More stories

  • in

    Pricing carbon, valuing people

    In November, inflation hit a 39-year high in the United States. The consumer price index was up 6.8 percent from the previous year due to major increases in the cost of rent, food, motor vehicles, gasoline, and other common household expenses. While inflation impacts the entire country, its effects are not felt equally. At greatest risk are low- and middle-income Americans who may lack sufficient financial reserves to absorb such economic shocks.

    Meanwhile, scientists, economists, and activists across the political spectrum continue to advocate for another potential systemic economic change that many fear will also put lower-income Americans at risk: the imposition of a national carbon price, fee, or tax. Framed by proponents as the most efficient and cost-effective way to reduce greenhouse gas emissions and meet climate targets, a carbon penalty would incentivize producers and consumers to shift expenditures away from carbon-intensive products and services (e.g., coal or natural gas-generated electricity) and toward low-carbon alternatives (e.g., 100 percent renewable electricity). But if not implemented in a way that takes differences in household income into account, this policy strategy, like inflation, could place an unequal and untenable economic burden on low- and middle-income Americans.         

    To garner support from policymakers, carbon-penalty proponents have advocated for policies that recycle revenues from carbon penalties to all or lower-income taxpayers in the form of payroll tax reductions or lump-sum payments. And yet some of these proposed policies run the risk of reducing the overall efficiency of the U.S. economy, which would lower the nation’s GDP and impede its economic growth.

    Which begs the question: Is there a sweet spot at which a national carbon-penalty revenue-recycling policy can both avoid inflicting economic harm on lower-income Americans at the household level and degrading economic efficiency at the national level?

    In search of that sweet spot, researchers at the MIT Joint Program on the Science and Policy of Global Change assess the economic impacts of four different carbon-penalty revenue-recycling policies: direct rebates from revenues to households via lump-sum transfers; indirect refunding of revenues to households via a proportional reduction in payroll taxes; direct rebates from revenues to households, but only for low- and middle-income groups, with remaining revenues recycled via a proportional reduction in payroll taxes; and direct, higher rebates for poor households, with remaining revenues recycled via a proportional reduction in payroll taxes.

    To perform the assessment, the Joint Program researchers integrate a U.S. economic model (MIT U.S. Regional Energy Policy) with a dataset (Bureau of Labor Statistics’ Consumer Expenditure Survey) providing consumption patterns and other socioeconomic characteristics for 15,000 U.S. households. Using the combined model, they evaluate the distributional impacts and potential trade-offs between economic equity and efficiency of all four carbon-penalty revenue-recycling policies.

    The researchers find that household rebates have progressive impacts on consumers’ financial well-being, with the greatest benefits going to the lowest-income households, while policies centered on improving the efficiency of the economy (e.g., payroll tax reductions) have slightly regressive household-level financial impacts. In a nutshell, the trade-off is between rebates that provide more equity and less economic efficiency versus tax cuts that deliver the opposite result. The latter two policy options, which combine rebates to lower-income households with payroll tax reductions, result in an optimal blend of sufficiently progressive financial results at the household level and economy efficiency at the national level. Results of the study are published in the journal Energy Economics.

    “We have determined that only a portion of carbon-tax revenues is needed to compensate low-income households and thus reduce inequality, while the rest can be used to improve the economy by reducing payroll or other distortionary taxes,” says Xaquin García-Muros, lead author of the study, a postdoc at the MIT Joint Program who is affiliated with the Basque Centre for Climate Change in Spain. “Therefore, we can eliminate potential trade-offs between efficiency and equity, and promote a just and efficient energy transition.”

    “If climate policies increase the gap between rich and poor households or reduce the affordability of energy services, then these policies might be rejected by the public and, as a result, attempts to decarbonize the economy will be less efficient,” says Joint Program Deputy Director Sergey Paltsev, a co-author of the study. “Our findings provide guidance to decision-makers to advance more well-designed policies that deliver economic benefits to the nation as a whole.” 

    The study’s novel integration of a national economic model with household microdata creates a new and powerful platform to further investigate key differences among households that can help inform policies aimed at a just transition to a low-carbon economy. More

  • in

    Seeing the plasma edge of fusion experiments in new ways with artificial intelligence

    To make fusion energy a viable resource for the world’s energy grid, researchers need to understand the turbulent motion of plasmas: a mix of ions and electrons swirling around in reactor vessels. The plasma particles, following magnetic field lines in toroidal chambers known as tokamaks, must be confined long enough for fusion devices to produce significant gains in net energy, a challenge when the hot edge of the plasma (over 1 million degrees Celsius) is just centimeters away from the much cooler solid walls of the vessel.

    Abhilash Mathews, a PhD candidate in the Department of Nuclear Science and Engineering working at MIT’s Plasma Science and Fusion Center (PSFC), believes this plasma edge to be a particularly rich source of unanswered questions. A turbulent boundary, it is central to understanding plasma confinement, fueling, and the potentially damaging heat fluxes that can strike material surfaces — factors that impact fusion reactor designs.

