More stories

  • in

    Ingestible “electroceutical” capsule stimulates hunger-regulating hormone

    Hormones released by the stomach, such as ghrelin, play a key role in stimulating appetite. These hormones are produced by endocrine cells that are part of the enteric nervous system, which controls hunger, nausea, and feelings of fullness.

    MIT engineers have now shown that they can stimulate these endocrine cells to produce ghrelin, using an ingestible capsule that delivers an electrical current to the cells. This approach could prove useful for treating diseases that involve nausea or loss of appetite, such as cachexia (loss of body mass that can occur in patients with cancer or other chronic diseases).

    In tests in animals, the researchers showed that this “electroceutical” capsule could significantly boost ghrelin production in the stomach. They believe this approach could also be adapted to deliver electrical stimulation to other parts of the GI tract.

    “This study helps establish electrical stimulation by ingestible electroceuticals as a mode of triggering hormone release via the GI tract,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, and the senior author of the study. “We show one example of how we’re able to engage with the stomach mucosa and release hormones, and we anticipate that this could be used in other sites in the GI tract that we haven’t explored here.”

    Khalil Ramadi SM ’16, PhD ’19, a graduate of the Department of Mechanical Engineering and the Harvard-MIT Program in Health Sciences and Technology who is now an assistant professor of bioengineering at the New York University (NYU) Tandon School of Engineering and the director of the Laboratory for Advanced Neuroengineering and Translational Medicine at NYU Abu Dhabi, and James McRae, an MIT graduate student, are the lead authors of the paper, which appears today in Science Robotics.

    Electrical stimulation

    The enteric nervous system controls all aspects of digestion, including the movement of food through the GI tract. Some patients with gastroparesis, a disorder of the stomach nerves that leads to very slow movement of food, have shown symptomatic improvement after electrical stimulation generated by a pacemaker-like device that can be surgically implanted in the stomach.

    Doctors had theorized that the electrical stimulation would provoke the stomach into contracting, which would help push food along. However, it was later found that while the treatment does help patients feel better, it affected motility to a lesser degree. The MIT team hypothesized that the electrical stimulation of the stomach might be leading to the release of ghrelin, which is known to promote hunger and reduce feelings of nausea.

    To test that hypothesis, the researchers used an electrical probe to deliver electrical stimulation in the stomachs of animals. They found that after 20 minutes of stimulation, ghrelin levels in the bloodstream were considerably elevated. They also found that electrical stimulation did not lead to any significant inflammation or other adverse effects.

    Once they established that electrical stimulation was provoking ghrelin release, the researchers set out to see if they could achieve the same thing using a device that could be swallowed and temporarily reside in the stomach. One of the main challenges in designing such a device is ensuring that the electrodes on the capsule can contact the stomach tissue, which are coated with fluid. 

    Play video

    To create a drier surface that electrodes can interact with, the researchers gave their capsule a grooved surface that wicks fluid away from the electrodes. The surface they designed is inspired by the skin of the Australian thorny devil lizard, which uses ridged scales to collect water. When the lizard touches water with any part of its skin, water is transported by capillary action along the channels to the lizard’s mouth.

    “We were inspired by that to incorporate surface textures and patterns onto the outside of this capsule,” McRae says. “That surface can manage the fluid that could potentially prevent the electrodes from touching the tissue in the stomach, so it can reliably deliver electrical stimulation.”

    The capsule surface consists of grooves with a hydrophilic coating. These grooves function as channels that draw fluid away from the stomach tissue. Inside the device are battery-powered electronics that produce an electric current that flows across electrodes on the surface of the capsule. In the prototype used in this study, the current runs constantly, but future versions could be designed so that the current can be wirelessly turned on and off, according to the researchers.

    Hormone boost

    The researchers tested their capsule by administering it into the stomachs of large animals, and they found that the capsule produced a substantial spike in ghrelin levels in the bloodstream.

    “As far as we know, this is the first example of using electrical stimuli through an ingestible device to increase endogenous levels of hormones in the body, like ghrelin. And so, it has this effect of utilizing the body’s own systems rather than introducing external agents,” Ramadi says.

    The researchers found that in order for this stimulation to work, the vagus nerve, which controls digestion, must be intact. They theorize that the electrical pulses transmit to the brain via the vagus nerve, which then stimulates endocrine cells in the stomach to produce ghrelin.

