More stories

  • in

    Startup turns mining waste into critical metals for the U.S.

    At the heart of the energy transition is a metal transition. Wind farms, solar panels, and electric cars require many times more copper, zinc, and nickel than their gas-powered alternatives. They also require more exotic metals with unique properties, known as rare earth elements, which are essential for the magnets that go into things like wind turbines and EV motors.Today, China dominates the processing of rare earth elements, refining around 60 percent of those materials for the world. With demand for such materials forecasted to skyrocket, the Biden administration has said the situation poses national and economic security threats.Substantial quantities of rare earth metals are sitting unused in the United States and many other parts of the world today. The catch is they’re mixed with vast quantities of toxic mining waste.Phoenix Tailings is scaling up a process for harvesting materials, including rare earth metals and nickel, from mining waste. The company uses water and recyclable solvents to collect oxidized metal, then puts the metal into a heated molten salt mixture and applies electricity.The company, co-founded by MIT alumni, says its pilot production facility in Woburn, Massachusetts, is the only site in the world producing rare earth metals without toxic byproducts or carbon emissions. The process does use electricity, but Phoenix Tailings currently offsets that with renewable energy contracts.The company expects to produce more than 3,000 tons of the metals by 2026, which would have represented about 7 percent of total U.S. production last year.Now, with support from the Department of Energy, Phoenix Tailings is expanding the list of metals it can produce and accelerating plans to build a second production facility.For the founding team, including MIT graduates Tomás Villalón ’14 and Michelle Chao ’14 along with Nick Myers and Anthony Balladon, the work has implications for geopolitics and the planet.“Being able to make your own materials domestically means that you’re not at the behest of a foreign monopoly,” Villalón says. “We’re focused on creating critical materials for the next generation of technologies. More broadly, we want to get these materials in ways that are sustainable in the long term.”Tackling a global problemVillalón got interested in chemistry and materials science after taking Course 3.091 (Introduction to Solid-State Chemistry) during his first year at MIT. In his senior year, he got a chance to work at Boston Metal, another MIT spinoff that uses an electrochemical process to decarbonize steelmaking at scale. The experience got Villalón, who majored in materials science and engineering, thinking about creating more sustainable metallurgical processes.But it took a chance meeting with Myers at a 2018 Bible study for Villalón to act on the idea.“We were discussing some of the major problems in the world when we came to the topic of electrification,” Villalón recalls. “It became a discussion about how the U.S. gets its materials and how we should think about electrifying their production. I was finally like, ‘I’ve been working in the space for a decade, let’s go do something about it.’ Nick agreed, but I thought he just wanted to feel good about himself. Then in July, he randomly called me and said, ‘I’ve got [$7,000]. When do we start?’”Villalón brought in Chao, his former MIT classmate and fellow materials science and engineering major, and Myers brought Balladon, a former co-worker, and the founders started experimenting with new processes for producing rare earth metals.“We went back to the base principles, the thermodynamics I learned with MIT professors Antoine Allanore and Donald Sadoway, and understanding the kinetics of reactions,” Villalón says. “Classes like Course 3.022 (Microstructural Evolution in Materials) and 3.07 (Introduction to Ceramics) were also really useful. I touched on every aspect I studied at MIT.”The founders also received guidance from MIT’s Venture Mentoring Service (VMS) and went through the U.S. National Science Foundation’s I-Corps program. Sadoway served as an advisor for the company.After drafting one version of their system design, the founders bought an experimental quantity of mining waste, known as red sludge, and set up a prototype reactor in Villalón’s backyard. The founders ended up with a small amount of product, but they had to scramble to borrow the scientific equipment needed to determine what exactly it was. It turned out to be a small amount of rare earth concentrate along with pure iron.Today, at the company’s refinery in Woburn, Phoenix Tailings puts mining waste rich in rare earth metals into its mixture and heats it to around 1,300 degrees Fahrenheit. When it applies an electric current to the mixture, pure metal collects on an electrode. The process leaves minimal waste behind.“The key for all of this isn’t just the chemistry, but how everything is linked together, because with rare earths, you have to hit really high purities compared to a conventionally produced metal,” Villalón explains. “As a result, you have to be thinking about the purity of your material the entire way through.”From rare earths to nickel, magnesium, and moreVillalón says the process is economical compared to conventional production methods, produces no toxic byproducts, and is completely carbon free when renewable energy sources are used for electricity.The Woburn facility is currently producing several rare earth elements for customers, including neodymium and dysprosium, which are important in magnets. Customers are using the materials for things likewind turbines, electric cars, and defense applications.The company has also received two grants with the U.S. Department of Energy’s ARPA-E program totaling more than $2 million. Its 2023 grant supports the development of a system to extract nickel and magnesium from mining waste through a process that uses carbonization and recycled carbon dioxide. Both nickel and magnesium are critical materials for clean energy applications like batteries.The most recent grant will help the company adapt its process to produce iron from mining waste without emissions or toxic byproducts. Phoenix Tailings says its process is compatible with a wide array of ore types and waste materials, and the company has plenty of material to work with: Mining and processing mineral ores generates about 1.8 billion tons of waste in the U.S. each year.“We want to take our knowledge from processing the rare earth metals and slowly move it into other segments,” Villalón explains. “We simply have to refine some of these materials here. There’s no way we can’t. So, what does that look like from a regulatory perspective? How do we create approaches that are economical and environmentally compliant not just now, but 30 years from now?” More