    To better understand edge conditions, scientists focus on modeling turbulence at this boundary using numerical simulations that will help predict the plasma’s behavior. However, “first principles” simulations of this region are among the most challenging and time-consuming computations in fusion research. Progress could be accelerated if researchers could develop “reduced” computer models that run much faster, but with quantified levels of accuracy.

    For decades, tokamak physicists have regularly used a reduced “two-fluid theory” rather than higher-fidelity models to simulate boundary plasmas in experiment, despite uncertainty about accuracy. In a pair of recent publications, Mathews begins directly testing the accuracy of this reduced plasma turbulence model in a new way: he combines physics with machine learning.

    “A successful theory is supposed to predict what you’re going to observe,” explains Mathews, “for example, the temperature, the density, the electric potential, the flows. And it’s the relationships between these variables that fundamentally define a turbulence theory. What our work essentially examines is the dynamic relationship between two of these variables: the turbulent electric field and the electron pressure.”

    In the first paper, published in Physical Review E, Mathews employs a novel deep-learning technique that uses artificial neural networks to build representations of the equations governing the reduced fluid theory. With this framework, he demonstrates a way to compute the turbulent electric field from an electron pressure fluctuation in the plasma consistent with the reduced fluid theory. Models commonly used to relate the electric field to pressure break down when applied to turbulent plasmas, but this one is robust even to noisy pressure measurements.

    In the second paper, published in Physics of Plasmas, Mathews further investigates this connection, contrasting it against higher-fidelity turbulence simulations. This first-of-its-kind comparison of turbulence across models has previously been difficult — if not impossible — to evaluate precisely. Mathews finds that in plasmas relevant to existing fusion devices, the reduced fluid model’s predicted turbulent fields are consistent with high-fidelity calculations. In this sense, the reduced turbulence theory works. But to fully validate it, “one should check every connection between every variable,” says Mathews.

    Mathews’ advisor, Principal Research Scientist Jerry Hughes, notes that plasma turbulence is notoriously difficult to simulate, more so than the familiar turbulence seen in air and water. “This work shows that, under the right set of conditions, physics-informed machine-learning techniques can paint a very full picture of the rapidly fluctuating edge plasma, beginning from a limited set of observations. I’m excited to see how we can apply this to new experiments, in which we essentially never observe every quantity we want.”

    These physics-informed deep-learning methods pave new ways in testing old theories and expanding what can be observed from new experiments. David Hatch, a research scientist at the Institute for Fusion Studies at the University of Texas at Austin, believes these applications are the start of a promising new technique.

    “Abhi’s work is a major achievement with the potential for broad application,” he says. “For example, given limited diagnostic measurements of a specific plasma quantity, physics-informed machine learning could infer additional plasma quantities in a nearby domain, thereby augmenting the information provided by a given diagnostic. The technique also opens new strategies for model validation.”

    Mathews sees exciting research ahead.

    “Translating these techniques into fusion experiments for real edge plasmas is one goal we have in sight, and work is currently underway,” he says. “But this is just the beginning.”

    Mathews was supported in this work by the Manson Benedict Fellowship, Natural Sciences and Engineering Research Council of Canada, and U.S. Department of Energy Office of Science under the Fusion Energy Sciences program.​ More

  • in

    Helping to make nuclear fusion a reality

    Up until she served in the Peace Corps in Malawi, Rachel Bielajew was open to a career reboot. Having studied nuclear engineering as an undergraduate at the University of Michigan at Ann Arbor, graduate school had been on her mind. But seeing the drastic impacts of climate change play out in real-time in Malawi — the lives of the country’s subsistence farmers swing wildly, depending on the rains — convinced Bielajew of the importance of nuclear engineering. Bielajew was struck that her high school students in the small town of Chisenga had a shaky understanding of math, but universally understood global warming. “The concept of the changing world due to human impact was evident, and they could see it,” Bielajew says.

    Bielajew was looking to work on solutions that could positively impact global problems and feed her love of physics. Nuclear engineering, especially the study of fusion as a carbon-free energy source, checked off both boxes. Bielajew is now a fourth-year doctoral candidate in the Department of Nuclear Science and Engineering (NSE). She researches magnetic confinement fusion in the Plasma Science and Fusion Center (PSFC) with Professor Anne White.

    Researching fusion’s big challenge

    You need to confine plasma effectively in order to generate the extremely high temperatures (100 million degrees Celsius) fusion needs, without melting the walls of the tokamak, the device that hosts these reactions. Magnets can do the job, but “plasmas are weird, they behave strangely and are challenging to understand,” Bielajew says. Small instabilities in plasma can coalesce into fluctuating turbulence that can drive heat and particles out of the machine.

    In high-confinement mode, the edges of the plasma have less tolerance for such unruly behavior. “The turbulence gets damped out and sheared apart at the edge,” Bielajew says. This might seem like a good thing, but high-confinement plasmas have their own challenges. They are so tightly bound that they create edge-localized modes (ELMs), bursts of damaging particles and energy, that can be extremely damaging to the machine.