    Traverso’s lab now plans to explore using this approach in other parts of the GI tract, and the researchers hope to test the device in human patients within the next three years. If developed for use in human patients, this type of treatment could potentially replace or complement some of the existing drugs used to prevent nausea and stimulate appetite in people with cachexia or anorexia, the researchers say.

    “It’s a relatively simple device, so we believe it’s something that we can get into humans on a relatively quick time scale,” Traverso says.

    The research was funded by the Koch Institute Support (core) Grant from the National Cancer Institute, the National Institute for Diabetes and Digestive and Kidney Diseases, the Division of Engineering at New York University Abu Dhabi, a National Science Foundation graduate research fellowship, Novo Nordisk, and the Department of Mechanical Engineering at MIT. More

  • in

    Exploring new sides of climate and sustainability research

    When the MIT Climate and Sustainability Consortium (MCSC) launched its Climate and Sustainability Scholars Program in fall 2022, the goal was to offer undergraduate students a unique way to develop and implement research projects with the strong support of each other and MIT faculty. Now into its second semester, the program is underscoring the value of fostering this kind of network — a community with MIT students at its core, exploring their diverse interests and passions in the climate and sustainability realms.Inspired by MIT’s successful SuperUROP [Undergraduate Research Opportunities Program], the yearlong MCSC Climate and Sustainability Scholars Program includes a classroom component combined with experiential learning opportunities and mentorship, all centered on climate and sustainability topics.“Harnessing the innovation, passion, and expertise of our talented students is critical to MIT’s mission of tackling the climate crisis,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MCSC. “The program is helping train students from a variety of disciplines and backgrounds to be effective leaders in climate and sustainability-focused roles in the future.”

    “What we found inspiring about MIT’s existing SuperUROP program was how it provides students with the guidance, training, and resources they need to investigate the world’s toughest problems,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director. “This incredible level of support and mentorship encourages students to think and explore in creative ways, make new connections, and develop strategies and solutions that propel their work forward.”The first and current cohort of Climate and Sustainability Scholars consists of 19 students, representing MIT’s School of Engineering, MIT Schwarzman College of Computing, School of Science, School of Architecture and Planning, and MIT Sloan School of Management. These students are learning new perspectives, approaches, and angles in climate and sustainability — from each other, MIT faculty, and industry professionals.Projects with real-world applicationsStudents in the program work directly with faculty and principal investigators across MIT to develop their research projects focused on a large scope of sustainability topics.

    “This broad scope is important,” says Desirée Plata, MIT’s Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, “because climate and sustainability solutions are needed in every facet of society. For a long time, people were searching for a ‘silver bullet’ solution to the climate change problems, but we didn’t get to this point with a single technological decision. This problem was created across a spectrum of sociotechnological activities, and fundamentally different thinking across a spectrum of solutions is what’s needed to move us forward. MCSC students are working to provide those solutions.”

    Undergraduate student and physics major M. (MG) Geogdzhayeva is working with Raffaele Ferrari, Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate, on their project “Using Continuous Time Markov Chains to Project Extreme Events under Climate.” Geogdzhayeva’s research supports the Flagship Climate Grand Challenges project that Ferrari is leading along with Professor Noelle Eckley Selin.

    “The project I am working on has a similar approach to the Climate Grand Challenges project entitled “Bringing computation to the climate challenge,” says Geogdzhayeva. “I am designing an emulator for climate extremes. Our goal is to boil down climate information to what is necessary and to create a framework that can deliver specific information — in order to develop valuable forecasts. As someone who comes from a physics background, the Climate and Sustainability Scholars Program has helped me think about how my research fits into the real world, and how it could be implemented.”

    Investigating technology and stakeholders

    Within technology development, Jade Chongsathapornpong, also a physics major, is diving into photo-modulated catalytic reactions for clean energy applications. Chongsathapornpong, who has worked with the MCSC on carbon capture and sequestration through the Undergraduate Research Opportunities Program (UROP), is now working with Harry Tuller, MIT’s R.P. Simmons Professor of Ceramics and Electronic Materials. Louise Anderfaas, majoring in materials science and engineering, is also working with Tuller on her project “Robust and High Sensitivity Detectors for Exploration of Deep Geothermal Wells.”Two other students who have worked with the MCSC through UROP include Paul Irvine, electrical engineering and computer science major, who is now researching American conservatism’s current relation to and views about sustainability and climate change, and Pamela Duke, management major, now investigating the use of simulation tools to empower industrial decision-makers around climate change action.Other projects focusing on technology development include the experimental characterization of poly(arylene ethers) for energy-efficient propane/propylene separations by Duha Syar, who is a chemical engineering major and working with Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering; developing methods to improve sheet steel recycling by Rebecca Lizarde, who is majoring in materials science and engineering; and ion conduction in polymer-ceramic composite electrolytes by Melissa Stok, also majoring in materials science and engineering.

