More stories

  • in

    Simpler models can outperform deep learning at climate prediction

    Environmental scientists are increasingly using enormous artificial intelligence models to make predictions about changes in weather and climate, but a new study by MIT researchers shows that bigger models are not always better.The team demonstrates that, in certain climate scenarios, much simpler, physics-based models can generate more accurate predictions than state-of-the-art deep-learning models.Their analysis also reveals that a benchmarking technique commonly used to evaluate machine-learning techniques for climate predictions can be distorted by natural variations in the data, like fluctuations in weather patterns. This could lead someone to believe a deep-learning model makes more accurate predictions when that is not the case.The researchers developed a more robust way of evaluating these techniques, which shows that, while simple models are more accurate when estimating regional surface temperatures, deep-learning approaches can be the best choice for estimating local rainfall.They used these results to enhance a simulation tool known as a climate emulator, which can rapidly simulate the effect of human activities onto a future climate.The researchers see their work as a “cautionary tale” about the risk of deploying large AI models for climate science. While deep-learning models have shown incredible success in domains such as natural language, climate science contains a proven set of physical laws and approximations, and the challenge becomes how to incorporate those into AI models.“We are trying to develop models that are going to be useful and relevant for the kinds of things that decision-makers need going forward when making climate policy choices. While it might be attractive to use the latest, big-picture machine-learning model on a climate problem, what this study shows is that stepping back and really thinking about the problem fundamentals is important and useful,” says study senior author Noelle Selin, a professor in the MIT Institute for Data, Systems, and Society (IDSS) and the Department of Earth, Atmospheric and Planetary Sciences (EAPS).Selin’s co-authors are lead author Björn Lütjens, a former EAPS postdoc who is now a research scientist at IBM Research; senior author Raffaele Ferrari, the Cecil and Ida Green Professor of Oceanography in EAPS and co-director of the Lorenz Center; and Duncan Watson-Parris, assistant professor at the University of California at San Diego. Selin and Ferrari are also co-principal investigators of the Bringing Computation to the Climate Challenge project, out of which this research emerged. The paper appears today in the Journal of Advances in Modeling Earth Systems.Comparing emulatorsBecause the Earth’s climate is so complex, running a state-of-the-art climate model to predict how pollution levels will impact environmental factors like temperature can take weeks on the world’s most powerful supercomputers.Scientists often create climate emulators, simpler approximations of a state-of-the art climate model, which are faster and more accessible. A policymaker could use a climate emulator to see how alternative assumptions on greenhouse gas emissions would affect future temperatures, helping them develop regulations.But an emulator isn’t very useful if it makes inaccurate predictions about the local impacts of climate change. While deep learning has become increasingly popular for emulation, few studies have explored whether these models perform better than tried-and-true approaches.The MIT researchers performed such a study. They compared a traditional technique called linear pattern scaling (LPS) with a deep-learning model using a common benchmark dataset for evaluating climate emulators.Their results showed that LPS outperformed deep-learning models on predicting nearly all parameters they tested, including temperature and precipitation.“Large AI methods are very appealing to scientists, but they rarely solve a completely new problem, so implementing an existing solution first is necessary to find out whether the complex machine-learning approach actually improves upon it,” says Lütjens.Some initial results seemed to fly in the face of the researchers’ domain knowledge. The powerful deep-learning model should have been more accurate when making predictions about precipitation, since those data don’t follow a linear pattern.They found that the high amount of natural variability in climate model runs can cause the deep learning model to perform poorly on unpredictable long-term oscillations, like El Niño/La Niña. This skews the benchmarking scores in favor of LPS, which averages out those oscillations.Constructing a new evaluationFrom there, the researchers constructed a new evaluation with more data that address natural climate variability. With this new evaluation, the deep-learning model performed slightly better than LPS for local precipitation, but LPS was still more accurate for temperature predictions.“It is important to use the modeling tool that is right for the problem, but in order to do that you also have to set up the problem the right way in the first place,” Selin says.Based on these results, the researchers incorporated LPS into a climate emulation platform to predict local temperature changes in different emission scenarios.“We are not advocating that LPS should always be the goal. It still has limitations. For instance, LPS doesn’t predict variability or extreme weather events,” Ferrari adds.Rather, they hope their results emphasize the need to develop better benchmarking techniques, which could provide a fuller picture of which climate emulation technique is best suited for a particular situation.“With an improved climate emulation benchmark, we could use more complex machine-learning methods to explore problems that are currently very hard to address, like the impacts of aerosols or estimations of extreme precipitation,” Lütjens says.Ultimately, more accurate benchmarking techniques will help ensure policymakers are making decisions based on the best available information.The researchers hope others build on their analysis, perhaps by studying additional improvements to climate emulation methods and benchmarks. Such research could explore impact-oriented metrics like drought indicators and wildfire risks, or new variables like regional wind speeds.This research is funded, in part, by Schmidt Sciences, LLC, and is part of the MIT Climate Grand Challenges team for “Bringing Computation to the Climate Challenge.” More