    The questions Bielajew is looking to answer: How do we get high confinement without ELMs? How do turbulence and transport play a role in plasmas? “We do not fully understand turbulence, even though we have studied it for a long time,” Bielajew says, “It is a big and important problem to solve for fusion to be a reality. I like that challenge,” Bielajew adds.

    A love of science

    Confronting such challenges head-on has been part of Bielajew’s toolkit since she was a child growing up in Ann Arbor, Michigan. Her father, Alex Bielajew, is a professor of nuclear engineering at the University of Michigan, and Bielajew’s mother also pursued graduate studies.

    Bielajew’s parents encouraged her to follow her own path and she found it led to her father’s chosen profession: nuclear engineering. Once she decided to pursue research in fusion, MIT stood out as a school she could set her sights on. “I knew that MIT had an extensive program in fusion and a lot of faculty in the field,” Bielajew says. The mechanics of the application were challenging: Chisenga had limited internet access, so Bielajew had to ride on the back of a pickup truck to meet a friend in a city a few hours away and use his phone as a hotspot to send the documents.

    A similar tenacity has surfaced in Bielajew’s approach to research during the Covid-19 pandemic. Working off a blueprint, Bielajew built the Correlation Cyclotron Emission Diagnostic, which measures turbulent electron temperature fluctuations. Through a collaboration, Bielajew conducts her plasma research at the ASDEX Upgrade tokamak in Germany. Traditionally, Bielajew would ship the diagnostic to Germany, follow and install it, and conduct the research in person. The pandemic threw a wrench in the plans, so Bielajew shipped the diagnostic and relied on team members to install it. She Zooms into the control room and trusts others to run the plasma experiments.

    DEI advocate

    Bielajew is very hands-on with another endeavor: improving diversity, equity, and inclusion (DEI) in her own backyard. Having grown up with parental encouragement and in an environment that never doubted her place as a woman in engineering, Bielajew realizes not everyone has the same opportunities. “I wish that the world was in a place where all I had to do was care about my research, but it’s not,” Bielajew says. While science can solve many problems, more fundamental ones about equity need humans to act in specific ways, she points out. “I want to see more women represented, more people of color. Everyone needs a voice in building a better world,” Bielajew says.

    To get there, Bielajew co-launched NSE’s Graduate Application Assistance Program, which connects underrepresented student applicants with NSE mentors. She has been the DEI officer with NSE’s student group, ANS, and is very involved in the department’s DEI committee.

    As for future research, Bielajew hopes to concentrate on the experiments that make her question existing paradigms about plasmas under high confinement. Bielajew has registered more head-scratching “hmm” moments than “a-ha” ones. Measurements from her experiments drive the need for more intensive study.

    Bielajew’s dogs, Dobby and Winky, keep her company through it all. They came home with her from Malawi. More

  • in

    Selective separation could help alleviate critical metals shortage

    New processing methods developed by MIT researchers could help ease looming shortages of the essential metals that power everything from phones to automotive batteries, by making it easier to separate these rare metals from mining ores and recycled materials.

    Selective adjustments within a chemical process called sulfidation allowed professor of metallurgy Antoine Allanore and his graduate student Caspar Stinn to successfully target and separate rare metals, such as the cobalt in a lithium-ion battery, from mixed-metal materials.

    As they report in the journal Nature, their processing techniques allow the metals to remain in solid form and be separated without dissolving the material. This avoids traditional but costly liquid separation methods that require significant energy. The researchers developed processing conditions for 56 elements and tested these conditions on 15 elements.

    Their sulfidation approach, they write in the paper, could reduce the capital costs of metal separation between 65 and 95 percent from mixed-metal oxides. Their selective processing could also reduce greenhouse gas emissions by 60 to 90 percent compared to traditional liquid-based separation.

    “We were excited to find replacements for processes that had really high levels of water usage and greenhouse gas emissions, such as lithium-ion battery recycling, rare-earth magnet recycling, and rare-earth separation,” says Stinn. “Those are processes that make materials for sustainability applications, but the processes themselves are very unsustainable.”

    The findings offer one way to alleviate a growing demand for minor metals like cobalt, lithium, and rare earth elements that are used in “clean” energy products like electric cars, solar cells, and electricity-generating windmills. According to a 2021 report by the International Energy Agency, the average amount of minerals needed for a new unit of power generation capacity has risen by 50 percent since 2010, as renewable energy technologies using these metals expand their reach.

    Opportunity for selectivity

    For more than a decade, the Allanore group has been studying the use of sulfide materials in developing new electrochemical routes for metal production. Sulfides are common materials, but the MIT scientists are experimenting with them under extreme conditions like very high temperatures — from 800 to 3,000 degrees Fahrenheit — that are used in manufacturing plants but not in a typical university lab.