    Melissa Stok, materials science and engineering major, during a classroom discussion.

    Photo: Andrew Okyere

    Previous item
    Next item

    “My project is very closely connected to developing better Li-Ion batteries, which are extremely important in our transition towards clean energy,” explains Stok, who is working with Bilge Yildiz, MIT’s Breene M. Kerr (1951) Professor of Nuclear Science and Engineering. “Currently, electric cars are limited in their range by their battery capacity, so working to create more effective batteries with higher energy densities and better power capacities will help make these cars go farther and faster. In addition, using safer materials that do not have as high of an environmental toll for extraction is also important.” Claire Kim, a chemical engineering major, is focusing on batteries as well, but is honing in on large form factor batteries more relevant for grid-scale energy storage with Fikile Brushett, associate professor of chemical engineering.Some students in the program chose to focus on stakeholders, which, when it comes to climate and sustainability, can range from entities in business and industry to farmers to Indigenous people and their communities. Shivani Konduru, an electrical engineering and computer science major, is exploring the “backfire effects” in climate change communication, focusing on perceptions of climate change and how the messenger may change outcomes, and Einat Gavish, mathematics major, on how different stakeholders perceive information on driving behavior.Two students are researching the impact of technology on local populations. Anushree Chaudhuri, who is majoring in urban studies and planning, is working with Lawrence Susskind, Ford Professor of Urban and Environmental Planning, on community acceptance of renewable energy siting, and Amelia Dogan, also an urban studies and planning major, is working with Danielle Wood, assistant professor of aeronautics and astronautics and media arts and sciences, on Indigenous data sovereignty in environmental contexts.

    “I am interviewing Indigenous environmental activists for my project,” says Dogan. “This course is the first one directly related to sustainability that I have taken, and I am really enjoying it. It has opened me up to other aspects of climate beyond just the humanity side, which is my focus. I did MIT’s SuperUROP program and loved it, so was excited to do this similar opportunity with the climate and sustainability focus.”

    Other projects include in-field monitoring of water quality by Dahlia Dry, a physics major; understanding carbon release and accrual in coastal wetlands by Trinity Stallins, an urban studies and planning major; and investigating enzyme synthesis for bioremediation by Delight Nweneka, an electrical engineering and computer science major, each linked to the MCSC’s impact pathway work in nature-based solutions.

    The wide range of research topics underscores the Climate and Sustainability Program’s goal of bringing together diverse interests, backgrounds, and areas of study even within the same major. For example, Helena McDonald is studying pollution impacts of rocket launches, while Aviva Intveld is analyzing the paleoclimate and paleoenvironment background of the first peopling of the Americas. Both students are Earth, atmospheric and planetary sciences majors but are researching climate impacts from very different perspectives. Intveld was recently named a 2023 Gates Cambridge Scholar.

    “There are students represented from several majors in the program, and some people are working on more technical projects, while others are interpersonal. Both approaches are really necessary in the pursuit of climate resilience,” says Grace Harrington, who is majoring in civil and environmental engineering and whose project investigates ways to optimize the power of the wind farm. “I think it’s one of the few classes I’ve taken with such an interdisciplinary nature.”

    Shivani Konduru, electrical engineering and computer science major, during a classroom lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Perspectives and guidance from MIT and industry expertsAs students are developing these projects, they are also taking the program’s course (Climate.UAR), which covers key topics in climate change science, decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts. The course is cross-listed in departments across all five schools and is taught by an experienced and interdisciplinary team. Desirée Plata was central to developing the Climate and Sustainability Scholars Programs and course with Associate Professor Elsa Olivetti, who taught the first semester. Olivetti is now co-teaching the second semester with Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. The course’s writing instructors are Caroline Beimford and David Larson.  