  • in

    3 Questions: Can we secure a sustainable supply of nickel?

    As the world strives to cut back on carbon emissions, demand for minerals and metals needed for clean energy technologies is growing rapidly, sometimes straining existing supply chains and harming local environments. In a new study published today in Joule, Elsa Olivetti, a professor of materials science and engineering and director of the Decarbonizing Energy and Industry mission within MIT’s Climate Project, along with recent graduates Basuhi Ravi PhD ’23 and Karan Bhuwalka PhD ’24 and nine others, examine the case of nickel, which is an essential element for some electric vehicle batteries and parts of some solar panels and wind turbines.How robust is the supply of this vital metal, and what are the implications of its extraction for the local environments, economies, and communities in the places where it is mined? MIT News asked Olivetti, Ravi, and Bhuwalka to explain their findings.Q: Why is nickel becoming more important in the clean energy economy, and what are some of the potential issues in its supply chain?Olivetti: Nickel is increasingly important for its role in EV batteries, as well as other technologies such as wind and solar. For batteries, high-purity nickel sulfate is a key input to the cathodes of EV batteries, which enables high energy density in batteries and increased driving range for EVs. As the world transitions away from fossil fuels, the demand for EVs, and consequently for nickel, has increased dramatically and is projected to continue to do so.The nickel supply chain for battery-grade nickel sulfate includes mining nickel from ore deposits, processing it to a suitable nickel intermediary, and refining it to nickel sulfate. The potential issues in the supply chain can be broadly described as land use concerns in the mining stage, and emissions concerns in the processing stage. This is obviously oversimplified, but as a basic structure for our inquiry we thought about it this way. Nickel mining is land-intensive, leading to deforestation, displacement of communities, and potential contamination of soil and water resources from mining waste. In the processing step, the use of fossil fuels leads to direct emissions including particulate matter and sulfur oxides. In addition, some emerging processing pathways are particularly energy-intensive, which can double the carbon footprint of nickel-rich batteries compared to the current average.Q: What is Indonesia’s role in the global nickel supply, and what are the consequences of nickel extraction there and in other major supply countries?Ravi: Indonesia plays a critical role in nickel supply, holding the world’s largest nickel reserves and supplying nearly half of the globally mined nickel in 2023. The country’s nickel production has seen a remarkable tenfold increase since 2016. This production surge has fueled economic growth in some regions, but also brought notable environmental and social impacts to nickel mining and processing areas.Nickel mining expansion in Indonesia has been linked to health impacts due to air pollution in the islands where nickel processing is prominent, as well as deforestation in some of the most biodiversity-rich locations on the planet. Reports of displacement of indigenous communities, land grabbing, water rights issues, and inadequate job quality in and around mines further highlight the social concerns and unequal distribution of burdens and benefits in Indonesia. Similar concerns exist in other major nickel-producing countries, where mining activities can negatively impact the environment, disrupt livelihoods, and exacerbate inequalities.On a global scale, Indonesia’s reliance on coal-based energy for nickel processing, particularly in energy-intensive smelting and leaching of a clay-like material called laterite, results in a high carbon intensity for nickel produced in the region, compared to other major producing regions such as Australia.Q: What role can industry and policymakers play in helping to meet growing demand while improving environmental safety?Bhuwalka: In consuming countries, policies can foster “discerning demand,” which means creating incentives for companies to source nickel from producers that prioritize sustainability. This can be achieved through regulations that establish acceptable environmental footprints for imported materials, such as limits on carbon emissions from nickel production. For example, the EU’s Critical Raw Materials Act and the U.S. Inflation Reduction Act could be leveraged to promote responsible sourcing. Additionally, governments can use their purchasing power to favor sustainably produced nickel in public procurement, which could influence industry practices and encourage the adoption of sustainability standards.On the supply side, nickel-producing countries like Indonesia can implement policies to mitigate the adverse environmental and social impacts of nickel extraction. This includes strengthening environmental regulations and enforcement to reduce the footprint of mining and processing, potentially through stricter pollution limits and responsible mine waste management. In addition, supporting community engagement, implementing benefit-sharing mechanisms, and investing in cleaner nickel processing technologies are also crucial.Internationally, harmonizing sustainability standards and facilitating capacity building and technology transfer between developed and developing countries can create a level playing field and prevent unsustainable practices. Responsible investment practices by international financial institutions, favoring projects that meet high environmental and social standards, can also contribute to a stable and sustainable nickel supply chain. More

  • in

    Study: Fusion energy could play a major role in the global response to climate change

