the University of South Carolina, Emory University, the University of California at Santa Barbara, and Oak Ridge National Laboratory. The research appears in Nature Computational Science.Predicting phononsHeat-carrying phonons are tricky to predict because they have an extremely wide frequency range, and the particles interact and travel at different speeds.A material’s phonon dispersion relation is the relationship between energy and momentum of phonons in its crystal structure. For years, researchers have tried to predict phonon dispersion relations using machine learning, but there are so many high-precision calculations involved that models get bogged down.“If you have 100 CPUs and a few weeks, you could probably calculate the phonon dispersion relation for one material. The whole community really wants a more efficient way to do this,” says Okabe.The machine-learning models scientists often use for these calculations are known as graph neural networks (GNN). A GNN converts a material’s atomic structure into a crystal graph comprising multiple nodes, which represent atoms, connected by edges, which represent the interatomic bonding between atoms.While GNNs work well for calculating many quantities, like magnetization or electrical polarization, they are not flexible enough to efficiently predict an extremely high-dimensional quantity like the phonon dispersion relation. Because phonons can travel around atoms on X, Y, and Z axes, their momentum space is hard to model with a fixed graph structure.To gain the flexibility they needed, Li and his collaborators devised virtual nodes.They create what they call a virtual node graph neural network (VGNN) by adding a series of flexible virtual nodes to the fixed crystal structure to represent phonons. The virtual nodes enable the output of the neural network to vary in size, so it is not restricted by the fixed crystal structure.Virtual nodes are connected to the graph in such a way that they can only receive messages from real nodes. While virtual nodes will be updated as the model updates real nodes during computation, they do not affect the accuracy of the model.“The way we do this is very efficient in coding. You just generate a few more nodes in your GNN. The physical location doesn’t matter, and the real nodes don’t even know the virtual nodes are there,” says Chotrattanapituk.Cutting out complexitySince it has virtual nodes to represent phonons, the VGNN can skip many complex calculations when estimating phonon dispersion relations, which makes the method more efficient than a standard GNN. The researchers proposed three different versions of VGNNs with increasing complexity. Each can be used to predict phonons directly from a material’s atomic coordinates.Because their approach has the flexibility to rapidly model high-dimensional properties, they can use it to estimate phonon dispersion relations in alloy systems. These complex combinations of metals and nonmetals are especially challenging for traditional approaches to model.The researchers also found that VGNNs offered slightly greater accuracy when predicting a material’s heat capacity. In some instances, prediction errors were two orders of magnitude lower with their technique.A VGNN could be used to calculate phonon dispersion relations for a few thousand materials in just a few seconds with a personal computer, Li says.This efficiency could enable scientists to search a larger space when seeking materials with certain thermal properties, such as superior thermal storage, energy conversion, or superconductivity.Moreover, the virtual node technique is not exclusive to phonons, and could also be used to predict challenging optical and magnetic properties.In the future, the researchers want to refine the technique so virtual nodes have greater sensitivity to capture small changes that can affect phonon structure.“Researchers got too comfortable using graph nodes to represent atoms, but we can rethink that. Graph nodes can be anything. And virtual nodes are a very generic approach you could use to predict a lot of high-dimensional quantities,” Li says.“The authors’ innovative approach significantly augments the graph neural network description of solids by incorporating key physics-informed elements through virtual nodes, for instance, informing wave-vector dependent band-structures and dynamical matrices,” says Olivier Delaire, associate professor in the Thomas Lord Department of Mechanical Engineering and Materials Science at Duke University, who was not involved with this work. “I find that the level of acceleration in predicting complex phonon properties is amazing, several orders of magnitude faster than a state-of-the-art universal machine-learning interatomic potential. Impressively, the advanced neural net captures fine features and obeys physical rules. There is great potential to expand the model to describe other important material properties: Electronic, optical, and magnetic spectra and band structures come to mind.”This work is supported by the U.S. Department of Energy, National Science Foundation, a Mathworks Fellowship, a Sow-Hsin Chen Fellowship, the Harvard Quantum Initiative, and the Oak Ridge National Laboratory. More