    “I have been introduced to a lot of new angles in the climate space through the weekly guest lecturers, who each shared a different sustainability-related perspective,” says Claire Kim. “As a chemical engineering major, I have mostly looked into the technologies for decarbonization, and how to scale them, so learning about policy, for example, was helpful for me. Professor Black from the Department of History spoke about how we can analyze the effectiveness of past policy to guide future policy, while Professor Selin talked about framing different climate policies as having co-benefits. These perspectives are really useful because no matter how good a technology is, you need to convince other people to adopt it, or have strong policy in place to encourage its use, in order for it to be effective.”

    Bringing the industry perspective, guests have presented from MCSC member companies such as PepsiCo, Holcim, Apple, Cargill, and Boeing. As an example, in one class, climate leaders from three companies presented together on their approaches to setting climate goals, barriers to reaching them, and ways to work together. “When I presented to the class, alongside my counterparts at Apple and Boeing, the student questions pushed us to explain how can collaborate on ways to achieve our climate goals, reflecting the broader opportunity we find within the MCSC,” says Dana Boyer, sustainability manager at Cargill.

    Witnessing the cross-industry dynamics unfold in class was particularly engaging for the students. “The most beneficial part of the program for me is the number of guest lectures who have come in to the class, not only from MIT but also from the industry side,” Grace Harrington adds. “The diverse range of people talking about their own fields has allowed me to make connections between all my classes.”Bringing in perspectives from both academia and industry is a reflection of the MCSC’s larger mission of linking its corporate members with each other and with the MIT community to develop scalable climate solutions.“In addition to focusing on an independent research project and engaging with a peer community, we’ve had the opportunity to hear from speakers across the sustainability space who are also part of or closely connected to the MIT ecosystem,” says Anushree Chaudhuri. “These opportunities have helped me make connections and learn about initiatives at the Institute that are closely related to existing or planned student sustainability projects. These connections — across topics like waste management, survey best practices, and climate communications — have strengthened student projects and opened pathways for future collaborations.

    Basuhi Ravi, MIT PhD candidate, giving a guest lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Having a positive impact as students and after graduation

    At the start of the program, students identified several goals, including developing focused independent research questions, drawing connections and links with real-world challenges, strengthening their critical thinking skills, and reflecting on their future career ambitions. A common thread throughout them all: the commitment to having a meaningful impact on climate and sustainability challenges both as students now, and as working professionals after graduation.“I’ve absolutely loved connecting with like-minded peers through the program. I happened to know most of the students coming in from various other communities on campus, so it’s been a really special experience for all of these people who I couldn’t connect with as a cohesive cohort before to come together. Whenever we have small group discussions in class, I’m always grateful for the time to learn about the interdisciplinary research projects everyone is involved with,” concludes Chaudhuri. “I’m looking forward to staying in touch with this group going forward, since I think most of us are planning on grad school and/or careers related to climate and sustainability.”

    The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research. Learn about how you can get involved. More

  • in

    Moving perovskite advancements from the lab to the manufacturing floor

    The following was issued as a joint announcement from MIT.nano and the MIT Research Laboratory for Electronics; CubicPV; Verde Technologies; Princeton University; and the University of California at San Diego.

    Tandem solar cells are made of stacked materials — such as silicon paired with perovskites — that together absorb more of the solar spectrum than single materials, resulting in a dramatic increase in efficiency. Their potential to generate significantly more power than conventional cells could make a meaningful difference in the race to combat climate change and the transition to a clean-energy future.

    However, current methods to create stable and efficient perovskite layers require time-consuming, painstaking rounds of design iteration and testing, inhibiting their development for commercial use. Today, the U.S. Department of Energy Solar Energy Technologies Office (SETO) announced that MIT has been selected to receive an $11.25 million cost-shared award to establish a new research center to address this challenge by using a co-optimization framework guided by machine learning and automation.

    A collaborative effort with lead industry participant CubicPV, solar startup Verde Technologies, and academic partners Princeton University and the University of California San Diego (UC San Diego), the center will bring together teams of researchers to support the creation of perovskite-silicon tandem solar modules that are co-designed for both stability and performance, with goals to significantly accelerate R&D and the transfer of these achievements into commercial environments.