    For many decades, fusion has been touted as the ultimate source of abundant, clean electricity. Now, as the world faces the need to reduce carbon emissions to prevent catastrophic climate change, making commercial fusion power a reality takes on new importance. In a power system dominated by low-carbon variable renewable energy sources (VREs) such as solar and wind, “firm” electricity sources are needed to kick in whenever demand exceeds supply — for example, when the sun isn’t shining or the wind isn’t blowing and energy storage systems aren’t up to the task. What is the potential role and value of fusion power plants (FPPs) in such a future electric power system — a system that is not only free of carbon emissions but also capable of meeting the dramatically increased global electricity demand expected in the coming decades?Working together for a year-and-a-half, investigators in the MIT Energy Initiative (MITEI) and the MIT Plasma Science and Fusion Center (PSFC) have been collaborating to answer that question. They found that — depending on its future cost and performance — fusion has the potential to be critically important to decarbonization. Under some conditions, the availability of FPPs could reduce the global cost of decarbonizing by trillions of dollars. More than 25 experts together examined the factors that will impact the deployment of FPPs, including costs, climate policy, operating characteristics, and other factors. They present their findings in a new report funded through MITEI and entitled “The Role of Fusion Energy in a Decarbonized Electricity System.”“Right now, there is great interest in fusion energy in many quarters — from the private sector to government to the general public,” says the study’s principal investigator (PI) Robert C. Armstrong, MITEI’s former director and the Chevron Professor of Chemical Engineering, Emeritus. “In undertaking this study, our goal was to provide a balanced, fact-based, analysis-driven guide to help us all understand the prospects for fusion going forward.” Accordingly, the study takes a multidisciplinary approach that combines economic modeling, electric grid modeling, techno-economic analysis, and more to examine important factors that are likely to shape the future deployment and utilization of fusion energy. The investigators from MITEI provided the energy systems modeling capability, while the PSFC participants provided the fusion expertise.Fusion technologies may be a decade away from commercial deployment, so the detailed technology and costs of future commercial FPPs are not known at this point. As a result, the MIT research team focused on determining what cost levels fusion plants must reach by 2050 to achieve strong market penetration and make a significant contribution to the decarbonization of global electricity supply in the latter half of the century.The value of having FPPs available on an electric grid will depend on what other options are available, so to perform their analyses, the researchers needed estimates of the future cost and performance of those options, including conventional fossil fuel generators, nuclear fission power plants, VRE generators, and energy storage technologies, as well as electricity demand for specific regions of the world. To find the most reliable data, they searched the published literature as well as results of previous MITEI and PSFC analyses.Overall, the analyses showed that — while the technology demands of harnessing fusion energy are formidable — so are the potential economic and environmental payoffs of adding this firm, low-carbon technology to the world’s portfolio of energy options.Perhaps the most remarkable finding is the “societal value” of having commercial FPPs available. “Limiting warming to 1.5 degrees C requires that the world invest in wind, solar, storage, grid infrastructure, and everything else needed to decarbonize the electric power system,” explains Randall Field, executive director of the fusion study and MITEI’s director of research. “The cost of that task can be far lower when FPPs are available as a source of clean, firm electricity.” And the benefit varies depending on the cost of the FPPs. For example, assuming that the cost of building a FPP is $8,000 per kilowatt (kW) in 2050 and falls to $4,300/kW in 2100, the global cost of decarbonizing electric power drops by $3.6 trillion. If the cost of a FPP is $5,600/kW in 2050 and falls to $3,000/kW in 2100, the savings from having the fusion plants available would be $8.7 trillion. (Those calculations are based on differences in global gross domestic product and assume a discount rate of 6 percent. The undiscounted value is about 20 times larger.)The goal of other analyses was to determine the scale of deployment worldwide at selected FPP costs. Again, the results are striking. For a deep decarbonization scenario, the total global share of electricity generation from fusion in 2100 ranges from less than 10 percent if the cost of fusion is high to more than 50 percent if the cost of fusion is low.Other analyses showed that the scale and timing of fusion deployment vary in different parts of the world. Early deployment of fusion can be expected in wealthy nations such as European countries and the United States that have the most aggressive decarbonization policies. But certain other locations — for example, India and the continent of Africa — will have great growth in fusion deployment in the second half of the century due to a large increase in demand for electricity during that time. “In the U.S. and Europe, the amount of demand growth will be low, so it’ll be a matter of switching away from dirty fuels to fusion,” explains Sergey Paltsev, deputy director of the MIT Center for Sustainability Science and Strategy and a senior research scientist at MITEI. “But in India and Africa, for example, the tremendous growth in overall electricity demand will be met with significant amounts of fusion along with other low-carbon generation resources in the later part of the century.”A set of analyses focusing on nine subregions of the United States showed that the availability and cost of other low-carbon technologies, as well as how tightly carbon emissions are constrained, have a major impact on how FPPs would be deployed and used. In a decarbonized world, FPPs will have the highest penetration in locations with poor diversity, capacity, and quality of renewable resources, and limits on carbon emissions will have a big impact. For example, the Atlantic and Southeast subregions have low renewable resources. In those subregions, wind can produce only a small fraction of the electricity needed, even with maximum onshore wind buildout. Thus, fusion is needed in those subregions, even when carbon constraints are relatively lenient, and any available FPPs would be running much of the time. In contrast, the Central subregion of the United States has excellent renewable resources, especially wind. Thus, fusion competes in the Central subregion only when limits on carbon emissions are very strict, and FPPs will typically be operated only when the renewables can’t meet demand.An analysis of the power system that serves the New England states provided remarkably detailed results. Using a modeling tool developed at MITEI, the fusion team explored the impact of using different assumptions about not just cost and emissions limits but even such details as potential land-use constraints affecting the use of specific VREs. This approach enabled them to calculate the FPP cost at which fusion units begin to be installed. They were also able to investigate how that “threshold” cost changed with changes in the cap on carbon emissions. The method can even show at what price FPPs begin to replace other specific generating sources. In one set of runs, they determined the cost at which FPPs would begin to displace floating platform offshore wind and rooftop solar.“This study is an important contribution to fusion commercialization because it provides economic targets for the use of fusion in the electricity markets,” notes Dennis G. Whyte, co-PI of the fusion study, former director of the PSFC, and the Hitachi America Professor of Engineering in the Department of Nuclear Science and Engineering. “It better quantifies the technical design challenges for fusion developers with respect to pricing, availability, and flexibility to meet changing demand in the future.”The researchers stress that while fission power plants are included in the analyses, they did not perform a “head-to-head” comparison between fission and fusion, because there are too many unknowns. Fusion and nuclear fission are both firm, low-carbon electricity-generating technologies; but unlike fission, fusion doesn’t use fissile materials as fuels, and it doesn’t generate long-lived nuclear fuel waste that must be managed. As a result, the regulatory requirements for FPPs will be very different from the regulations for today’s fission power plants — but precisely how they will differ is unclear. Likewise, the future public perception and social acceptance of each of these technologies cannot be projected, but could have a major influence on what generation technologies are used to meet future demand.The results of the study convey several messages about the future of fusion. For example, it’s clear that regulation can be a potentially large cost driver. This should motivate fusion companies to minimize their regulatory and environmental footprint with respect to fuels and activated materials. It should also encourage governments to adopt appropriate and effective regulatory policies to maximize their ability to use fusion energy in achieving their decarbonization goals. And for companies developing fusion technologies, the study’s message is clearly stated in the report: “If the cost and performance targets identified in this report can be achieved, our analysis shows that fusion energy can play a major role in meeting future electricity needs and achieving global net-zero carbon goals.” More