  • in

    Study links rising temperatures and declining moods

    Rising global temperatures affect human activity in many ways. Now, a new study illuminates an important dimension of the problem: Very hot days are associated with more negative moods, as shown by a large-scale look at social media postings.Overall, the study examines 1.2 billion social media posts from 157 countries over the span of a year. The research finds that when the temperature rises above 95 degrees Fahrenheit, or 35 degrees Celsius, expressed sentiments become about 25 percent more negative in lower-income countries and about 8 percent more negative in better-off countries. Extreme heat affects people emotionally, not just physically.“Our study reveals that rising temperatures don’t just threaten physical health or economic productivity — they also affect how people feel, every day, all over the world,” says Siqi Zheng, a professor in MIT’s Department of Urban Studies and Planning (DUSP) and Center for Real Estate (CRE), and co-author of a new paper detailing the results. “This work opens up a new frontier in understanding how climate stress is shaping human well-being at a planetary scale.”The paper, “Unequal Impacts of Rising Temperatures on Global Human Sentiment,” is published today in the journal One Earth. The authors are Jianghao Wang, of the Chinese Academy of Sciences; Nicolas Guetta-Jeanrenaud SM ’22, a graduate of MIT’s Technology and Policy Program (TPP) and Institute for Data, Systems, and Society; Juan Palacios, a visiting assistant professor at MIT’s Sustainable Urbanization Lab (SUL) and an assistant professor Maastricht University; Yichun Fan, of SUL and Duke University; Devika Kakkar, of Harvard University; Nick Obradovich, of SUL and the Laureate Institute for Brain Research in Tulsa; and Zheng, who is the STL Champion Professor of Urban and Real Estate Sustainability at CRE and DUSP. Zheng is also the faculty director of CRE and founded the Sustainable Urbanization Lab in 2019.Social media as a windowTo conduct the study, the researchers evaluated 1.2 billion posts from the social media platforms Twitter and Weibo, all of which appeared in 2019. They used a natural language processing technique called Bidirectional Encoder Representations from Transformers (BERT), to analyze 65 languages across the 157 countries in the study.Each social media post was given a sentiment rating from 0.0 (for very negative posts) to 1.0 (for very positive posts). The posts were then aggregated geographically to 2,988 locations and evaluated in correlation with area weather. From this method, the researchers could then deduce the connection between extreme temperatures and expressed sentiment.“Social media data provides us with an unprecedented window into human emotions across cultures and continents,” Wang says. “This approach allows us to measure emotional impacts of climate change at a scale that traditional surveys simply cannot achieve, giving us real-time insights into how temperature affects human sentiment worldwide.”To assess the effects of temperatures on sentiment in higher-income and middle-to-lower-income settings, the scholars also used a World Bank cutoff level of gross national income per-capita annual income of $13,845, finding that in places with incomes below that, the effects of heat on mood were triple those found in economically more robust settings.“Thanks to the global coverage of our data, we find that people in low- and middle-income countries experience sentiment declines from extreme heat that are three times greater than those in high-income countries,” Fan says. “This underscores the importance of incorporating adaptation into future climate impact projections.”In the long runUsing long-term global climate models, and expecting some adaptation to heat, the researchers also produced a long-range estimate of the effects of extreme temperatures on sentiment by the year 2100. Extending the current findings to that time frame, they project a 2.3 percent worsening of people’s emotional well-being based on high temperatures alone by then — although that is a far-range projection.“It’s clear now, with our present study adding to findings from prior studies, that weather alters sentiment on a global scale,” Obradovich says. “And as weather and climates change, helping individuals become more resilient to shocks to their emotional states will be an important component of overall societal adaptation.”The researchers note that there are many nuances to the subject, and room for continued research in this area. For one thing, social media users are not likely to be a perfectly representative portion of the population, with young children and the elderly almost certainly using social media less than other people. However, as the researchers observe in the paper, the very young and elderly are probably particularly vulnerable to heat shocks, making the response to hot weather possible even larger than their study can capture.The research is part of the Global Sentiment project led by the MIT Sustainable Urbanization Lab, and the study’s dataset is publicly available. Zheng and other co-authors have previously investigated these dynamics using social media, although never before at this scale.“We hope this resource helps researchers, policymakers, and communities better prepare for a warming world,” Zheng says.The research was supported, in part, by Zheng’s chaired professorship research fund, and grants Wang received from the National Natural Science Foundation of China and the Chinese Academy of Sciences.  More