    “Urgent challenges demand rapid action. This center will accelerate the development of tandem solar modules by bringing academia and industry into closer partnership,” says MIT professor of mechanical engineering Tonio Buonassisi, who will direct the center. “We’re grateful to the Department of Energy for supporting this powerful new model and excited to get to work.”

    Adam Lorenz, CTO of solar energy technology company CubicPV, stresses the importance of thinking about scale, alongside quality and efficiency, to accelerate the perovskite effort into the commercial environment. “Instead of chasing record efficiencies with tiny pixel-sized devices and later attempting to stabilize them, we will simultaneously target stability, reproducibility, and efficiency,” he says. “It’s a module-centric approach that creates a direct channel for R&D advancements into industry.”

    The center will be named Accelerated Co-Design of Durable, Reproducible, and Efficient Perovskite Tandems, or ADDEPT. The grant will be administered through the MIT Research Laboratory for Electronics (RLE).

    David Fenning, associate professor of nanoengineering at UC San Diego, has worked with Buonassisi on the idea of merging materials, automation, and computation, specifically in this field of artificial intelligence and solar, since 2014. Now, a central thrust of the ADDEPT project will be to deploy machine learning and robotic screening to optimize processing of perovskite-based solar materials for efficiency and durability.

    “We have already seen early indications of successful technology transfer between our UC San Diego robot PASCAL and industry,” says Fenning. “With this new center, we will bring research labs and the emerging perovskite industry together to improve reproducibility and reduce time to market.”

    “Our generation has an obligation to work collaboratively in the fight against climate change,” says Skylar Bagdon, CEO of Verde Technologies, which received the American-Made Perovskite Startup Prize. “Throughout the course of this center, Verde will do everything in our power to help this brilliant team transition lab-scale breakthroughs into the world where they can have an impact.”

    Several of the academic partners echoed the importance of the joint effort between academia and industry. Barry Rand, professor of electrical and computer engineering at the Andlinger Center for Energy and the Environment at Princeton University, pointed to the intersection of scientific knowledge and market awareness. “Understanding how chemistry affects films and interfaces will empower us to co-design for stability and performance,” he says. “The center will accelerate this use-inspired science, with close guidance from our end customers, the industry partners.”

    A critical resource for the center will be MIT.nano, a 200,000-square-foot research facility set in the heart of the campus. MIT.nano Director Vladimir Bulović, the Fariborz Maseeh (1990) Professor of Emerging Technology, says he envisions MIT.nano as a hub for industry and academic partners, facilitating technology development and transfer through shared lab space, open-access equipment, and streamlined intellectual property frameworks.

    “MIT has a history of groundbreaking innovation using perovskite materials for solar applications,” says Bulović. “We’re thrilled to help build on that history by anchoring ADDEPT at MIT.nano and working to help the nation advance the future of these promising materials.”

    MIT was selected as a part of the SETO Fiscal Year 2022 Photovoltaics (PV) funding program, an effort to reduce costs and supply chain vulnerabilities, further develop durable and recyclable solar technologies, and advance perovskite PV technologies toward commercialization. ADDEPT is one project that will tackle perovskite durability, which will extend module life. The overarching goal of these projects is to lower the levelized cost of electricity generated by PV.

    Research groups involved with the ADDEPT project at MIT include Buonassisi’s Accelerated Materials Laboratory for Sustainability (AMLS), Bulović’s Organic and Nanostructured Electronics (ONE) Lab, and the Bawendi Group led by Lester Wolfe Professor in Chemistry Moungi Bawendi. Also working on the project is Jeremiah Mwaura, research scientist in the ONE Lab. More

  • in

    Even as temperatures rise, this hydrogel material keeps absorbing moisture

    The vast majority of absorbent materials will lose their ability to retain water as temperatures rise. This is why our skin starts to sweat and why plants dry out in the heat. Even materials that are designed to soak up moisture, such as the silica gel packs in consumer packaging, will lose their sponge-like properties as their environment heats up.

    But one material appears to uniquely resist heat’s drying effects. MIT engineers have now found that polyethylene glycol (PEG) — a hydrogel commonly used in cosmetic creams, industrial coatings, and pharmaceutical capsules — can absorb moisture from the atmosphere even as temperatures climb.

    The material doubles its water absorption as temperatures climb from 25 to 50 degrees Celsius (77 to 122 degrees Fahrenheit), the team reports.