  • in

    Solar-powered desalination system requires no extra batteries

    MIT engineers have built a new desalination system that runs with the rhythms of the sun.The solar-powered system removes salt from water at a pace that closely follows changes in solar energy. As sunlight increases through the day, the system ramps up its desalting process and automatically adjusts to any sudden variation in sunlight, for example by dialing down in response to a passing cloud or revving up as the skies clear.Because the system can quickly react to subtle changes in sunlight, it maximizes the utility of solar energy, producing large quantities of clean water despite variations in sunlight throughout the day. In contrast to other solar-driven desalination designs, the MIT system requires no extra batteries for energy storage, nor a supplemental power supply, such as from the grid.The engineers tested a community-scale prototype on groundwater wells in New Mexico over six months, working in variable weather conditions and water types. The system harnessed on average over 94 percent of the electrical energy generated from the system’s solar panels to produce up to 5,000 liters of water per day despite large swings in weather and available sunlight.“Conventional desalination technologies require steady power and need battery storage to smooth out a variable power source like solar. By continually varying power consumption in sync with the sun, our technology directly and efficiently uses solar power to make water,” says Amos Winter, the Germeshausen Professor of Mechanical Engineering and director of the K. Lisa Yang Global Engineering and Research (GEAR) Center at MIT. “Being able to make drinking water with renewables, without requiring battery storage, is a massive grand challenge. And we’ve done it.”The system is geared toward desalinating brackish groundwater — a salty source of water that is found in underground reservoirs and is more prevalent than fresh groundwater resources. The researchers see brackish groundwater as a huge untapped source of potential drinking water, particularly as reserves of fresh water are stressed in parts of the world. They envision that the new renewable, battery-free system could provide much-needed drinking water at low costs, especially for inland communities where access to seawater and grid power are limited.“The majority of the population actually lives far enough from the coast, that seawater desalination could never reach them. They consequently rely heavily on groundwater, especially in remote, low-income regions. And unfortunately, this groundwater is becoming more and more saline due to climate change,” says Jonathan Bessette, MIT PhD student in mechanical engineering. “This technology could bring sustainable, affordable clean water to underreached places around the world.”The researchers report details the new system in a paper appearing today in Nature Water. The study’s co-authors are Bessette, Winter, and staff engineer Shane Pratt.Pump and flowThe new system builds on a previous design, which Winter and his colleagues, including former MIT postdoc Wei He, reported earlier this year. That system aimed to desalinate water through “flexible batch electrodialysis.”Electrodialysis and reverse osmosis are two of the main methods used to desalinate brackish groundwater. With reverse osmosis, pressure is used to pump salty water through a membrane and filter out salts. Electrodialysis uses an electric field to draw out salt ions as water is pumped through a stack of ion-exchange membranes.Scientists have looked to power both methods with renewable sources. But this has been especially challenging for reverse osmosis systems, which traditionally run at a steady power level that’s incompatible with naturally variable energy sources such as the sun.Winter, He, and their colleagues focused on electrodialysis, seeking ways to make a more flexible, “time-variant” system that would be responsive to variations in renewable, solar power.In their previous design, the team built an electrodialysis system consisting of water pumps, an ion-exchange membrane stack, and a solar panel array. The innovation in this system was a model-based control system that used sensor readings from every part of the system to predict the optimal rate at which to pump water through the stack and the voltage that should be applied to the stack to maximize the amount of salt drawn out of the water.When the team tested this system in the field, it was able to vary its water production with the sun’s natural variations. On average, the system directly used 77 percent of the available electrical energy produced by the solar panels, which the team estimated was 91 percent more than traditionally designed solar-powered electrodialysis systems.Still, the researchers felt they could do better.“We could only calculate every three minutes, and in that time, a cloud could literally come by and block the sun,” Winter says. “The system could be saying, ‘I need to run at this high power.’ But some of that power has suddenly dropped because there’s now less sunlight. So, we had to make up that power with extra batteries.”Solar commandsIn their latest work, the researchers looked to eliminate the need for batteries, by shaving the system’s response time to a fraction of a second. The new system is able to update its desalination rate, three to five times per second. The faster response time enables the system to adjust to changes in sunlight throughout the day, without having to make up any lag in power with additional power supplies.The key to the nimbler desalting is a simpler control strategy, devised by Bessette and Pratt. The new strategy is one of “flow-commanded current control,” in which the system first senses the amount of solar power that is being produced by the system’s solar panels. If the panels are generating more power than the system is using, the controller automatically “commands” the system to dial up its pumping, pushing more water through the electrodialysis stacks. Simultaneously, the system diverts some of the additional solar power by increasing the electrical current delivered to the stack, to drive more salt out of the faster-flowing water.“Let’s say the sun is rising every few seconds,” Winter explains. “So, three times a second, we’re looking at the solar panels and saying, ‘Oh, we have more power — let’s bump up our flow rate and current a little bit.’ When we look again and see there’s still more excess power, we’ll up it again. As we do that, we’re able to closely match our consumed power with available solar power really accurately, throughout the day. And the quicker we loop this, the less battery buffering we need.”The engineers incorporated the new control strategy into a fully automated system that they sized to desalinate brackish groundwater at a daily volume that would be enough to supply a small community of about 3,000 people. They operated the system for six months on several wells at the Brackish Groundwater National Desalination Research Facility in Alamogordo, New Mexico. Throughout the trial, the prototype operated under a wide range of solar conditions, harnessing over 94 percent of the solar panel’s electrical energy, on average, to directly power desalination.“Compared to how you would traditionally design a solar desal system, we cut our required battery capacity by almost 100 percent,” Winter says.The engineers plan to further test and scale up the system in hopes of supplying larger communities, and even whole municipalities, with low-cost, fully sun-driven drinking water.“While this is a major step forward, we’re still working diligently to continue developing lower cost, more sustainable desalination methods,” Bessette says.“Our focus now is on testing, maximizing reliability, and building out a product line that can provide desalinated water using renewables to multiple markets around the world,” Pratt adds.The team will be launching a company based on their technology in the coming months.This research was supported in part by the National Science Foundation, the Julia Burke Foundation, and the MIT Morningside Academy of Design. This work was additionally supported in-kind by Veolia Water Technologies and Solutions and Xylem Goulds.  More

