More stories

  • in

    Amy Watterson: Model engineer

    “I love that we are doing something that no one else is doing.”

    Amy Watterson is excited when she talks about SPARC, the pilot fusion plant being developed by MIT spinoff Commonwealth Fusion Systems (CSF). Since being hired as a mechanical engineer at the Plasma Science and Fusion Center (PSFC) two years ago, Watterson has found her skills stretching to accommodate the multiple needs of the project.

    Fusion, which fuels the sun and stars, has long been sought as a carbon-free energy source for the world. For decades researchers have pursued the “tokamak,” a doughnut-shaped vacuum chamber where hot plasma can be contained by magnetic fields and heated to the point where fusion occurs. Sustaining the fusion reactions long enough to draw energy from them has been a challenge.

    Watterson is intimately aware of this difficulty. Much of her life she has heard the quip, “Fusion is 50 years away and always will be.” The daughter of PSFC research scientist Catherine Fiore, who headed the PSFC’s Office of Environment, Safety and Health, and Reich Watterson, an optical engineer working at the center, she had watched her parents devote years to making fusion a reality. She determined before entering Rensselaer Polytechnic Institute that she could forgo any attempt to follow her parents into a field that might not produce results during her career.

    Working on SPARC has changed her mindset. Taking advantage of a novel high-temperature superconducting tape, SPARC’s magnets will be compact while generating magnetic fields stronger than would be possible from other mid-sized tokamaks, and producing more fusion power. It suggests a high-field device that produces net fusion gain is not 50 years away. SPARC is scheduled to be begin operation in 2025.

    An education in modeling

    Watterson’s current excitement, and focus, is due to an approaching milestone for SPARC: a test of the Toroidal Field Magnet Coil (TFMC), a scaled prototype for the HTS magnets that will surround SPARC’s toroidal vacuum chamber. Its design and manufacture have been shaped by computer models and simulations. As part of a large research team, Waterson has received an education in modeling over the past two years.

    Computer models move scientific experiments forward by allowing researchers to predict what will happen to an experiment — or its materials — if a parameter is changed. Modeling a component of the TFMC, for example, researchers can test how it is affected by varying amounts of current, different temperatures or different materials. With this information they can make choices that will improve the success of the experiment.

    In preparation for the magnet testing, Watterson has modeled aspects of the cryogenic system that will circulate helium gas around the TFMC to keep it cold enough to remain superconducting. Taking into consideration the amount of cooling entering the system, the flow rate of the helium, the resistance created by valves and transfer lines and other parameters, she can model how much helium flow will be necessary to guarantee the magnet stays cold enough. Adjusting a parameter can make the difference between a magnet remaining superconducting and becoming overheated or even damaged.

    Watterson and her teammates have also modeled pressures and stress on the inside of the TFMC. Pumping helium through the coil to cool it down will add 20 atmospheres of pressure, which could create a degree of flex in elements of the magnet that are welded down. Modeling can help determine how much pressure a weld can sustain.

    “How thick does a weld need to be, and where should you put the weld so that it doesn’t break — that’s something you don’t want to leave until you’re finally assembling it,” says Watterson.

    Modeling the behavior of helium is particularly challenging because its properties change significantly as the pressure and temperature change.

    “A few degrees or a little pressure will affect the fluid’s viscosity, density, thermal conductivity, and heat capacity,” says Watterson. “The flow has different pressures and temperatures at different places in the cryogenic loop. You end up with a set of equations that are very dependent on each other, which makes it a challenge to solve.”

    Role model

    Watterson notes that her modeling depends on the contributions of colleagues at the PSFC, and praises the collaborative spirit among researchers and engineers, a community that now feels like family. Her teammates have been her mentors. “I’ve learned so much more on the job in two years than I did in four years at school,” she says.

    She realizes that having her mother as a role model in her own family has always made it easier for her to imagine becoming a scientist or engineer. Tracing her early passion for engineering to a middle school Lego robotics tournament, her eyes widen as she talks about the need for more female engineers, and the importance of encouraging girls to believe they are equal to the challenge.