    PEG’s resilience stems from a heat-triggering transformation. As its surroundings heat up, the hydrogel’s microstructure morphs from a crystal to a less organized “amorphous” phase, which enhances the material’s ability to capture water.

    Based on PEG’s unique properties, the team developed a model that can be used to engineer other heat-resistant, water-absorbing materials. The group envisions such materials could one day be made into devices that harvest moisture from the air for drinking water, particularly in arid desert regions. The materials could also be incorporated into heat pumps and air conditioners to more efficiently regulate temperature and humidity.

    “A huge amount of energy consumption in buildings is used for thermal regulation,” says Lenan Zhang, a research scientist in MIT’s Department of Mechanical Engineering. “This material could be a key component of passive climate-control systems.”

    Zhang and his colleagues detail their work in a study appearing today in Advanced Materials. MIT co-authors include Xinyue Liu, Bachir El Fil, Carlos Diaz-Marin, Yang Zhong, Xiangyu Li, and Evelyn Wang, along with Shaoting Lin of Michigan State University.

    Against intuition

    Evelyn Wang’s group in MIT’s Device Research Lab aims to address energy and water challenges through the design of new materials and devices that sustainably manage water and heat. The team discovered PEG’s unusual properties as they were assessing a slew of similar hydrogels for their water-harvesting abilities.

    “We were looking for a high-performance material that could capture water for different applications,” Zhang says. “Hydrogels are a perfect candidate, because they are mostly made of water and a polymer network. They can simultaneously expand as they absorb water, making them ideal for regulating humidity and water vapor.”

    The team analyzed a variety of hydrogels, including PEG, by placing each material on a scale that was set within a climate-controlled chamber. A material became heavier as it absorbed more moisture. By recording a material’s changing weight, the researchers could track its ability to absorb moisture as they tuned the chamber’s temperature and humidity.

    What they observed was typical of most materials: as the temperature increased, the hyrogels’ ability to capture moisture from the air decreased. The reason for this temperature-dependence is well-understood: With heat comes motion, and at higher temperatures, water molecules move faster and are therefore more difficult to contain in most materials.

    “Our intuition tells us that at higher temperatures, materials tend to lose their ability to capture water,” says co-author Xinyue Liu. “So, we were very surprised by PEG because it has this inverse relationship.”

    In fact, they found that PEG grew heavier and continued to absorb water as the researchers raised the chamber’s temperature from 25 to 50 degrees Celsius.

    “At first, we thought we had measured some errors, and thought this could not be possible,” Liu says. “After we double-checked everything was correct in the experiment, we realized this was really happening, and this is the only known material that shows increasing water absorbing ability with higher temperature.”

    A lucky catch

    The group zeroed in on PEG to try and identify the reason for its unusual, heat-resilient performance. They found that the material has a natural melting point at around 50 degrees Celsius, meaning that the hydrogel’s normally crystal-like microstructure completely breaks down and transforms into an amorphous phase. Zhang says that this melted, amorphous phase provides more opportunity for polymers in the material to grab hold of any fast-moving water molecules.

    “In the crystal phase, there might be only a few sites on a polymer available to attract water and bind,” Zhang says. “But in the amorphous phase, you might have many more sites available. So, the overall performance can increase with increased temperature.”

    The team then developed a theory to predict how hydrogels absorb water, and showed that the theory could also explain PEG’s unusual behavior if the researchers added a “missing term” to the theory. That missing term was the effect of phase transformation. They found that when they included this effect, the theory could predict PEG’s behavior, along with that of other temperature-limiting hydrogels.

    The discovery of PEG’s unique properties was in large part by chance. The material’s melting temperature just happens to be within the range where water is a liquid, enabling them to catch PEG’s phase transformation and its resulting super-soaking behavior. The other hydrogels happen to have melting temperatures that fall outside this range. But the researchers suspect that these materials are also capable of similar phase transformations once they hit their melting temperatures.

    “Other polymers could in theory exhibit this same behavior, if we can engineer their melting points within a selected temperature range,” says team member Shaoting Lin.

    Now that the group has worked out a theory, they plan to use it as a blueprint to design materials specifically for capturing water at higher temperatures.

    “We want to customize our design to make sure a material can absorb a relatively high amount of water, at low humidity and high temperatures,” Liu says. “Then it could be used for atmospheric water harvesting, to bring people potable water in hot, arid environments.”