  • in

    Applying risk and reliability analysis across industries

    On Feb. 1, 2003, the space shuttle Columbia disintegrated as it returned to Earth, killing all seven astronauts on board. The tragic incident compelled NASA to amp up their risk safety assessments and protocols. They knew whom to call: Curtis Smith PhD ’02, who is now the KEPCO Professor of the Practice of Nuclear Science and Engineering at MIT.The nuclear community has always been a leader in probabilistic risk analysis and Smith’s work in risk-related research had made him an established expert in the field. When NASA came knocking, Smith had been working for the Nuclear Regulatory Commission (NRC) at the Idaho National Laboratory (INL). He pivoted quickly. For the next decade, Smith worked with NASA’s Office of Safety and Mission Assurance supporting their increased use of risk analysis. It was a software tool that Smith helped develop, SAPHIRE, that NASA would adopt to bolster its own risk analysis program.At MIT, Smith’s focus is on both sides of system operation: risk and reliability. A research project he has proposed involves evaluating the reliability of 3D-printed components and parts for nuclear reactors.Growing up in IdahoMIT is a distance from where Smith grew up on the Shoshone-Bannock Native American reservation in Fort Hall, Idaho. His father worked at a chemical manufacturing plant, while his mother and grandmother operated a small restaurant on the reservation.Southeast Idaho had a significant population of migrant workers and Smith grew up with a diverse group of friends, mostly Native American and Hispanic. “It was a largely positive time and set a worldview for me in many wonderful ways,” Smith remembers. When he was a junior in high school, the family moved to Pingree, Idaho, a small town of barely 500. Smith attended Snake River High, a regional school, and remembered the deep impact his teachers had. “I learned a lot in grade school and had great teachers, so my love for education probably started there. I tried to emulate my teachers,” Smith says.Smith went to Idaho State University in Pocatello for college, a 45-minute drive from his family. Drawn to science, he decided he wanted to study a subject that would benefit humanity the most: nuclear engineering. Fortunately, Idaho State has a strong nuclear engineering program. Smith completed a master’s degree in the same field at ISU while working for the Federal Bureau of Investigation in the security department during the swing shift — 5 p.m. to 1 a.m. — at the FBI offices in Pocatello. “It was a perfect job while attending grad school,” Smith says.His KEPCO Professor of the Practice appointment is the second stint for Smith at MIT: He completed his PhD in the Department of Nuclear Science and Engineering (NSE) under the advisement of Professor George Apostolakis in 2002.A career in risk analysis and managementAfter a doctorate at MIT, Smith returned to Idaho, conducting research in risk analysis for the NRC. He also taught technical courses and developed risk analysis software. “We did a whole host of work that supported the current fleet of nuclear reactors that we have,” Smith says.He was 10 years into his career at INL when NASA recruited him, leaning on his expertise in risk analysis to translate it into space missions. “I didn’t really have a background in aerospace, but I was able to bring all the engineering I knew, conducting risk analysis for nuclear missions. It was really exciting and I learned a lot about aerospace,” Smith says.Risk analysis uses statistics and data to answer complex questions involving safety. Among his projects: analyzing the risk involved in a Mars rover mission with a radioisotope-generated power source for the rover. Even if the necessary plutonium is encased in really strong material, calculations for risk have to factor in all eventualities, including the rocket blowing up.When the Fukushima incident happened in 2011, the Department of Energy (DoE) was more supportive of safety and risk analysis research. Smith found himself in the center of the action again, supporting large DoE research programs. He then moved to become the director of the Nuclear Safety and Regulatory Research Division at the INL. Smith found he loved the role, mentoring and nurturing the careers of a diverse set of scientists. “It turned out to be much more rewarding than I had expected,” Smith says. Under his leadership, the division grew from 45 to almost 90 research staff and won multiple national awards.Return to MITMIT NSE came calling in 2022, looking to fill the position of professor of the practice, an offer Smith couldn’t refuse. The department was looking to bulk up its risk and reliability offerings and Smith made a great fit. The DoE division he had been supervising had grown wings enough for Smith to seek out something new.“Just getting back to Boston is exciting,” Smith says. The last go-around involved bringing the family to the city and included a lot of sleepless nights. Smith’s wife, Jacquie, is also excited about being closer to the New England fan base. The couple has invested in season tickets for the Patriots and look to attend as many sporting events as possible.Smith is most excited about adding to the risk and reliability offerings at MIT at a time when the subject has become especially important for nuclear power. “I’m grateful for the opportunity to bring my knowledge and expertise from the last 30 years to the field,” he says. Being a professor of the practice of NSE carries with it a responsibility to unite theory and practice, something Smith is especially good at. “We always have to answer the question of, ‘How do I take the research and make that practical,’ especially for something important like nuclear power, because we need much more of these ideas in industry,” he says.He is particularly excited about developing the next generation of nuclear scientists. “Having the ability to do this at a place like MIT is especially fulfilling and something I have been desiring my whole career,” Smith says. More