  • in

    Study sheds light on graphite’s lifespan in nuclear reactors

    Graphite is a key structural component in some of the world’s oldest nuclear reactors and many of the next-generation designs being built today. But it also condenses and swells in response to radiation — and the mechanism behind those changes has proven difficult to study.Now, MIT researchers and collaborators have uncovered a link between properties of graphite and how the material behaves in response to radiation. The findings could lead to more accurate, less destructive ways of predicting the lifespan of graphite materials used in reactors around the world.“We did some basic science to understand what leads to swelling and, eventually, failure in graphite structures,” says MIT Research Scientist Boris Khaykovich, senior author of the new study. “More research will be needed to put this into practice, but the paper proposes an attractive idea for industry: that you might not need to break hundreds of irradiated samples to understand their failure point.”Specifically, the study shows a connection between the size of the pores within graphite and the way the material swells and shrinks in volume, leading to degradation.“The lifetime of nuclear graphite is limited by irradiation-induced swelling,” says co-author and MIT Research Scientist Lance Snead. “Porosity is a controlling factor in this swelling, and while graphite has been extensively studied for nuclear applications since the Manhattan Project, we still do not have a clear understanding of the porosity in both mechanical properties and swelling. This work addresses that.”The open-access paper appears this week in Interdisciplinary Materials. It is co-authored by Khaykovich, Snead, MIT Research Scientist Sean Fayfar, former MIT research fellow Durgesh Rai, Stony Brook University Assistant Professor David Sprouster, Oak Ridge National Laboratory Staff Scientist Anne Campbell, and Argonne National Laboratory Physicist Jan Ilavsky.A long-studied, complex materialEver since 1942, when physicists and engineers built the world’s first nuclear reactor on a converted squash court at the University of Chicago, graphite has played a central role in the generation of nuclear energy. That first reactor, dubbed the Chicago Pile, was constructed from about 40,000 graphite blocks, many of which contained nuggets of uranium.Today graphite is a vital component of many operating nuclear reactors and is expected to play a central role in next-generation reactor designs like molten-salt and high-temperature gas reactors. That’s because graphite is a good neutron moderator, slowing down the neutrons released by nuclear fission so they are more likely to create fissions themselves and sustain a chain reaction.“The simplicity of graphite makes it valuable,” Khaykovich explains. “It’s made of carbon, and it’s relatively well-known how to make it cleanly. Graphite is a very mature technology. It’s simple, stable, and we know it works.”But graphite also has its complexities.“We call graphite a composite even though it’s made up of only carbon atoms,” Khaykovich says. “It includes ‘filler particles’ that are more crystalline, then there is a matrix called a ‘binder’ that is less crystalline, then there are pores that span in length from nanometers to many microns.”Each graphite grade has its own composite structure, but they all contain fractals, or shapes that look the same at different scales.Those complexities have made it hard to predict how graphite will respond to radiation in microscopic detail, although it’s been known for decades that when graphite is irradiated, it first densifies, reducing its volume by up to 10 percent, before swelling and cracking. The volume fluctuation is caused by changes to graphite’s porosity and lattice stress.“Graphite deteriorates under radiation, as any material does,” Khaykovich says. “So, on the one hand we have a material that’s extremely well-known, and on the other hand, we have a material that is immensely complicated, with a behavior that’s impossible to predict through computer simulations.”For the study, the researchers received irradiated graphite samples from Oak Ridge National Laboratory. Co-authors Campbell and Snead were involved in irradiating the samples some 20 years ago. The samples are a grade of graphite known as G347A.The research team used an analysis technique known as X-ray scattering, which uses the scattered intensity of an X-ray beam to analyze the properties of material. Specifically, they looked at the distribution of sizes and surface areas of the sample’s pores, or what are known as the material’s fractal dimensions.“When you look at the scattering intensity, you see a large range of porosity,” Fayfar says. “Graphite has porosity over such large scales, and you have this fractal self-similarity: The pores in very small sizes look similar to pores spanning microns, so we used fractal models to relate different morphologies across length scales.”Fractal models had been used on graphite samples before, but not on irradiated samples to see how the material’s pore structures changed. The researchers found that when graphite is first exposed to radiation, its pores get filled as the material degrades.“But what was quite surprising to us is the [size distribution of the pores] turned back around,” Fayfar says. “We had this recovery process that matched our overall volume plots, which was quite odd. It seems like after graphite is irradiated for so long, it starts recovering. It’s sort of an annealing process where you create some new pores, then the pores smooth out and get slightly bigger. That was a big surprise.”The researchers found that the size distribution of the pores closely follows the volume change caused by radiation damage.“Finding a strong correlation between the [size distribution of pores] and the graphite’s volume changes is a new finding, and it helps connect to the failure of the material under irradiation,” Khaykovich says. “It’s important for people to know how graphite parts will fail when they are under stress and how failure probability changes under irradiation.”From research to reactorsThe researchers plan to study other graphite grades and explore further how pore sizes in irradiated graphite correlate with the probability of failure. They speculate that a statistical technique known as the Weibull Distribution could be used to predict graphite’s time until failure. The Weibull Distribution is already used to describe the probability of failure in ceramics and other porous materials like metal alloys.Khaykovich also speculated that the findings could contribute to our understanding of why materials densify and swell under irradiation.“There’s no quantitative model of densification that takes into account what’s happening at these tiny scales in graphite,” Khaykovich says. “Graphite irradiation densification reminds me of sand or sugar, where when you crush big pieces into smaller grains, they densify. For nuclear graphite, the crushing force is the energy that neutrons bring in, causing large pores to get filled with smaller, crushed pieces. But more energy and agitation create still more pores, and so graphite swells again. It’s not a perfect analogy, but I believe analogies bring progress for understanding these materials.”The researchers describe the paper as an important step toward informing graphite production and use in nuclear reactors of the future.“Graphite has been studied for a very long time, and we’ve developed a lot of strong intuitions about how it will respond in different environments, but when you’re building a nuclear reactor, details matter,” Khaykovich says. “People want numbers. They need to know how much thermal conductivity will change, how much cracking and volume change will happen. If components are changing volume, at some point you need to take that into account.”This work was supported, in part, by the U.S. Department of Energy. More

  • in

    Would you like that coffee with iron?