    This research was supported, in part, by U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. More

  • in

    MIT engineers devise technology to prevent fouling in photobioreactors for CO2 capture

    Algae grown in transparent tanks or tubes supplied with carbon dioxide can convert the greenhouse gas into other compounds, such as food supplements or fuels. But the process leads to a buildup of algae on the surfaces that clouds them and reduces efficiency, requiring laborious cleanout procedures every couple of weeks.

    MIT researchers have come up with a simple and inexpensive technology that could substantially limit this fouling, potentially allowing for a much more efficient and economical way of converting the unwanted greenhouse gas into useful products.

    The key is to coat the transparent containers with a material that can hold an electrostatic charge, and then applying a very small voltage to that layer. The system has worked well in lab-scale tests, and with further development might be applied to commercial production within a few years.

    The findings are being reported in the journal Advanced Functional Materials, in a paper by recent MIT graduate Victor Leon PhD ’23, professor of mechanical engineering Kripa Varanasi, former postdoc Baptiste Blanc, and undergraduate student Sophia Sonnert.

    No matter how successful efforts to reduce or eliminate carbon emissions may be, there will still be excess greenhouse gases that will remain in the atmosphere for centuries to come, continuing to affect global climate, Varanasi points out. “There’s already a lot of carbon dioxide there, so we have to look at negative emissions technologies as well,” he says, referring to ways of removing the greenhouse gas from the air or oceans, or from their sources before they get released into the air in the first place.

    When people think of biological approaches to carbon dioxide reduction, the first thought is usually of planting or protecting trees, which are indeed a crucial “sink” for atmospheric carbon. But there are others. “Marine algae account for about 50 percent of global carbon dioxide absorbed today on Earth,” Varanasi says. These algae grow anywhere from 10 to 50 times more quickly than land-based plants, and they can be grown in ponds or tanks that take up only a tenth of the land footprint of terrestrial plants.

    What’s more, the algae themselves can then be a useful product. “These algae are rich in proteins, vitamins and other nutrients,” Varanasi says, noting they could produce far more nutritional output per unit of land used than some traditional agricultural crops.

    If attached to the flue gas output of a coal or gas power plant, algae could not only thrive on the carbon dioxide as a nutrient source, but some of the microalgae species could also consume the associated nitrogen and sulfur oxides present in these emissions. “For every two or three kilograms of CO2, a kilogram of algae could be produced, and these could be used as biofuels, or for Omega-3, or food,” Varanasi says.

    Omega-3 fatty acids are a widely used food supplement, as they are an essential part of cell membranes and other tissues but cannot be made by the body and must be obtained from food. “Omega 3 is particularly attractive because it’s also a much higher-value product,” Varanasi says.

    Most algae grown commercially are cultivated in shallow ponds, while others are grown in transparent tubes called photobioreactors. The tubes can produce seven to 10 times greater yields than ponds for a given amount of land, but they face a major problem: The algae tend to build up on the transparent surfaces, requiring frequent shutdowns of the whole production system for cleaning, which can take as long as the productive part of the cycle, thus cutting overall output in half and adding to operational costs.

    The fouling also limits the design of the system. The tubes can’t be too small because the fouling would begin to block the flow of water through the bioreactor and require higher pumping rates.

    Varanasi and his team decided to try to use a natural characteristic of the algae cells to defend against fouling. Because the cells naturally carry a small negative electric charge on their membrane surface, the team figured that electrostatic repulsion could be used to push them away.

    The idea was to create a negative charge on the vessel walls, such that the electric field forces the algae cells away from the walls. To create such an electric field requires a high-performance dielectric material, which is an electrical insulator with a high “permittivity” that can produce a large change in surface charge with a smaller voltage.

    “What people have done before with applying voltage [to bioreactors] has been with conductive surfaces,” Leon explains, “but what we’re doing here is specifically with nonconductive surfaces.”

    He adds: “If it’s conductive, then you pass current and you’re kind of shocking the cells. What we’re trying to do is pure electrostatic repulsion, so the surface would be negative and the cell is negative so you get repulsion. Another way to describe it is like a force field, whereas before the cells were touching the surface and getting shocked.”

    The team worked with two different dielectric materials, silicon dioxide — essentially glass — and hafnia (hafnium oxide), both of which turned out to be far more efficient at minimizing fouling than conventional plastics used to make photobioreactors. The material can be applied in a coating that is vanishingly thin, just 10 to 20 nanometers (billionths of a meter) thick, so very little would be needed to coat a full photobioreactor system.