  • in

    3 Questions: Bridging anthropology and engineering for clean energy in Mongolia

    In 2021, Michael Short, an associate professor of nuclear science and engineering, approached professor of anthropology Manduhai Buyandelger with an unusual pitch: collaborating on a project to prototype a molten salt heat bank in Mongolia, Buyandelger’s country of origin and place of her scholarship. It was also an invitation to forge a novel partnership between two disciplines that rarely overlap. Developed in collaboration with the National University of Mongolia (NUM), the device was built to provide heat for people in colder climates, and in places where clean energy is a challenge. Buyandelger and Short teamed up to launch Anthro-Engineering Decarbonization at the Million-Person Scale, an initiative intended to advance the heat bank idea in Mongolia, and ultimately demonstrate its potential as a scalable clean heat source in comparably challenging sites around the world. This project received funding from the inaugural MIT Climate and Sustainability Consortium Seed Awards program. In order to fund various components of the project, especially student involvement and additional staff, the project also received support from the MIT Global Seed Fund, New Engineering Education Transformation (NEET), Experiential Learning Office, Vice Provost for International Activities, and d’Arbeloff Fund for Excellence in Education.As part of this initiative, the partners developed a special topic course in anthropology to teach MIT undergraduates about Mongolia’s unique energy and climate challenges, as well as the historical, social, and economic context in which the heat bank would ideally find a place. The class 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale) prepares MIT students for a January Independent Activities Period (IAP) trip to the Mongolian capital of Ulaanbaatar, where they embed with Mongolian families, conduct research, and collaborate with their peers. Mongolian students also engaged in the project. Anthropology research scientist and lecturer Lauren Bonilla, who has spent the past two decades working in Mongolia, joined to co-teach the class and lead the IAP trips to Mongolia. With the project now in its third year and yielding some promising solutions on the ground, Buyandelger and Bonilla reflect on the challenges for anthropologists of advancing a clean energy technology in a developing nation with a unique history, politics, and culture. Q: Your roles in the molten salt heat bank project mark departures from your typical academic routine. How did you first approach this venture?Buyandelger: As an anthropologist of contemporary religion, politics, and gender in Mongolia, I have had little contact with the hard sciences or building or prototyping technology. What I do best is listening to people and working with narratives. When I first learned about this device for off-the-grid heating, a host of issues came straight to mind right away that are based on socioeconomic and cultural context of the place. The salt brick, which is encased in steel, must be heated to 400 degrees Celsius in a central facility, then driven to people’s homes. Transportation is difficult in Ulaanbaatar, and I worried about road safety when driving the salt brick to gers [traditional Mongolian homes] where many residents live. The device seemed a bit utopian to me, but I realized that this was an amazing educational opportunity: We could use the heat bank as part of an ethnographic project, so students could learn about the everyday lives of people — crucially, in the dead of winter — and how they might respond to this new energy technology in the neighborhoods of Ulaanbaatar.Bonilla: When I first went to Mongolia in the early 2000s as an undergraduate student, the impacts of climate change were already being felt. There had been a massive migration to the capital after a series of terrible weather events that devastated the rural economy. Coal mining had emerged as a vital part of the economy, and I was interested in how people regarded this industry that both provided jobs and damaged the air they breathed. I am trained as a human geographer, which involves seeing how things happening in a local place correspond to things happening at a global scale. Thinking about climate or sustainability from this perspective means making linkages between social life and environmental life. In Mongolia, people associated coal with national progress. Based on historical experience, they had low expectations for interventions brought by outsiders to improve their lives. So my first take on the molten salt project was that this was no silver bullet solution. At the same time, I wanted to see how we could make this a great project-based learning experience for students, getting them to think about the kind of research necessary to see if some version of the molten salt would work.Q: After two years, what lessons have you and the students drawn from both the class and the Ulaanbaatar field trips?Buyandelger: We wanted to make sure MIT students would not go to Mongolia and act like consultants. We taught them anthropological methods so they could understand the experiences of real people and think about how to bring people and new technologies together. The students, from engineering and anthropological and social science backgrounds, became critical thinkers who could analyze how people live in ger districts. When they stay with families in Ulaanbaatar in January, they not only experience the cold and the pollution, but they observe what people do for work, how parents care for their children, how they cook, sleep, and get from one place to another. This enables them to better imagine and test out how these people might utilize the molten salt heat bank in their homes.Bonilla: In class, students learn that interventions like this often fail because the implementation process doesn’t work, or the technology doesn’t meet people’s real needs. This is where anthropology is so important, because it opens up the wider landscape in which you’re intervening. We had really difficult conversations about the professional socialization of engineers and social scientists. Engineers love to work within boxes, but don’t necessarily appreciate the context in which their invention will serve.As a group, we discussed the provocative notion that engineers construct and anthropologists deconstruct. This makes it seem as if engineers are creators, and anthropologists are brought in as add-ons to consult and critique engineers’ creations. Our group conversation concluded that a project such as ours benefits from an iterative back-and-forth between the techno-scientific and humanistic disciplines.Q: So where does the molten salt brick project stand?Bonilla: Our research in Mongolia helped us produce a prototype that can work: Our partners at NUM are developing a hybrid stove that incorporates the molten salt brick. Supervised by instructor Nathan Melenbrink of MIT’s NEET program, our engineering students have been involved in this prototyping as well.The concept is for a family to heat it up using a coal fire once a day and it warms their home overnight. Based on our anthropological research, we believe that this stove would work better than the device as originally conceived. It won’t eliminate coal use in residences, but it will reduce emissions enough to have a meaningful impact on ger districts in Ulaanbaatar. The challenge now is getting funding to NUM so they can test different salt combinations and stove models and employ local blacksmiths to work on the design.This integrated stove/heat bank will not be the ultimate solution to the heating and pollution crisis in Mongolia. But it will be something that can inspire even more ideas. We feel with this project we are planting all kinds of seeds that will germinate in ways we cannot anticipate. It has sparked new relationships between MIT and Mongolian students, and catalyzed engineers to integrate a more humanistic, anthropological perspective in their work.Buyandelger: Our work illustrates the importance of anthropology in responding to the unpredictable and diverse impacts of climate change. Without our ethnographic research — based on participant observation and interviews, led by Dr. Bonilla, — it would have been impossible to see how the prototyping and modifications could be done, and where the molten salt brick could work and what shape it needed to take. This project demonstrates how indispensable anthropology is in moving engineering out of labs and companies and directly into communities.Bonilla: This is where the real solutions for climate change are going to come from. Even though we need solutions quickly, it will also take time for new technologies like molten salt bricks to take root and grow. We don’t know where the outcomes of these experiments will take us. But there’s so much that’s emerging from this project that I feel very hopeful about. More