    “We are looking at very well-established materials in conditions that are uncommon compared to what has been done before,” Allanore explains, “and that is why we are finding new applications or new realities.”

    In the process of synthetizing high-temperature sulfide materials to support electrochemical production, Stinn says, “we learned we could be very selective and very controlled about what products we made. And it was with that understanding that we realized, ‘OK, maybe there’s an opportunity for selectivity in separation here.’”

    The chemical reaction exploited by the researchers reacts a material containing a mix of metal oxides to form new metal-sulfur compounds or sulfides. By altering factors like temperature, gas pressure, and the addition of carbon in the reaction process, Stinn and Allanore found that they could selectively create a variety of sulfide solids that can be physically separated by a variety of methods, including crushing the material and sorting different-sized sulfides or using magnets to separate different sulfides from one another.

    Current methods of rare metal separation rely on large quantities of energy, water, acids, and organic solvents which have costly environmental impacts, says Stinn. “We are trying to use materials that are abundant, economical, and readily available for sustainable materials separation, and we have expanded that domain to now include sulfur and sulfides.”

    Stinn and Allanore used selective sulfidation to separate out economically important metals like cobalt in recycled lithium-ion batteries. They also used their techniques to separate dysprosium — a rare-earth element used in applications ranging from data storage devices to optoelectronics — from rare-earth-boron magnets, or from the typical mixture of oxides available from mining minerals such as bastnaesite.

    Leveraging existing technology

    Metals like cobalt and rare earths are only found in small amounts in mined materials, so industries must process large volumes of material to retrieve or recycle enough of these metals to be economically viable, Allanore explains. “It’s quite clear that these processes are not efficient. Most of the emissions come from the lack of selectivity and the low concentration at which they operate.”

    By eliminating the need for liquid separation and the extra steps and materials it requires to dissolve and then reprecipitate individual elements, the MIT researchers’ process significantly reduces the costs incurred and emissions produced during separation.

    “One of the nice things about separating materials using sulfidation is that a lot of existing technology and process infrastructure can be leveraged,” Stinn says. “It’s new conditions and new chemistries in established reactor styles and equipment.”

    The next step is to show that the process can work for large amounts of raw material — separating out 16 elements from rare-earth mining streams, for example. “Now we have shown that we can handle three or four or five of them together, but we have not yet processed an actual stream from an existing mine at a scale to match what’s required for deployment,” Allanore says.

    Stinn and colleagues in the lab have built a reactor that can process about 10 kilograms of raw material per day, and the researchers are starting conversations with several corporations about the possibilities.

    “We are discussing what it would take to demonstrate the performance of this approach with existing mineral and recycling streams,” Allanore says.

    This research was supported by the U.S. Department of Energy and the U.S. National Science Foundation. More

  • in

    A tool to speed development of new solar cells

    In the ongoing race to develop ever-better materials and configurations for solar cells, there are many variables that can be adjusted to try to improve performance, including material type, thickness, and geometric arrangement. Developing new solar cells has generally been a tedious process of making small changes to one of these parameters at a time. While computational simulators have made it possible to evaluate such changes without having to actually build each new variation for testing, the process remains slow.

    Now, researchers at MIT and Google Brain have developed a system that makes it possible not just to evaluate one proposed design at a time, but to provide information about which changes will provide the desired improvements. This could greatly increase the rate for the discovery of new, improved configurations.

    The new system, called a differentiable solar cell simulator, is described in a paper published today in the journal Computer Physics Communications, written by MIT junior Sean Mann, research scientist Giuseppe Romano of MIT’s Institute for Soldier Nanotechnologies, and four others at MIT and at Google Brain.

    Traditional solar cell simulators, Romano explains, take the details of a solar cell configuration and produce as their output a predicted efficiency — that is, what percentage of the energy of incoming sunlight actually gets converted to an electric current. But this new simulator both predicts the efficiency and shows how much that output is affected by any one of the input parameters. “It tells you directly what happens to the efficiency if we make this layer a little bit thicker, or what happens to the efficiency if we for example change the property of the material,” he says.

    In short, he says, “we didn’t discover a new device, but we developed a tool that will enable others to discover more quickly other higher performance devices.” Using this system, “we are decreasing the number of times that we need to run a simulator to give quicker access to a wider space of optimized structures.” In addition, he says, “our tool can identify a unique set of material parameters that has been hidden so far because it’s very complex to run those simulations.”

    While traditional approaches use essentially a random search of possible variations, Mann says, with his tool “we can follow a trajectory of change because the simulator tells you what direction you want to be changing your device. That makes the process much faster because instead of exploring the entire space of opportunities, you can just follow a single path” that leads directly to improved performance.

    Since advanced solar cells often are composed of multiple layers interlaced with conductive materials to carry electric charge from one to the other, this computational tool reveals how changing the relative thicknesses of these different layers will affect the device’s output. “This is very important because the thickness is critical. There is a strong interplay between light propagation and the thickness of each layer and the absorption of each layer,” Mann explains.