  • in

    Startup aims to transform the power grid with superconducting transmission lines

    Last year in Woburn, Massachusetts, a power line was deployed across a 100-foot stretch of land. Passersby wouldn’t have found much interesting about the installation: The line was supported by standard utility poles, the likes of which most of us have driven by millions of times. In fact, the familiarity of the sight is a key part of the technology’s promise.The lines are designed to transport five to 10 times the amount of power of conventional transmission lines, using essentially the same footprint and voltage level. That will be key to helping them overcome the regulatory hurdles and community opposition that has made increasing transmission capacity nearly impossible across large swaths of the globe, particularly in America and Europe, where new power distribution systems play a vital role in the shift to renewable energy and the resilience of the grid.The lines are the product of years of work by the startup VEIR, which was co-founded by Tim Heidel ’05, SM ’06, SM ’09, PhD ’10. They make use of superconducting cables and a proprietary cooling system that will enable initial transmission capacity up to 400 megawatts and, in future versions, up to several gigawatts.“We can deploy much higher power levels at much lower voltage, and so we can deploy the same high power but with a footprint and visual impact that is far less intrusive, and therefore can overcome a lot of the public opposition as well as siting and permitting barriers,” Heidel says.VEIR’s solution comes at a time when more than 10,000 renewable energy projects at various stages of development are seeking permission to connect to U.S. grids. The White House has said the U.S. must more than double existing regional transmission capacity in order to reach 2035 decarbonization goals.All of this comes as electricity demand is skyrocketing amid the increasing use of data centers and AI, and the electrification of everything from passenger vehicles to home heating systems.Despite those trends, building high-power transmission lines remains stubbornly difficult.“Building high-power transmission infrastructure can take a decade or more, and there’s been quite a few examples of projects that folks have had to abandon because they realize that there’s just so much opposition, or there’s too much complexity to pull it off cost effectively,” Heidel says. “We can drop down in voltage but carry the same amount of power because we can build systems that operate at much higher current levels, and that’s how our lines are able to melt into the background and avoid the same opposition.”Heidel says VEIR has built a pipeline of interested customers including utilities, data center operators, industrial companies, and renewable energy developers. VEIR is aiming to complete its first commercial-scale pilot carrying high power in 2026.A career in energyOver more than a decade at MIT, Heidel went from learning about the fundamentals of electrical engineering to studying the electric grid and the power sector more broadly. That journey included earning a bachelor’s, master’s, and PhD from MIT’s Department of Electrical Engineering and Computer Science as well as a master’s in MIT’s Technology and Policy Program, which he earned while working toward his PhD.“I got the energy bug and started to focus exclusively on energy and climate in graduate school,” Heidel says.Following his PhD, Heidel was named research director of MIT’s Future of the Electric Grid study, which was completed in 2011.“That was a fantastic opportunity at the outset of my career to survey the entire landscape and understand challenges facing the power grid and the power sector more broadly,” Heidel says. “It gave me a good foundation for understanding the grid, how it works, who’s involved, how decisions get made, how expansion works, and it looked out over the next 30 years.”After leaving MIT, Heidel worked at the Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) and then at Bill Gates’ Breakthrough Energy Ventures (BEV) investment firm, where he continued studying transmission.“Just about every single decarbonization scenario and study that’s been published in the last two decades concludes that to achieve aggressive greenhouse gas emissions reductions, we’re going to have to double or triple the scale of power grids around the world,” Heidel says. “But when we looked at the data on how fast grids were being expanded, the ease with which transmission lines could be built, the cost of building new transmission, just about every indicator was heading in the wrong direction. Transmission was getting more expensive over time and taking longer to build. We desperately need to find a new solution.”Unlike traditional transmission lines made from steel and aluminum, VEIR’s transmission lines leverage decades of progress in the development of high-temperature superconducting tapes and other materials. Some of that progress has been driven by the nuclear fusion industry, which incorporates superconducting materials into some of their nuclear reactor designs.But the core innovation at VEIR is the cooling system. VEIR co-founder and advisor Steve Ashworth developed the rough idea for the cooling system more than 15 years ago at Los Alamos National Laboratory as part of a larger Department of Energy-funded research project. When the project was shut down, the idea was largely forgotten.Heidel and others at Breakthrough Energy Ventures became aware of the innovation in 2019 while researching transmission. Today VEIR’s system is passively cooled with nitrogen, which runs through a vacuum-insulated pipe that surrounds a superconducting cable. Heat exchange units are also used on some transmission towers.Heidel says transmission lines designed to carry that much power are typically far bigger than VEIR’s design, and other attempts at shrinking the footprint of high-power lines were limited to short distances underground.“High power requires high voltage, and high voltage requires tall towers and wide right of ways, and those tall towers and those wide right of ways are deeply unpopular,” Heidel says. “That is a universal truth across just about the entire world.”Moving power around the worldVEIR’s first alternating current (AC) overhead product line is capable of transmission capacities up to 400 megawatts and voltages of up to 69 kilovolts, and the company plans to scale to higher voltage and higher-power products in the future, including direct current (DC) lines.VEIR will sell its equipment to the companies installing transmission lines, with a primary focus on the U.S. market.In the longer term, Heidel believes VEIR’s technology is needed as soon as possible to meet rising electricity demands and new renewable energy projects around the globe. More