  • in

    Aligning economic and regulatory frameworks for today’s nuclear reactor technology

    Liam Hines ’22 didn’t move to Sarasota, Florida, until high school, but he’s a Floridian through and through. He jokes that he’s even got a floral shirt, what he calls a “Florida formal,” for every occasion.Which is why it broke his heart when toxic red algae used to devastate the Sunshine State’s coastline, including at his favorite beach, Caspersen. The outbreak made headline news during his high school years, with the blooms destroying marine wildlife and adversely impacting the state’s tourism-driven economy.In Florida, Hines says, environmental awareness is pretty high because everyday citizens are being directly impacted by climate change. After all, it’s hard not to worry when beautiful white sand beaches are covered in dead fish. Ongoing concerns about the climate cemented Hines’ resolve to pick a career that would have a strong “positive environmental impact.” He chose nuclear, as he saw it as “a green, low-carbon-emissions energy source with a pretty straightforward path to implementation.”

    Liam Hines: Ensuring that nuclear policy keeps up with nuclear technology.

    Undergraduate studies at MITKnowing he wanted a career in the sciences, Hines applied and got accepted to MIT for undergraduate studies in fall 2018. An orientation program hosted by the Department of Nuclear Science and Engineering (NSE) sold him on the idea of pursuing the field. “The department is just a really tight-knit community, and that really appealed to me,” Hines says.During his undergraduate years, Hines realized he needed a job to pay part of his bills. “Instead of answering calls at the dorm front desk or working in the dining halls, I decided I’m going to become a licensed nuclear operator onsite,” he says. “Reactor operations offer so much hands-on experience with real nuclear systems. It doesn’t hurt that it pays better.” Becoming a licensed nuclear reactor operator is hard work, however, involving a year-long training process studying maintenance, operations, and equipment oversight. A bonus: The job, supervising the MIT Nuclear Reactor Laboratory, taught him the fundamentals of nuclear physics and engineering.Always interested in research, Hines got an early start by exploring the regulatory challenges of advanced fusion systems. There have been questions related to licensing requirements and the safety consequences of the onsite radionuclide inventory. Hines’ undergraduate research work involved studying precedent for such fusion facilities and comparing them to experimental facilities such as the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory.Doctoral focus on legal and regulatory frameworksWhen scientists want to make technologies as safe as possible, they have to do two things in concert: First they evaluate the safety of the technology, and then make sure legal and regulatory structures take into account the evolution of these advanced technologies. Hines is taking such a two-pronged approach to his doctoral work on nuclear fission systems.Under the guidance of Professor Koroush Shirvan, Hines is conducting systems modeling of various reactor cores that include graphite, and simulating operations under long time spans. He then studies radionuclide transport from low-level waste facilities — the consequences of offsite storage after 50 or 100 or even 10,000 years of storage. The work has to make sure to hit safety and engineering margins, but also tread a fine line. “You want to make sure you’re not over-engineering systems and adding undue cost, but also making sure to assess the unique hazards of these advanced technologies as accurately as possible,” Hines says.On a parallel track, under Professor Haruko Wainwright’s advisement, Hines is applying the current science on radionuclide geochemistry to track radionuclide wastes and map their profile for hazards. One of the challenges fission reactors face is that existing low-level waste regulations were fine-tuned to old reactors. Regulations have not kept up: “Now that we have new technologies with new wastes, some of the hazards of the new waste are completely missed by existing standards,” Hines says. He is working to seal these gaps.A philosophy-driven outlookHines is grateful for the dynamic learning environment at NSE. “A lot of the faculty have that go-getter attitude,” he points out, impressed by the entrepreneurial spirit on campus. “It’s made me confident to really tackle the things that I care about.”An ethics class as an undergraduate made Hines realize there were discussions in class he could apply to the nuclear realm, especially when it came to teasing apart the implications of the technology — where the devices would be built and who they would serve. He eventually went on to double-major in NSE and philosophy.The framework style of reading and reasoning involved in studying philosophy is particularly relevant in his current line of work, where he has to extract key points regarding nuclear regulatory issues. Much like philosophy discussions today that involve going over material that has been discussed for centuries and framing them through new perspectives, nuclear regulatory issues too need to take the long view.“In philosophy, we have to insert ourselves into very large conversations. Similarly, in nuclear engineering, you have to understand how to take apart the discourse that’s most relevant to your research and frame it,” Hines says. This technique is especially necessary because most of the time the nuclear regulatory issues might seem like wading in the weeds of nitty-gritty technical matters, but they can have a huge impact on the public and public perception, Hines adds.As for Florida, Hines visits every chance he can get. The red tide still surfaces but not as consistently as it once did. And since he started his job as a nuclear operator in his undergraduate days, Hines has progressed to senior reactor operator. This time around he gets to sign off on the checklists. “It’s much like when I was shift lead at Dunkin’ Donuts in high school,” Hines says, “everyone is kind of doing the same thing, but you get to be in charge for the afternoon.” More