    Around the world, about 2 billion people suffer from iron deficiency, which can lead to anemia, impaired brain development in children, and increased infant mortality.To combat that problem, MIT researchers have come up with a new way to fortify foods and beverages with iron, using small crystalline particles. These particles, known as metal-organic frameworks, could be sprinkled on food, added to staple foods such as bread, or incorporated into drinks like coffee and tea.“We’re creating a solution that can be seamlessly added to staple foods across different regions,” says Ana Jaklenec, a principal investigator at MIT’s Koch Institute for Integrative Cancer Research. “What’s considered a staple in Senegal isn’t the same as in India or the U.S., so our goal was to develop something that doesn’t react with the food itself. That way, we don’t have to reformulate for every context — it can be incorporated into a wide range of foods and beverages without compromise.”The particles designed in this study can also carry iodine, another critical nutrient. The particles could also be adapted to carry important minerals such as zinc, calcium, or magnesium.“We are very excited about this new approach and what we believe is a novel application of metal-organic frameworks to potentially advance nutrition, particularly in the developing world,” says Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute.Jaklenec and Langer are the senior authors of the study, which appears today in the journal Matter. MIT postdoc Xin Yang and Linzixuan (Rhoda) Zhang PhD ’24 are the lead authors of the paper.Iron stabilizationFood fortification can be a successful way to combat nutrient deficiencies, but this approach is often challenging because many nutrients are fragile and break down during storage or cooking. When iron is added to foods, it can react with other molecules in the food, giving the food a metallic taste.In previous work, Jaklenec’s lab has shown that encapsulating nutrients in polymers can protect them from breaking down or reacting with other molecules. In a small clinical trial, the researchers found that women who ate bread fortified with encapsulated iron were able to absorb the iron from the food.However, one drawback to this approach is that the polymer adds a lot of bulk to the material, limiting the amount of iron or other nutrients that end up in the food.“Encapsulating iron in polymers significantly improves its stability and reactivity, making it easier to add to food,” Jaklenec says. “But to be effective, it requires a substantial amount of polymer. That limits how much iron you can deliver in a typical serving, making it difficult to meet daily nutritional targets through fortified foods alone.”To overcome that challenge, Yang came up with a new idea: Instead of encapsulating iron in a polymer, they could use iron itself as a building block for a crystalline particle known as a metal-organic framework, or MOF (pronounced “moff”).MOFs consist of metal atoms joined by organic molecules called ligands to create a rigid, cage-like structure. Depending on the combination of metals and ligands chosen, they can be used for a wide variety of applications.“We thought maybe we could synthesize a metal-organic framework with food-grade ligands and food-grade micronutrients,” Yang says. “Metal-organic frameworks have very high porosity, so they can load a lot of cargo. That’s why we thought we could leverage this platform to make a new metal-organic framework that could be used in the food industry.”In this case, the researchers designed a MOF consisting of iron bound to a ligand called fumaric acid, which is often used as a food additive to enhance flavor or help preserve food.This structure prevents iron from reacting with polyphenols — compounds commonly found in foods such as whole grains and nuts, as well as coffee and tea. When iron does react with those compounds, it forms a metal polyphenol complex that cannot be absorbed by the body.The MOFs’ structure also allows them to remain stable until they reach an acidic environment, such as the stomach, where they break down and release their iron payload.Double-fortified saltsThe researchers also decided to include iodine in their MOF particle, which they call NuMOF. Iodized salt has been very successful at preventing iodine deficiency, and many efforts are now underway to create “double-fortified salts” that would also contain iron.Delivering these nutrients together has proven difficult because iron and iodine can react with each other, making each one less likely to be absorbed by the body. In this study, the MIT team showed that once they formed their iron-containing MOF particles, they could load them with iodine, in a way that the iron and iodine do not react with each other.In tests of the particles’ stability, the researchers found that the NuMOFs could withstand long-term storage, high heat and humidity, and boiling water.Throughout these tests, the particles maintained their structure. When the researchers then fed the particles to mice, they found that both iron and iodine became available in the bloodstream within several hours of the NuMOF consumption.The researchers are now working on launching a company that is developing coffee and other beverages fortified with iron and iodine. They also hope to continue working toward a double-fortified salt that could be consumed on its own or incorporated into staple food products.The research was partially supported by J-WAFS Fellowships for Water and Food Solutions.Other authors of the paper include Fangzheng Chen, Wenhao Gao, Zhiling Zheng, Tian Wang, Erika Yan Wang, Behnaz Eshaghi, and Sydney MacDonald. More