    Other variables that can be evaluated include the amount of doping (the introduction of atoms of another element) that each layer receives, or the dielectric constant of insulating layers, or the bandgap, a measure of the energy levels of photons of light that can be captured by different materials used in the layers.

    This simulator is now available as an open-source tool that can be used immediately to help guide research in this field, Romano says. “It is ready, and can be taken up by industry experts.” To make use of it, researchers would couple this device’s computations with an optimization algorithm, or even a machine learning system, to rapidly assess a wide variety of possible changes and home in quickly on the most promising alternatives.

    At this point, the simulator is based on just a one-dimensional version of the solar cell, so the next step will be to expand its capabilities to include two- and three-dimensional configurations. But even this 1D version “can cover the majority of cells that are currently under production,” Romano says. Certain variations, such as so-called tandem cells using different materials, cannot yet be simulated directly by this tool, but “there are ways to approximate a tandem solar cell by simulating each of the individual cells,” Mann says.

    The simulator is “end-to-end,” Romano says, meaning it computes the sensitivity of the efficiency, also taking into account light absorption. He adds: “An appealing future direction is composing our simulator with advanced existing differentiable light-propagation simulators, to achieve enhanced accuracy.”

    Moving forward, Romano says, because this is an open-source code, “that means that once it’s up there, the community can contribute to it. And that’s why we are really excited.” Although this research group is “just a handful of people,” he says, now anyone working in the field can make their own enhancements and improvements to the code and introduce new capabilities.

    “Differentiable physics is going to provide new capabilities for the simulations of engineered systems,” says Venkat Viswanathan, an associate professor of mechanical engineering at Carnegie Mellon University, who was not associated with this work. “The  differentiable solar cell simulator is an incredible example of differentiable physics, that can now provide new capabilities to optimize solar cell device performance,” he says, calling the study “an exciting step forward.”

    In addition to Mann and Romano, the team included Eric Fadel and Steven Johnson at MIT, and Samuel Schoenholz and Ekin Cubuk at Google Brain. The work was supported in part by Eni S.p.A. and the MIT Energy Initiative, and the MIT Quest for Intelligence. More

  • in

    “Vigilant inclusion” central to combating climate change

    “To turbocharge work on saving the planet, we need effective, innovative, localized solutions, and diverse perspectives and experience at the table,” said U.S. Secretary of Energy Jennifer M. Granholm, the keynote speaker at the 10th annual U.S. Clean Energy Education and Empowerment (C3E) Women in Clean Energy Symposium and Awards.

    This event, convened virtually over Nov. 3-4 and engaging more than 1,000 participants, was devoted to the themes of justice and equity in clean energy. In panels and presentations, speakers hammered home the idea that the benefits of a zero-carbon future must be shared equitably, especially among groups historically neglected or marginalized. To ensure this outcome, the speakers concluded, these same groups must help drive the clean-energy transition, and women, who stand to bear enormous burdens as the world warms, should be central to the effort. This means “practicing vigilant inclusion,” said Granholm.

    The C3E symposium, which is dedicated to celebrating the leadership of women in the field of clean energy and inspiring the next generation of women leaders, featured professionals from government, industry, research, and other sectors. Some of them spoke from experience, and from the heart, on issues of environmental justice.

    “I grew up in a trailer park in northern Utah, where it was so cold at night a sheet of ice formed on the inside of the door,” said Melanie Santiago-Mosier, the deputy director of the Clean Energy Group and Clean Energy States Alliance. Santiago-Mosier, who won a 2018 C3E award for advocacy, has devoted her career “to bringing the benefits of clean energy to families like mine, and to preventing mistakes of the past that result in a deeply unjust energy system.”

    Tracey A. LeBeau, a member of the Cheyenne River Sioux Tribe who grew up in South Dakota, described the flooding of her community’s land to create a hydroelectric dam, forcing the dislocation of many people. Today, as administrator and CEO of the Western Area Power Administration, LeBeau manages distribution of hydropower across 15 states, and has built an organization in which the needs of disadvantaged communities are top of mind. “I stay true to my indigenous point of view,” she said.

    The C3E Symposium was launched in 2012 to increase gender diversity in the energy sector and provide awards to outstanding women in the field. It is part of the C3E Initiative, a collaboration between the U.S. Department of Energy (DOE), the MIT Energy Initiative (MITEI), Texas A&M Energy Institute, and Stanford Precourt Institute for Energy, which hosted the event this year.

    Connecting global rich and poor

    As the COP26 climate summit unfolded in Glasgow, highlighting the sharp divide between rich and poor nations, C3E panelists pursued a related agenda. One panel focused on paths for collaboration between industrialized nations and nations with developing economies to build a sustainable, carbon-neutral global economy.

    Radhika Thakkar, the vice president of corporate affairs at solar home energy provider Greenlight Planet and a 2019 C3E international award winner, believes that small partnerships with women at the community level can lead to large impacts. When her company introduced solar lamp home systems to Rwanda, “Women abandoned selling bananas to sell our lamps, making enough money to purchase land, cows, even putting their families through school,” she said.