  • in

    Study of disordered rock salts leads to battery breakthrough

    For the past decade, disordered rock salt has been studied as a potential breakthrough cathode material for use in lithium-ion batteries and a key to creating low-cost, high-energy storage for everything from cell phones to electric vehicles to renewable energy storage.A new MIT study is making sure the material fulfills that promise.Led by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering, a team of researchers describe a new class of partially disordered rock salt cathode, integrated with polyanions — dubbed disordered rock salt-polyanionic spinel, or DRXPS — that delivers high energy density at high voltages with significantly improved cycling stability.“There is typically a trade-off in cathode materials between energy density and cycling stability … and with this work we aim to push the envelope by designing new cathode chemistries,” says Yimeng Huang, a postdoc in the Department of Nuclear Science and Engineering and first author of a paper describing the work published today in Nature Energy. “(This) material family has high energy density and good cycling stability because it integrates two major types of cathode materials, rock salt and polyanionic olivine, so it has the benefits of both.”Importantly, Li adds, the new material family is primarily composed of manganese, an earth-abundant element that is significantly less expensive than elements like nickel and cobalt, which are typically used in cathodes today.“Manganese is at least five times less expensive than nickel, and about 30 times less expensive than cobalt,” Li says. “Manganese is also the one of the keys to achieving higher energy densities, so having that material be much more earth-abundant is a tremendous advantage.”A possible path to renewable energy infrastructureThat advantage will be particularly critical, Li and his co-authors wrote, as the world looks to build the renewable energy infrastructure needed for a low- or no-carbon future.Batteries are a particularly important part of that picture, not only for their potential to decarbonize transportation with electric cars, buses, and trucks, but also because they will be essential to addressing the intermittency issues of wind and solar power by storing excess energy, then feeding it back into the grid at night or on calm days, when renewable generation drops.Given the high cost and relative rarity of materials like cobalt and nickel, they wrote, efforts to rapidly scale up electric storage capacity would likely lead to extreme cost spikes and potentially significant materials shortages.“If we want to have true electrification of energy generation, transportation, and more, we need earth-abundant batteries to store intermittent photovoltaic and wind power,” Li says. “I think this is one of the steps toward that dream.”That sentiment was shared by Gerbrand Ceder, the Samsung Distinguished Chair in Nanoscience and Nanotechnology Research and a professor of materials science and engineering at the University of California at Berkeley.“Lithium-ion batteries are a critical part of the clean energy transition,” Ceder says. “Their continued growth and price decrease depends on the development of inexpensive, high-performance cathode materials made from earth-abundant materials, as presented in this work.”Overcoming obstacles in existing materialsThe new study addresses one of the major challenges facing disordered rock salt cathodes — oxygen mobility.While the materials have long been recognized for offering very high capacity — as much as 350 milliampere-hour per gram — as compared to traditional cathode materials, which typically have capacities of between 190 and 200 milliampere-hour per gram, it is not very stable.The high capacity is contributed partially by oxygen redox, which is activated when the cathode is charged to high voltages. But when that happens, oxygen becomes mobile, leading to reactions with the electrolyte and degradation of the material, eventually leaving it effectively useless after prolonged cycling.To overcome those challenges, Huang added another element — phosphorus — that essentially acts like a glue, holding the oxygen in place to mitigate degradation.“The main innovation here, and the theory behind the design, is that Yimeng added just the right amount of phosphorus, formed so-called polyanions with its neighboring oxygen atoms, into a cation-deficient rock salt structure that can pin them down,” Li explains. “That allows us to basically stop the percolating oxygen transport due to strong covalent bonding between phosphorus and oxygen … meaning we can both utilize the oxygen-contributed capacity, but also have good stability as well.”That ability to charge batteries to higher voltages, Li says, is crucial because it allows for simpler systems to manage the energy they store.“You can say the quality of the energy is higher,” he says. “The higher the voltage per cell, then the less you need to connect them in series in the battery pack, and the simpler the battery management system.”Pointing the way to future studiesWhile the cathode material described in the study could have a transformative impact on lithium-ion battery technology, there are still several avenues for study going forward.Among the areas for future study, Huang says, are efforts to explore new ways to fabricate the material, particularly for morphology and scalability considerations.“Right now, we are using high-energy ball milling for mechanochemical synthesis, and … the resulting morphology is non-uniform and has small average particle size (about 150 nanometers). This method is also not quite scalable,” he says. “We are trying to achieve a more uniform morphology with larger particle sizes using some alternate synthesis methods, which would allow us to increase the volumetric energy density of the material and may allow us to explore some coating methods … which could further improve the battery performance. The future methods, of course, should be industrially scalable.”In addition, he says, the disordered rock salt material by itself is not a particularly good conductor, so significant amounts of carbon — as much as 20 weight percent of the cathode paste — were added to boost its conductivity. If the team can reduce the carbon content in the electrode without sacrificing performance, there will be higher active material content in a battery, leading to an increased practical energy density.“In this paper, we just used Super P, a typical conductive carbon consisting of nanospheres, but they’re not very efficient,” Huang says. “We are now exploring using carbon nanotubes, which could reduce the carbon content to just 1 or 2 weight percent, which could allow us to dramatically increase the amount of the active cathode material.”Aside from decreasing carbon content, making thick electrodes, he adds, is yet another way to increase the practical energy density of the battery. This is another area of research that the team is working on.“This is only the beginning of DRXPS research, since we only explored a few chemistries within its vast compositional space,” he continues. “We can play around with different ratios of lithium, manganese, phosphorus, and oxygen, and with various combinations of other polyanion-forming elements such as boron, silicon, and sulfur.”With optimized compositions, more scalable synthesis methods, better morphology that allows for uniform coatings, lower carbon content, and thicker electrodes, he says, the DRXPS cathode family is very promising in applications of electric vehicles and grid storage, and possibly even in consumer electronics, where the volumetric energy density is very important.This work was supported with funding from the Honda Research Institute USA Inc. and the Molecular Foundry at Lawrence Berkeley National Laboratory, and used resources of the National Synchrotron Light Source II at Brookhaven National Laboratory and the Advanced Photon Source at Argonne National Laboratory.  More