  • in

    Surprisingly diverse innovations led to dramatically cheaper solar panels

    The cost of solar panels has dropped by more than 99 percent since the 1970s, enabling widespread adoption of photovoltaic systems that convert sunlight into electricity.A new MIT study drills down on specific innovations that enabled such dramatic cost reductions, revealing that technical advances across a web of diverse research efforts and industries played a pivotal role.The findings could help renewable energy companies make more effective R&D investment decisions and aid policymakers in identifying areas to prioritize to spur growth in manufacturing and deployment.The researchers’ modeling approach shows that key innovations often originated outside the solar sector, including advances in semiconductor fabrication, metallurgy, glass manufacturing, oil and gas drilling, construction processes, and even legal domains.“Our results show just how intricate the process of cost improvement is, and how much scientific and engineering advances, often at a very basic level, are at the heart of these cost reductions. A lot of knowledge was drawn from different domains and industries, and this network of knowledge is what makes these technologies improve,” says study senior author Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society.Trancik is joined on the paper by co-lead authors Goksin Kavlak, a former IDSS graduate student and postdoc who is now a senior energy associate at the Brattle Group; Magdalena Klemun, a former IDSS graduate student and postdoc who is now an assistant professor at Johns Hopkins University; former MIT postdoc Ajinkya Kamat; as well as Brittany Smith and Robert Margolis of the National Renewable Energy Laboratory. The research appears today in PLOS ONE.Identifying innovationsThis work builds on mathematical models that the researchers previously developed that tease out the effects of engineering technologies on the cost of photovoltaic (PV) modules and systems.In this study, the researchers aimed to dig even deeper into the scientific advances that drove those cost declines.They combined their quantitative cost model with a detailed, qualitative analysis of innovations that affected the costs of PV system materials, manufacturing steps, and deployment processes.“Our quantitative cost model guided the qualitative analysis, allowing us to look closely at innovations in areas that are hard to measure due to a lack of quantitative data,” Kavlak says.Building on earlier work identifying key cost drivers — such as the number of solar cells per module, wiring efficiency, and silicon wafer area — the researchers conducted a structured scan of the literature for innovations likely to affect these drivers. Next, they grouped these innovations to identify patterns, revealing clusters that reduced costs by improving materials or prefabricating components to streamline manufacturing and installation. Finally, the team tracked industry origins and timing for each innovation, and consulted domain experts to zero in on the most significant innovations.All told, they identified 81 unique innovations that affected PV system costs since 1970, from improvements in antireflective coated glass to the implementation of fully online permitting interfaces.“With innovations, you can always go to a deeper level, down to things like raw materials processing techniques, so it was challenging to know when to stop. Having that quantitative model to ground our qualitative analysis really helped,” Trancik says.They chose to separate PV module costs from so-called balance-of-system (BOS) costs, which cover things like mounting systems, inverters, and wiring.PV modules, which are wired together to form solar panels, are mass-produced and can be exported, while many BOS components are designed, built, and sold at the local level.“By examining innovations both at the BOS level and within the modules, we identify the different types of innovations that have emerged in these two parts of PV technology,” Kavlak says.BOS costs depend more on soft technologies, nonphysical elements such as permitting procedures, which have contributed significantly less to PV’s past cost improvement compared to hardware innovations.“Often, it comes down to delays. Time is money, and if you have delays on construction sites and unpredictable processes, that affects these balance-of-system costs,” Trancik says.Innovations such as automated permitting software, which flags code-compliant systems for fast-track approval, show promise. Though not yet quantified in this study, the team’s framework could support future analysis of their economic impact and similar innovations that streamline deployment processes.Interconnected industriesThe researchers found that innovations from the semiconductor, electronics, metallurgy, and petroleum industries played a major role in reducing both PV and BOS costs, but BOS costs were also impacted by innovations in software engineering and electric utilities.Noninnovation factors, like efficiency gains from bulk purchasing and the accumulation of knowledge in the solar power industry, also reduced some cost variables.In addition, while most PV panel innovations originated in research organizations or industry, many BOS innovations were developed by city governments, U.S. states, or professional associations.“I knew there was a lot going on with this technology, but the diversity of all these fields and how closely linked they are, and the fact that we can clearly see that network through this analysis, was interesting,” Trancik says.“PV was very well-positioned to absorb innovations from other industries — thanks to the right timing, physical compatibility, and supportive policies to adapt innovations for PV applications,” Klemun adds.The analysis also reveals the role greater computing power could play in reducing BOS costs through advances like automated engineering review systems and remote site assessment software.“In terms of knowledge spillovers, what we’ve seen so far in PV may really just be the beginning,” Klemun says, pointing to the expanding role of robotics and AI-driven digital tools in driving future cost reductions and quality improvements.In addition to their qualitative analysis, the researchers demonstrated how this methodology could be used to estimate the quantitative impact of a particular innovation if one has the numerical data to plug into the cost equation.For instance, using information about material prices and manufacturing procedures, they estimate that wire sawing, a technique which was introduced in the 1980s, led to an overall PV system cost decrease of $5 per watt by reducing silicon losses and increasing throughput during fabrication.“Through this retrospective analysis, you learn something valuable for future strategy because you can see what worked and what didn’t work, and the models can also be applied prospectively. It is also useful to know what adjacent sectors may help support improvement in a particular technology,” Trancik says.Moving forward, the researchers plan to apply this methodology to a wide range of technologies, including other renewable energy systems. They also want to further study soft technology to identify innovations or processes that could accelerate cost reductions.“Although the process of technological innovation may seem like a black box, we’ve shown that you can study it just like any other phenomena,” Trancik says.This research is funded, in part, by the U.S. Department of Energy Solar Energies Technology Office. More

  • in

    Eco-driving measures could significantly reduce vehicle emissions

    Any motorist who has ever waited through multiple cycles for a traffic light to turn green knows how annoying signalized intersections can be. But sitting at intersections isn’t just a drag on drivers’ patience — unproductive vehicle idling could contribute as much as 15 percent of the carbon dioxide emissions from U.S. land transportation.A large-scale modeling study led by MIT researchers reveals that eco-driving measures, which can involve dynamically adjusting vehicle speeds to reduce stopping and excessive acceleration, could significantly reduce those CO2 emissions.Using a powerful artificial intelligence method called deep reinforcement learning, the researchers conducted an in-depth impact assessment of the factors affecting vehicle emissions in three major U.S. cities.Their analysis indicates that fully adopting eco-driving measures could cut annual city-wide intersection carbon emissions by 11 to 22 percent, without slowing traffic throughput or affecting vehicle and traffic safety.Even if only 10 percent of vehicles on the road employ eco-driving, it would result in 25 to 50 percent of the total reduction in CO2 emissions, the researchers found.In addition, dynamically optimizing speed limits at about 20 percent of intersections provides 70 percent of the total emission benefits. This indicates that eco-driving measures could be implemented gradually while still having measurable, positive impacts on mitigating climate change and improving public health.