    “I want to be a role model and tell them ‘I’m a successful engineer, you can be too.’ Something I run into a lot is that little girls will say, ‘I can’t be an engineer, I’m not cut out for that.’ And I say, ‘Well that’s not true. Let me show you. If you can make this Lego robot, then you can be an engineer.’ And it turns out they usually can.”

    Then, as if making an adjustment to one of her computer models, she continues.

    “Actually, they always can.” More

  • in

    What will happen to sediment plumes associated with deep-sea mining?

    In certain parts of the deep ocean, scattered across the seafloor, lie baseball-sized rocks layered with minerals accumulated over millions of years. A region of the central Pacific, called the Clarion Clipperton Fracture Zone (CCFZ), is estimated to contain vast reserves of these rocks, known as “polymetallic nodules,” that are rich in nickel and cobalt  — minerals that are commonly mined on land for the production of lithium-ion batteries in electric vehicles, laptops, and mobile phones.

    As demand for these batteries rises, efforts are moving forward to mine the ocean for these mineral-rich nodules. Such deep-sea-mining schemes propose sending down tractor-sized vehicles to vacuum up nodules and send them to the surface, where a ship would clean them and discharge any unwanted sediment back into the ocean. But the impacts of deep-sea mining — such as the effect of discharged sediment on marine ecosystems and how these impacts compare to traditional land-based mining — are currently unknown.

    Now oceanographers at MIT, the Scripps Institution of Oceanography, and elsewhere have carried out an experiment at sea for the first time to study the turbulent sediment plume that mining vessels would potentially release back into the ocean. Based on their observations, they developed a model that makes realistic predictions of how a sediment plume generated by mining operations would be transported through the ocean.

    The model predicts the size, concentration, and evolution of sediment plumes under various marine and mining conditions. These predictions, the researchers say, can now be used by biologists and environmental regulators to gauge whether and to what extent such plumes would impact surrounding sea life.

    “There is a lot of speculation about [deep-sea-mining’s] environmental impact,” says Thomas Peacock, professor of mechanical engineering at MIT. “Our study is the first of its kind on these midwater plumes, and can be a major contributor to international discussion and the development of regulations over the next two years.”

    The team’s study appears today in Nature Communications: Earth and Environment.

    Peacock’s co-authors at MIT include lead author Carlos Muñoz-Royo, Raphael Ouillon, Chinmay Kulkarni, Patrick Haley, Chris Mirabito, Rohit Supekar, Andrew Rzeznik, Eric Adams, Cindy Wang, and Pierre Lermusiaux, along with collaborators at Scripps, the U.S. Geological Survey, and researchers in Belgium and South Korea.

    Play video

    Out to sea

    Current deep-sea-mining proposals are expected to generate two types of sediment plumes in the ocean: “collector plumes” that vehicles generate on the seafloor as they drive around collecting nodules 4,500 meters below the surface; and possibly “midwater plumes” that are discharged through pipes that descend 1,000 meters or more into the ocean’s aphotic zone, where sunlight rarely penetrates.

    In their new study, Peacock and his colleagues focused on the midwater plume and how the sediment would disperse once discharged from a pipe.

    “The science of the plume dynamics for this scenario is well-founded, and our goal was to clearly establish the dynamic regime for such plumes to properly inform discussions,” says Peacock, who is the director of MIT’s Environmental Dynamics Laboratory.

    To pin down these dynamics, the team went out to sea. In 2018, the researchers boarded the research vessel Sally Ride and set sail 50 kilometers off the coast of Southern California. They brought with them equipment designed to discharge sediment 60 meters below the ocean’s surface.  

    “Using foundational scientific principles from fluid dynamics, we designed the system so that it fully reproduced a commercial-scale plume, without having to go down to 1,000 meters or sail out several days to the middle of the CCFZ,” Peacock says.