    Sudeshna Banerjee, the practice manager for Europe and Central Asia and the energy and extractives global practice at the World Bank, talked about impacts of a bank-supported electrification program in Nairobi slums where gang warfare kept girls confined at home. “Once the lights came on, girls felt more empowered to go around in dark hours,” she said. “This is what development is: creating opportunities for young women to do something with their lives, giving them educational opportunities and creating instances for them to generate income.”

    In another session, panelists focused on ways to enable disadvantaged communities in the United States to take full advantage of clean energy opportunities.

    Amy Glasmeier, a professor of economic geography and regional planning at MIT, believes remote, rural communities require broadband and other information channels in order to chart their own clean-energy journeys. “We must provide access to more than energy, so people can educate themselves and imagine how the energy transition can work for them.”

    Santiago-Mosier described the absence of rooftop solar in underprivileged neighborhoods of the nation’s cities and towns as the result of a kind of clean-energy redlining. “Clean energy and the solar industry are falling into 400-year-old traps of systemic racism,” she said. “This is no accident: senior executives in solar are white and male.” The answer is “making sure that providers and companies are elevating people of color and women in industries,” otherwise “solar is leaving potential growth on the table.”

    Data for equitable outcomes

    Jessica Granderson, the director of building technology at the White House Council on Environmental Quality and the 2015 C3E research award winner, is measuring and remediating greenhouse gas emissions from the nation’s hundred-million-plus homes and commercial structures. In a panel exploring data-driven solutions for advancing equitable energy outcomes, Granderson described using new building performance standards that improve the energy efficiency and material performance of construction in a way that does not burden building owners with modest resources. “We are emphasizing engagements at the community level, bringing in a local workforce, and addressing the needs of local programs, in a way that hasn’t necessarily been present in the past,” she said.

    To facilitate her studies on how people in these communities use and experience public transportation systems, Tierra Bills, an assistant professor in civil and environmental engineering at Wayne State University, is developing a community-based approach for collecting data. “Not everyone who is eager to contribute to a study can participate in an online survey and upload data, so we need to find ways of overcoming these barriers,” she said.

    Corporate efforts to advance social and environmental justice turn on community engagement as well. Paula Gold-Williams, a C3E ambassador and the president and CEO of CPS Energy, with 1 million customers in San Antonio, Texas, described a weatherization campaign to better insulate homes that involved “looking for as many places to go as possible in parts of town where people wouldn’t normally raise their hands.”

    Carla Peterman, the executive vice president for corporate affairs and chief of sustainability at Pacific Gas & Electric, and the 2015 C3E government award winner, was deliberating about raising rates some years ago. “My ‘aha’ moment was in a community workshop where I realized that a $5 increase is too much,” she said. “It may be the cost of a latte, but these folks aren’t buying lattes, and it’s a choice between electricity and food or shelter.”

    A call to arms

    Humanity cannot win the all-out race to achieve a zero-carbon future without a vast new cohort of participants, symposium speakers agreed. A number of the 2021 C3E award winners who have committed their careers to clean energy invoked the moral imperative of the moment and issued a call to arms.

    “Seven-hundred-and-fifty million people around the world live without reliable energy, and 70 percent of schools lack power,” said Rhonda Jordan-Antoine PhD ’12, a senior energy specialist at the World Bank who received this year’s international award. By laboring to bring smart grids, battery technologies, and regional integration to even the most remote communities, she said, we open up opportunities for education and jobs. “Energy access is not just about energy, but development,” said Antoine, “and I hope you are encouraged to advance clean energy efforts around the globe.”

    Faith Corneille, who won the government award, works in the U.S. Department of State’s Bureau of Energy Resources. “We need innovators and scientists to design solutions; energy efficiency experts and engineers to build; lawyers to review, and bankers to invest, and insurance agents to protect against risk; and we need problem-solvers to thread these together,” she said. “Whatever your path, there’s a role for you: energy and climate intersect with whatever you do.”

    “We know the cause of climate change and how to reverse it, but to make that happen we need passionate and brilliant minds, all pulling in the same direction,” said Megan Nutting, the executive vice president of government and regulatory affairs at Sunnova Energy Corporation, and winner of the business award. “The clean-energy transition needs women,” she said. “If you are not working in clean energy, then why not?” More

  • in

    An energy-storage solution that flows like soft-serve ice cream

    Batteries made from an electrically conductive mixture the consistency of molasses could help solve a critical piece of the decarbonization puzzle. An interdisciplinary team from MIT has found that an electrochemical technology called a semisolid flow battery can be a cost-competitive form of energy storage and backup for variable renewable energy (VRE) sources such as wind and solar. The group’s research is described in a paper published in Joule.