    An animated GIF compares what 20% eco-driving adoption looks like to 100% eco-driving adoption.Image: Courtesy of the researchers

    “Vehicle-based control strategies like eco-driving can move the needle on climate change reduction. We’ve shown here that modern machine-learning tools, like deep reinforcement learning, can accelerate the kinds of analysis that support sociotechnical decision making. This is just the tip of the iceberg,” says senior author Cathy Wu, the Class of 1954 Career Development Associate Professor in Civil and Environmental Engineering (CEE) and the Institute for Data, Systems, and Society (IDSS) at MIT, and a member of the Laboratory for Information and Decision Systems (LIDS).She is joined on the paper by lead author Vindula Jayawardana, an MIT graduate student; as well as MIT graduate students Ao Qu, Cameron Hickert, and Edgar Sanchez; MIT undergraduate Catherine Tang; Baptiste Freydt, a graduate student at ETH Zurich; and Mark Taylor and Blaine Leonard of the Utah Department of Transportation. The research appears in Transportation Research Part C: Emerging Technologies.A multi-part modeling studyTraffic control measures typically call to mind fixed infrastructure, like stop signs and traffic signals. But as vehicles become more technologically advanced, it presents an opportunity for eco-driving, which is a catch-all term for vehicle-based traffic control measures like the use of dynamic speeds to reduce energy consumption.In the near term, eco-driving could involve speed guidance in the form of vehicle dashboards or smartphone apps. In the longer term, eco-driving could involve intelligent speed commands that directly control the acceleration of semi-autonomous and fully autonomous vehicles through vehicle-to-infrastructure communication systems.“Most prior work has focused on how to implement eco-driving. We shifted the frame to consider the question of should we implement eco-driving. If we were to deploy this technology at scale, would it make a difference?” Wu says.To answer that question, the researchers embarked on a multifaceted modeling study that would take the better part of four years to complete.They began by identifying 33 factors that influence vehicle emissions, including temperature, road grade, intersection topology, age of the vehicle, traffic demand, vehicle types, driver behavior, traffic signal timing, road geometry, etc.“One of the biggest challenges was making sure we were diligent and didn’t leave out any major factors,” Wu says.Then they used data from OpenStreetMap, U.S. geological surveys, and other sources to create digital replicas of more than 6,000 signalized intersections in three cities — Atlanta, San Francisco, and Los Angeles — and simulated more than a million traffic scenarios.The researchers used deep reinforcement learning to optimize each scenario for eco-driving to achieve the maximum emissions benefits.Reinforcement learning optimizes the vehicles’ driving behavior through trial-and-error interactions with a high-fidelity traffic simulator, rewarding vehicle behaviors that are more energy-efficient while penalizing those that are not.The researchers cast the problem as a decentralized cooperative multi-agent control problem, where the vehicles cooperate to achieve overall energy efficiency, even among non-participating vehicles, and they act in a decentralized manner, avoiding the need for costly communication between vehicles.However, training vehicle behaviors that generalize across diverse intersection traffic scenarios was a major challenge. The researchers observed that some scenarios are more similar to one another than others, such as scenarios with the same number of lanes or the same number of traffic signal phases.As such, the researchers trained separate reinforcement learning models for different clusters of traffic scenarios, yielding better emission benefits overall.But even with the help of AI, analyzing citywide traffic at the network level would be so computationally intensive it could take another decade to unravel, Wu says.Instead, they broke the problem down and solved each eco-driving scenario at the individual intersection level.“We carefully constrained the impact of eco-driving control at each intersection on neighboring intersections. In this way, we dramatically simplified the problem, which enabled us to perform this analysis at scale, without introducing unknown network effects,” she says.Significant emissions benefitsWhen they analyzed the results, the researchers found that full adoption of eco-driving could result in intersection emissions reductions of between 11 and 22 percent.These benefits differ depending on the layout of a city’s streets. A denser city like San Francisco has less room to implement eco-driving between intersections, offering a possible explanation for reduced emission savings, while Atlanta could see greater benefits given its higher speed limits.Even if only 10 percent of vehicles employ eco-driving, a city could still realize 25 to 50 percent of the total emissions benefit because of car-following dynamics: Non-eco-driving vehicles would follow controlled eco-driving vehicles as they optimize speed to pass smoothly through intersections, reducing their carbon emissions as well.In some cases, eco-driving could also increase vehicle throughput by minimizing emissions. However, Wu cautions that increasing throughput could result in more drivers taking to the roads, reducing emissions benefits.And while their analysis of widely used safety metrics known as surrogate safety measures, such as time to collision, suggest that eco-driving is as safe as human driving, it could cause unexpected behavior in human drivers. More research is needed to fully understand potential safety impacts, Wu says.Their results also show that eco-driving could provide even greater benefits when combined with alternative transportation decarbonization solutions. For instance, 20 percent eco-driving adoption in San Francisco would cut emission levels by 7 percent, but when combined with the projected adoption of hybrid and electric vehicles, it would cut emissions by 17 percent.“This is a first attempt to systematically quantify network-wide environmental benefits of eco-driving. This is a great research effort that will serve as a key reference for others to build on in the assessment of eco-driving systems,” says Hesham Rakha, the Samuel L. Pritchard Professor of Engineering at Virginia Tech, who was not involved with this research.And while the researchers focus on carbon emissions, the benefits are highly correlated with improvements in fuel consumption, energy use, and air quality.“This is almost a free intervention. We already have smartphones in our cars, and we are rapidly adopting cars with more advanced automation features. For something to scale quickly in practice, it must be relatively simple to implement and shovel-ready. Eco-driving fits that bill,” Wu says.This work is funded, in part, by Amazon and the Utah Department of Transportation. More