    Over one week the team ran a total of six plume experiments, using novel sensors systems such as a Phased Array Doppler Sonar (PADS) and epsilometer developed by Scripps scientists to monitor where the plumes traveled and how they evolved in shape and concentration. The collected data revealed that the sediment, when initially pumped out of a pipe, was a highly turbulent cloud of suspended particles that mixed rapidly with the surrounding ocean water.

    “There was speculation this sediment would form large aggregates in the plume that would settle relatively quickly to the deep ocean,” Peacock says. “But we found the discharge is so turbulent that it breaks the sediment up into its finest constituent pieces, and thereafter it becomes dilute so quickly that the sediment then doesn’t have a chance to stick together.”

    Dilution

    The team had previously developed a model to predict the dynamics of a plume that would be discharged into the ocean. When they fed the experiment’s initial conditions into the model, it produced the same behavior that the team observed at sea, proving the model could accurately predict plume dynamics within the vicinity of the discharge.

    The researchers used these results to provide the correct input for simulations of ocean dynamics to see how far currents would carry the initially released plume.

    “In a commercial operation, the ship is always discharging new sediment. But at the same time the background turbulence of the ocean is always mixing things. So you reach a balance. There’s a natural dilution process that occurs in the ocean that sets the scale of these plumes,” Peacock says. “What is key to determining the extent of the plumes is the strength of the ocean turbulence, the amount of sediment that gets discharged, and the environmental threshold level at which there is impact.”

    Based on their findings, the researchers have developed formulae to calculate the scale of a plume depending on a given environmental threshold. For instance, if regulators determine that a certain concentration of sediments could be detrimental to surrounding sea life, the formula can be used to calculate how far a plume above that concentration would extend, and what volume of ocean water would be impacted over the course of a 20-year nodule mining operation.

    “At the heart of the environmental question surrounding deep-sea mining is the extent of sediment plumes,” Peacock says. “It’s a multiscale problem, from micron-scale sediments, to turbulent flows, to ocean currents over thousands of kilometers. It’s a big jigsaw puzzle, and we are uniquely equipped to work on that problem and provide answers founded in science and data.”

    The team is now working on collector plumes, having recently returned from several weeks at sea to perform the first environmental monitoring of a nodule collector vehicle in the deep ocean in over 40 years.

    This research was supported in part by the MIT Environmental Solutions Initiative, the UC Ship Time Program, the MIT Policy Lab, the 11th Hour Project of the Schmidt Family Foundation, the Benioff Ocean Initiative, and Fundación Bancaria “la Caixa.” More

  • in

    Manipulating magnets in the quest for fusion

    “You get the high field, you get the performance.”

    Senior Research Scientist Brian LaBombard is summarizing what might be considered a guiding philosophy behind designing and engineering fusion devices at MIT’s Plasma Science and Fusion Center (PSFC). Beginning in 1972 with the Alcator A tokamak, through Alcator C (1978) and Alcator C-Mod (1991), the PSFC has used magnets with high fields to confine the hot plasma in compact, high-performance tokamaks. Joining what was then the Plasma Fusion Center as a graduate student in 1978, just as Alcator A was finishing its run, LaBombard is one of the few who has worked with each iteration of the high-field concept. Now he has turned his attention to the PSFC’s latest fusion venture, a fusion energy project called SPARC.

    Designed in collaboration with MIT spinoff Commonwealth Fusion Systems (CFS), SPARC employs novel high temperature superconducting (HTS) magnets at high-field to achieve fusion that will produce net energy gain. Some of these magnets will wrap toroidally around the tokamak’s doughnut-shaped vacuum chamber, confining fusion reactions and preventing damage to the walls of the device.

    The PSFC has spent three years researching, developing, and manufacturing a scaled version of these toroidal field (TF) coils — the toroidal field model coil, or TFMC. Before the TF coils can be built for SPARC, LaBombard and his team need to test the model coil under the conditions that it will experience in this tokamak.

    HTS magnets need to be cooled in order to remain superconducting, and to be protected from the heat generated by current. For testing, the TFMC will be enclosed in a cryostat, cooled to the low temperatures needed for eventual tokamak operation, and charged with current to produce magnetic field. How the magnet responds as the current is provided to the coil will determine if the technology is in hand to construct the 18 TF coils for SPARC.