    “The transition to clean energy requires energy storage systems of different durations for when the sun isn’t shining and the wind isn’t blowing,” says Emre Gençer, a research scientist with the MIT Energy Initiative (MITEI) and a member of the team. “Our work demonstrates that a semisolid flow battery could be a lifesaving as well as economical option when these VRE sources can’t generate power for a day or longer — in the case of natural disasters, for instance.”

    The rechargeable zinc-manganese dioxide (Zn-MnO2) battery the researchers created beat out other long-duration energy storage contenders. “We performed a comprehensive, bottom-up analysis to understand how the battery’s composition affects performance and cost, looking at all the trade-offs,” says Thaneer Malai Narayanan SM ’18, PhD ’21. “We showed that our system can be cheaper than others, and can be scaled up.”

    Narayanan, who conducted this work at MIT as part of his doctorate in mechanical engineering, is the lead author of the paper. Additional authors include Gençer, Yunguang Zhu, a postdoc in the MIT Electrochemical Energy Lab; Gareth McKinley, the School of Engineering Professor of Teaching Innovation and professor of mechanical engineering at MIT; and Yang Shao-Horn, the JR East Professor of Engineering, a professor of mechanical engineering and of materials science and engineering, and a member of the Research Laboratory of Electronics (RLE), who directs the MIT Electrochemical Energy Lab.

    Going with the flow

    In 2016, Narayanan began his graduate studies, joining the Electrochemical Energy Lab, a hotbed of research and exploration of solutions to mitigate climate change, which is centered on innovative battery chemistry and decarbonizing fuels and chemicals. One exciting opportunity for the lab: developing low- and no-carbon backup energy systems suitable for grid-scale needs when VRE generation flags.                                                  

    While the lab cast a wide net, investigating energy conversion and storage using solid oxide fuel cells, lithium-ion batteries, and metal-air batteries, among others, Narayanan took a particular interest in flow batteries. In these systems, two different chemical (electrolyte) solutions with either negative or positive ions are pumped from separate tanks, meeting across a membrane (called the stack). Here, the ion streams react, converting electrical energy to chemical energy — in effect, charging the battery. When there is demand for this stored energy, the solution gets pumped back to the stack to convert chemical energy into electrical energy again.

    The duration of time that flow batteries can discharge, releasing the stored electricity, is determined by the volume of positively and negatively charged electrolyte solutions streaming through the stack. In theory, as long as these solutions keep flowing, reacting, and converting the chemical energy to electrical energy, the battery systems can provide electricity.

    “For backup lasting more than a day, the architecture of flow batteries suggests they can be a cheap option,” says Narayanan. “You recharge the solution in the tanks from sun and wind power sources.” This renders the entire system carbon free.

    But while the promise of flow battery technologies has beckoned for at least a decade, the uneven performance and expense of materials required for these battery systems has slowed their implementation. So, Narayanan set out on an ambitious journey: to design and build a flow battery that could back up VRE systems for a day or more, storing and discharging energy with the same or greater efficiency than backup rivals; and to determine, through rigorous cost analysis, whether such a system could prove economically viable as a long-duration energy option.

    Multidisciplinary collaborators

    To attack this multipronged challenge, Narayanan’s project brought together, in his words, “three giants, scientists all well-known in their fields”:  Shao-Horn, who specializes in chemical physics and electrochemical science, and design of materials; Gençer, who creates detailed economic models of emergent energy systems at MITEI; and McKinley, an expert in rheology, the physics of flow. These three also served as his thesis advisors.

    “I was excited to work in such an interdisciplinary team, which offered a unique opportunity to create a novel battery architecture by designing charge transfer and ion transport within flowable semi-solid electrodes, and to guide battery engineering using techno-economics of such flowable batteries,” says Shao-Horn.

    While other flow battery systems in contention, such as the vanadium redox flow battery, offer the storage capacity and energy density to back up megawatt and larger power systems, they depend on expensive chemical ingredients that make them bad bets for long duration purposes. Narayanan was on the hunt for less-pricey chemical components that also feature rich energy potential.

    Through a series of bench experiments, the researchers came up with a novel electrode (electrical conductor) for the battery system: a mixture containing dispersed manganese dioxide (MnO2) particles, shot through with an electrically conductive additive, carbon black. This compound reacts with a conductive zinc solution or zinc plate at the stack, enabling efficient electrochemical energy conversion. The fluid properties of this battery are far removed from the watery solutions used by other flow batteries.

    “It’s a semisolid — a slurry,” says Narayanan. “Like thick, black paint, or perhaps a soft-serve ice cream,” suggests McKinley. The carbon black adds the pigment and the electric punch. To arrive at the optimal electrochemical mix, the researchers tweaked their formula many times.

    “These systems have to be able to flow under reasonable pressures, but also have a weak yield stress so that the active MnO2 particles don’t sink to the bottom of the flow tanks when the system isn’t being used, as well as not separate into a battery/oily clear fluid phase and a dense paste of carbon particles and MnO2,” says McKinley.