  • in

    Creeping crystals: Scientists observe “salt creep” at the single-crystal scale

    Salt creeping, a phenomenon that occurs in both natural and industrial processes, describes the collection and migration of salt crystals from evaporating solutions onto surfaces. Once they start collecting, the crystals climb, spreading away from the solution. This creeping behavior, according to researchers, can cause damage or be harnessed for good, depending on the context. New research published June 30 in the journal Langmuir is the first to show salt creeping at a single-crystal scale and beneath a liquid’s meniscus.“The work not only explains how salt creeping begins, but why it begins and when it does,” says Joseph Phelim Mooney, a postdoc in the MIT Device Research Laboratory and one of the authors of the new study. “We hope this level of insight helps others, whether they’re tackling water scarcity, preserving ancient murals, or designing longer-lasting infrastructure.”The work is the first to directly visualize how salt crystals grow and interact with surfaces underneath a liquid meniscus, something that’s been theorized for decades but never actually imaged or confirmed at this level, and it offers fundamental insights that could impact a wide range of fields — from mineral extraction and desalination to anti-fouling coatings, membrane design for separation science, and even art conservation, where salt damage is a major threat to heritage materials.In civil engineering applications, for example, the research can help explain why and when salt crystals start growing across surfaces like concrete, stone, or building materials. “These crystals can exert pressure and cause cracking or flaking, reducing the long-term durability of structures,” says Mooney. “By pinpointing the moment when salt begins to creep, engineers can better design protective coatings or drainage systems to prevent this form of degradation.”For a field like art conservation, where salt can be devastating to murals, frescoes, and ancient artifacts, often forming beneath the surface before visible damage appears, the work can help identify the exact conditions that cause salt to start moving and spreading, allowing conservators to act earlier and more precisely to protect heritage objects.The work began during Mooney’s Marie Curie Fellowship at MIT. “I was focused on improving desalination systems and quickly ran into [salt buildup as] a major roadblock,” he says. “[Salt] was everywhere, coating surfaces, clogging flow paths, and undermining the efficiency of our designs. I realized we didn’t fully understand how or why salt starts creeping across surfaces in the first place.”That experience led Mooney to team up with colleagues to dig into the fundamentals of salt crystallization at the air–liquid–solid interface. “We wanted to zoom in, to really see the moment salt begins to move, so we turned to in situ X-ray microscopy,” he says. “What we found gave us a whole new way to think about surface fouling, material degradation, and controlled crystallization.”The new research may, in fact, allow better control of a crystallization processes required to remove salt from water in zero-liquid discharge systems. It can also be used to explain how and when scaling happens on equipment surfaces, and may support emerging climate technologies that depend on smart control of evaporation and crystallization.The work also supports mineral and salt extraction applications, where salt creeping can be both a bottleneck and an opportunity. In these applications, Mooney says, “by understanding the precise physics of salt formation at surfaces, operators can optimize crystal growth, improving recovery rates and reducing material losses.”Mooney’s co-authors on the paper include fellow MIT Device Lab researchers Omer Refet Caylan, Bachir El Fil (now an associate professor at Georgia Tech), and Lenan Zhang (now an associate professor at Cornell University); Jeff Punch and Vanessa Egan of the University of Limerick; and Jintong Gao of Cornell.The research was conducted using in situ X-ray microscopy. Mooney says the team’s big realization moment occurred when they were able to observe a single salt crystal pinning itself to the surface, which kicked off a cascading chain reaction of growth.“People had speculated about this, but we captured it on X-ray for the first time. It felt like watching the microscopic moment where everything tips, the ignition points of a self-propagating process,” says Mooney. “Even more surprising was what followed: The salt crystal didn’t just grow passively to fill the available space. It pierced through the liquid-air interface and reshaped the meniscus itself, setting up the perfect conditions for the next crystal. That subtle, recursive mechanism had never been visually documented before — and seeing it play out in real time completely changed how we thought about salt crystallization.”The paper, “In Situ X-ray Microscopy Unraveling the Onset of Salt Creeping at a Single-Crystal Level,” is available now in the journal Langmuir. Research was conducted in MIT.nano.  More