    A history of achievement

    That LaBombard is part of the PSFC’s next fusion project is not unusual; that he is involved in designing, engineering, and testing the magnets is. Until 2018, when he led the R&D research team for one of the magnet designs being considered for SPARC, LaBombard’s 30-plus years of celebrated research had focused on other areas of the fusion question.

    As a graduate student, he gained early acclaim for the research he reported in his PhD thesis. Working on Alcator C, he made groundbreaking discoveries about the plasma physics in the “boundary” region of the tokamak, between the edge of the fusing core and the wall of the machine. With typical modesty, LaBombard credits some of his success to the fact that the topic was not well-studied, and that Alcator C provided measurements not possible on other machines.

    “People knew about the boundary, but nobody was really studying it in detail. On Alcator C, there were interesting phenomena, such as marfes [multifaceted asymmetric radiation from the edge], being detected for the first time. This pushed me to make boundary layer measurements in great detail that no one had ever seen before. It was all new territory, so I made a big splash.”

    That splash established him as a leading researcher in the field of boundary plasmas. After a two-year turn at the University of California at Los Angeles working on a plasma-wall test facility called PISCES, LaBombard, who grew up in New England, was happy to return to MIT to join the PSFC’s new Alcator C-Mod project.

    Over the next 28 years of C-Mod’s construction phase and operation, LaBombard continued to make groundbreaking contributions to understanding tokamak edge and divertor plasmas, and to design internal components that can survive the harsh conditions and provide plasma control — including C-Mod’s vertical target plate divertor and a unique divertor cryopump system. That experience led him to conceive of the “X-point target divertor” for handling extreme fusion power exhaust and to propose a national Advanced Divertor tokamak eXperiment (ADX) to test such ideas.

    All along, LaBombard’s true passion was in creating revolutionary diagnostics to unfold boundary layer physics and in guiding graduate students to do the same: an Omegatron, to measure impurity concentrations directly in the boundary plasma, resolved by charge-to-mass ratio; fast-scanning Langmuir-Mach probes to measure plasma flows; a Shoelace Antenna to provide insight into plasma fluctuations at the edge; the invention of a Mirror Langmuir Probe for the real-time measurements of plasma turbulence at high bandwidth.

    Switching sides

    His expertise established, he could have continued this focus on the edge of the plasma through collaborations with other laboratories and at the PSFC. Instead, he finds himself on the other side of the vacuum chamber, immersed in magnet design and technology. Challenged with finding an effective HTS magnet design for SPARC, he and his team were able to propose a winning strategy, one that seemed most likely to achieve the compact high field and high performance that PSFC tokamaks have been known for.

    LaBombard is stimulated by his new direction and excited about the upcoming test of the TFMC. His new role takes advantage of his physics background in electricity and magnetism. It also supports his passion for designing and building things, which he honed as high school apprentice to his machinist father and explored professionally building systems for Alcator C-Mod.

    “I view my principal role is to make sure the TF coil works electrically, the way it’s supposed to,” he says. “So it produces the magnetic field without damaging the coil.”

    A successful test would validate the understanding of how the new magnet technology works, and will prepare the team to build magnets for SPARC.

    Among those overseeing the hours of TFMC testing will be graduate students, current and former, reminding LaBombard of his own student days working on Alcator C, and of his years supervising students on Alcator C-Mod.

    “Those students were directly involved with Alcator C-Mod. They would jump in, make things happen — and as a team. This team spirit really enabled everyone to excel.

    “And looking to when SPARC was taking shape, you could see that across the board, from the new folks to the younger folks, they really got engaged by the spirit of Alcator — by recognition of the plasma performance that can be made possible by high magnetic fields.”

    He laughs as he looks to the past and to the future.