    This series of experiments informed the technoeconomic analysis. By “connecting the dots between composition, performance, and cost,” says Narayanan, he and Gençer were able to make system-level cost and efficiency calculations for the Zn-MnO2 battery.

    “Assessing the cost and performance of early technologies is very difficult, and this was an example of how to develop a standard method to help researchers at MIT and elsewhere,” says Gençer. “One message here is that when you include the cost analysis at the development stage of your experimental work, you get an important early understanding of your project’s cost implications.”

    In their final round of studies, Gençer and Narayanan compared the Zn-MnO2 battery to a set of equivalent electrochemical battery and hydrogen backup systems, looking at the capital costs of running them at durations of eight, 24, and 72 hours. Their findings surprised them: For battery discharges longer than a day, their semisolid flow battery beat out lithium-ion batteries and vanadium redox flow batteries. This was true even when factoring in the heavy expense of pumping the MnO2 slurry from tank to stack. “I was skeptical, and not expecting this battery would be competitive, but once I did the cost calculation, it was plausible,” says Gençer.

    But carbon-free battery backup is a very Goldilocks-like business: Different situations require different-duration solutions, whether an anticipated overnight loss of solar power, or a longer-term, climate-based disruption in the grid. “Lithium-ion is great for backup of eight hours and under, but the materials are too expensive for longer periods,” says Gençer. “Hydrogen is super expensive for very short durations, and good for very long durations, and we will need all of them.” This means it makes sense to continue working on the Zn-MnO2 system to see where it might fit in.

    “The next step is to take our battery system and build it up,” says Narayanan, who is working now as a battery engineer. “Our research also points the way to other chemistries that could be developed under the semi-solid flow battery platform, so we could be seeing this kind of technology used for energy storage in our lifetimes.”

    This research was supported by Eni S.p.A. through MITEI. Thaneer Malai Narayanan received an Eni-sponsored MIT Energy Fellowship during his work on the project. More

  • in

    Energy hackers give a glimpse of a postpandemic future

    After going virtual in 2020, the MIT EnergyHack was back on campus last weekend in a brand-new hybrid format that saw teams participate both in person and virtually from across the globe. While the hybrid format presented new challenges to the organizing team, it also allowed for one of the most diverse and inspiring iterations of the event to date.

    “Organizing a hybrid event was a challenging but important goal in 2021 as we slowly come out of the pandemic, but it was great to realize the benefits of the format this year,” says Kailin Graham, a graduate student in MIT’s Technology and Policy Program and one of the EnergyHack communications directors. “Not only were we able to get students back on campus and taking advantage of those important in-person interactions, but preserving a virtual avenue meant that we were still able to hear brilliant ideas from those around the world who might not have had the opportunity to contribute otherwise, and that’s what the EnergyHack is really about.”

    In fact, of the over 300 participants registered for the event, more than a third participated online, and two of the three grand prize winners participated entirely virtually. Teams of students at any degree level from any institution were welcome, and the event saw an incredible range of backgrounds and expertise, from undergraduates to MBAs, put their heads together to create innovative solutions.

    This year’s event was supported by a host of energy partners both in industry and within MIT. The MIT Energy and Climate Club worked with sponsoring organizations Smartflower, Chargepoint, Edison Energy, Line Vision, Chevron, Shell, and Sterlite Power to develop seven problem statements for hackers, with each judged by representatives form their respective organization. The challenges ranged from envisioning the future of electric vehicle fueling to quantifying the social and environmental benefits of renewable energy projects.

    Hackers had 36 hours to come up with a solution to one challenge, and teams then presented these solutions in a short pitch to a judging panel. Finalists from each challenge progressed to the final judging round to pitch against each other in pursuit of three grand prizes. Team COPrs came in third, receiving $1,000 for their solution to the Line Vision challenge; Crown Joules snagged second place and $1,500 for their approach to the Chargepoint problem; and Feel AMPowered took out first place and $2,000 for their innovative solution to the Smartflower challenge.

    In addition to a new format, this year’s EnergyHack also featured a new emphasis on climate change impacts and the energy transition. According to Arina Khotimsky, co-managing director of EnergyHack 2021, “Moving forward after this year’s rebranding of the MIT Energy and Climate Club, we were hoping to carry this aim to EnergyHack. It was incredibly exciting to have ChargePoint and SmartFlower leading as our Sustainability Circle-tier sponsors and bringing their impactful innovations to the conversations at EnergyHack 2021.”

    To the organizing team, whose members from sophomores to MBAs, this aspect of the event was especially important, and their hope was for the event to inspire a generation of young energy and climate leaders — a hope, according to them, that seems to have been fulfilled.

    “I was floored by the positive feedback we received from hackers, both in-person and virtual, about how much they enjoyed the hackathon,” says Graham. “It’s all thanks to our team of incredibly hardworking organizing directors who made EnergyHack 2021 what it was. It was incredibly rewarding seeing everyone’s impact on the event, and we are looking forward to seeing how it evolves in the future.”­­­ More