  • in

    Why animals are a critical part of forest carbon absorption

    A lot of attention has been paid to how climate change can drive biodiversity loss. Now, MIT researchers have shown the reverse is also true: Reductions in biodiversity can jeopardize one of Earth’s most powerful levers for mitigating climate change.In a paper published in PNAS, the researchers showed that following deforestation, naturally-regrowing tropical forests, with healthy populations of seed-dispersing animals, can absorb up to four times more carbon than similar forests with fewer seed-dispersing animals.Because tropical forests are currently Earth’s largest land-based carbon sink, the findings improve our understanding of a potent tool to fight climate change.“The results underscore the importance of animals in maintaining healthy, carbon-rich tropical forests,” says Evan Fricke, a research scientist in the MIT Department of Civil and Environmental Engineering and the lead author of the new study. “When seed-dispersing animals decline, we risk weakening the climate-mitigating power of tropical forests.”Fricke’s co-authors on the paper include César Terrer, the Tianfu Career Development Associate Professor at MIT; Charles Harvey, an MIT professor of civil and environmental engineering; and Susan Cook-Patton of The Nature Conservancy.The study combines a wide array of data on animal biodiversity, movement, and seed dispersal across thousands of animal species, along with carbon accumulation data from thousands of tropical forest sites.The researchers say the results are the clearest evidence yet that seed-dispersing animals play an important role in forests’ ability to absorb carbon, and that the findings underscore the need to address biodiversity loss and climate change as connected parts of a delicate ecosystem rather as separate problems in isolation.“It’s been clear that climate change threatens biodiversity, and now this study shows how biodiversity losses can exacerbate climate change,” Fricke says. “Understanding that two-way street helps us understand the connections between these challenges, and how we can address them. These are challenges we need to tackle in tandem, and the contribution of animals to tropical forest carbon shows that there are win-wins possible when supporting biodiversity and fighting climate change at the same time.”Putting the pieces togetherThe next time you see a video of a monkey or bird enjoying a piece of fruit, consider that the animals are actually playing an important role in their ecosystems. Research has shown that by digesting the seeds and defecating somewhere else, animals can help with the germination, growth, and long-term survival of the plant.Fricke has been studying animals that disperse seeds for nearly 15 years. His previous research has shown that without animal seed dispersal, trees have lower survival rates and a harder time keeping up with environmental changes.“We’re now thinking more about the roles that animals might play in affecting the climate through seed dispersal,” Fricke says. “We know that in tropical forests, where more than three-quarters of trees rely on animals for seed dispersal, the decline of seed dispersal could affect not just the biodiversity of forests, but how they bounce back from deforestation. We also know that all around the world, animal populations are declining.”Regrowing forests is an often-cited way to mitigate the effects of climate change, but the influence of biodiversity on forests’ ability to absorb carbon has not been fully quantified, especially at larger scales.For their study, the researchers combined data from thousands of separate studies and used new tools for quantifying disparate but interconnected ecological processes. After analyzing data from more than 17,000 vegetation plots, the researchers decided to focus on tropical regions, looking at data on where seed-dispersing animals live, how many seeds each animal disperses, and how they affect germination.The researchers then incorporated data showing how human activity impacts different seed-dispersing animals’ presence and movement. They found, for example, that animals move less when they consume seeds in areas with a bigger human footprint.Combining all that data, the researchers created an index of seed-dispersal disruption that revealed a link between human activities and declines in animal seed dispersal. They then analyzed the relationship between that index and records of carbon accumulation in naturally regrowing tropical forests over time, controlling for factors like drought conditions, the prevalence of fires, and the presence of grazing livestock.“It was a big task to bring data from thousands of field studies together into a map of the disruption of seed dispersal,” Fricke says. “But it lets us go beyond just asking what animals are there to actually quantifying the ecological roles those animals are playing and understanding how human pressures affect them.”The researchers acknowledged that the quality of animal biodiversity data could be improved and introduces uncertainty into their findings. They also note that other processes, such as pollination, seed predation, and competition influence seed dispersal and can constrain forest regrowth. Still, the findings were in line with recent estimates.“What’s particularly new about this study is we’re actually getting the numbers around these effects,” Fricke says. “Finding that seed dispersal disruption explains a fourfold difference in carbon absorption across the thousands of tropical regrowth sites included in the study points to seed dispersers as a major lever on tropical forest carbon.”Quantifying lost carbonIn forests identified as potential regrowth sites, the researchers found seed-dispersal declines were linked to reductions in carbon absorption each year averaging 1.8 metric tons per hectare, equal to a reduction in regrowth of 57 percent.The researchers say the results show natural regrowth projects will be more impactful in landscapes where seed-dispersing animals have been less disrupted, including areas that were recently deforested, are near high-integrity forests, or have higher tree cover.“In the discussion around planting trees versus allowing trees to regrow naturally, regrowth is basically free, whereas planting trees costs money, and it also leads to less diverse forests,” Terrer says. “With these results, now we can understand where natural regrowth can happen effectively because there are animals planting the seeds for free, and we also can identify areas where, because animals are affected, natural regrowth is not going to happen, and therefore planting trees actively is necessary.”To support seed-dispersing animals, the researchers encourage interventions that protect or improve their habitats and that reduce pressures on species, ranging from wildlife corridors to restrictions on wildlife trade. Restoring the ecological roles of seed dispersers is also possible by reintroducing seed-dispersing species where they’ve been lost or planting certain trees that attract those animals.The findings could also make modeling the climate impact of naturally regrowing forests more accurate.“Overlooking the impact of seed-dispersal disruption may overestimate natural regrowth potential in many areas and underestimate it in others,” the authors write.The researchers believe the findings open up new avenues of inquiry for the field.“Forests provide a huge climate subsidy by sequestering about a third of all human carbon emissions,” Terrer says. “Tropical forests are by far the most important carbon sink globally, but in the last few decades, their ability to sequester carbon has been declining. We will next explore how much of that decline is due to an increase in extreme droughts or fires versus declines in animal seed dispersal.”Overall, the researchers hope the study helps improves our understanding of the planet’s complex ecological processes.“When we lose our animals, we’re losing the ecological infrastructure that keeps our tropical forests healthy and resilient,” Fricke says.The research was supported by the MIT Climate and Sustainability Consortium, the Government of Portugal, and the Bezos Earth Fund. More