    “And they are taking it to SPARC.” More

  • in

    Push to make supply chains more sustainable continues to gain momentum

    Much of the effort to make businesses sustainable centers on their supply chains, which were severely disrupted during the Covid-19 pandemic. Yet, according to new research from the MIT Center for Transportation and Logistics (CTL), supply chain sustainability (SCS) investments hardly slowed, even as the pandemic raged.

    The finding, contained in the 2021 State of Supply Chain Sustainability report, puts companies on notice that they ignore the sustainability of their supply chains at their peril. This is particularly the case for enterprises with a low or moderate commitment to SCS, such as organizations classed as “Low Effort” and “Dreamer” in the new SCS Firm Typology that appears in the report for the first time. 

    The research also highlights the increasing pressure companies are under to devote resources to SCS. This pressure came from various stakeholders last year and suggests that sustainability in supply chains is a business trend, and not a fad.

    CTL publishes the 2021 State of Supply Chain Sustainability report in collaboration with the Council of Supply Chain Management Professionals (CSCMP), a leading professional membership association. This year’s report is sponsored by BlueYonder, C.H. Robinson, KPMG, Intel, and Sam’s Club.

    Sustainability efforts undaunted by Covid-19

    “We believe cooperation between sectors is vital to thoroughly understand the complexity and evolution of sustainability efforts more broadly,” says David Correll, CTL research scientist. “Our work with CSCMP and our sponsors helps us to embed this essential research and its findings within the context of the real-life practice of supply chain management.”

    The research included a large-scale international survey of supply chain professionals with over 2,400 respondents — more than double the number received for the previous report. The survey was conducted in late 2020. In addition, 21 in-depth executive interviews were completed, and relevant news items, social media content, and reports were analyzed for the report.

    More than 80 percent of survey respondents claimed the pandemic had no impact or increased their firms’ commitments to SCS: Eighty-three percent of the executives interviewed said that Covid-19 had either accelerated SCS activity or, at the very least, increased awareness and brought urgency to this growing field.

    The pressure to support sustainability in supply chains came from multiple sources, both internal and external, but increased the most among investors and industry associations. Internally, company executives were standout champions of SCS.

    Although there are many approaches to investing in SCS, interest in human rights protection and worker welfare, along with energy savings and renewable energy, increased significantly last year. Supplier development was the most common mechanism used by firms to deliver on their SCS promises.

    Increasing investment, some speed bumps

    Given the momentum behind SCS, the future will likely bring more investment in this increasingly important area of supply chain management. And practitioners — who bring deep domain expertise and well-rounded views of enterprises to the table — will become more influential as sustainability advocates.

    But there are some formidable obstacles to overcome, too. For example, it is notable that most of the momentum behind SCS appeared to come from large (1,000-plus employees) and very large (10,000-plus employees) companies covered by the research. Small- to medium-sized enterprises were far less committed, and more work is needed to bring them into the fold through a better understanding of the barriers they face.

    A broader concern is that more attention from stakeholders — notably consumers, investors, and regulators — will bring more scrutiny of firms’ SCS track records, and less tolerance of token efforts to make supply chains sustainable. Improved supply chain transparency and disclosure are critical to firms’ responses, the report suggests.

    Some high-profile issues, such as combating social injustices and climate change mitigation, will continue to stoke the pressure on companies to invest in meaningful SCS initiatives. It follows that the connection between companies’ SCS performance and their profitability is likely to strengthen over the next few years.

    Will companies follow through?

    As companies grapple with these issues, they will face some difficult decisions. For example, the chief operating officer of a consumer goods company interviewed for the report described operating through pandemic constraints as a “moral calculus” where some sustainability commitments had to be temporarily sacrificed to achieve others. Such a calculus will likely challenge many companies as they juggle their responses to SCS demands. A key question is to ascertain the degree to which companies’ recent net-zero commitments will translate into effective SCS actions over the next few years.

    The CTL and CSCMP research teams are laying the groundwork for the 2022 State of Supply Chain Sustainability report. This annual status report aims to help practitioners and the industry to make more effective and informed sustainability decisions. The questionnaire for next year’s report will open in September. More