    “What we are excited about here is that we are able to show that purely from electrostatic interactions, we are able to control cell adhesion,” Varanasi says. “It’s almost like an on-off switch, to be able to do this.”

    Additionally, Leon says, “Since we’re using this electrostatic force, we don’t really expect it to be cell-specific, and we think there’s potential for applying it with other cells than just algae. In future work, we’d like to try using it with mammalian cells, bacteria, yeast, and so on.” It could also be used with other valuable types of algae, such as spirulina, that are widely used as food supplements.

    The same system could be used to either repel or attract cells by just reversing the voltage, depending on the particular application. Instead of algae, a similar setup might be used with human cells to produce artificial organs by producing a scaffold that could be charged to attract the cells into the right configuration, Varanasi suggests.

    “Our study basically solves this major problem of biofouling, which has been a bottleneck for photobioreactors,” he says. “With this technology, we can now really achieve the full potential” of such systems, although further development will be needed to scale up to practical, commercial systems.

    As for how soon this could be ready for widespread deployment, he says, “I don’t see why not in three years’ timeframe, if we get the right resources to be able to take this work forward.”

    The study was supported by energy company Eni S.p.A., through the MIT Energy Initiative. More

  • in

    Scientists uncover the amazing way sandgrouse hold water in their feathers

    Many birds’ feathers are remarkably efficient at shedding water — so much so that “like water off a duck’s back” is a common expression. Much more unusual are the belly feathers of the sandgrouse, especially Namaqua sandgrouse, which absorb and retain water so efficiently the male birds can fly more than 20 kilometers from a distant watering hole back to the nest and still retain enough water in their feathers for the chicks to drink and sustain themselves in the searing deserts of Namibia, Botswana, and South Africa.

    How do those feathers work? While scientists had inferred a rough picture, it took the latest tools of microscopy, and patient work with a collection of sandgrouse feathers, to unlock the unique structural details that enable the feathers to hold water. The findings appear today in the Journal of the Royal Society Interface, in a paper by Lorna Gibson, the Matoula S. Salapatas Professor of Materials Science and Engineering and a professor of mechanical engineering at MIT, and Professor Jochen Mueller of Johns Hopkins University.

    The unique water-carrying ability of sandgrouse feathers was first reported back in 1896, Gibson says, by E.G.B. Meade-Waldo, who was breeding the birds in captivity. “He saw them behaving like this, and nobody believed him! I mean, it just sounded so outlandish,” Gibson says.

    In 1967, Tom Cade and Gordon MacLean reported detailed observations of the birds at watering holes, in a study that proved the unique behavior was indeed real. The scientists found that male sandgrouse feathers could hold about 25 milliliters of water, or about a tenth of a cup, after the bird had spent about five minutes dipping in the water and fluffing its feathers.

    About half of that amount can evaporate during the male bird’s half-hour-long flight back to the nest, where the chicks, which cannot fly for about their first month, drink the remainder straight from the feathers.

    Cade and MacLean “had part of the story,” Gibson says, but the tools didn’t exist at the time to carry out the detailed imaging of the feather structures that the new study was able to do.

    Gibson and Mueller carried out their study using scanning electron microscopy, micro-computed tomography, and video imaging. They borrowed Namaqua sandgrouse belly feathers from Harvard University’s Museum of Comparative Zoology, which has a collection of specimens of about 80 percent of the world’s birds.

    Bird feathers in general have a central shaft, from which smaller barbs extend, and then smaller barbules extend out from those. Sandgrouse feathers are structured differently, however. In the inner zone of the feather, the barbules have a helically coiled structure close to their base and then a straight extension. In the outer zone of the feather, the barbules lack the helical coil and are simply straight. Both parts lack the grooves and hooks that hold the vane of contour feathers together in most other birds.
    Video of water spreading through the specialized sandgrouse feathers, under magnification, shows the uncoiling and spreading of the feather’s barbules as they become wet. Initially, most barbules in the outer zone of the feather form tubular features.Credit: Specimen #142928, Museum of Comparative Zoology, Harvard University © President and Fellows of Harvard College.

    When wetted, the coiled portions of the barbules unwind and rotate to be perpendicular to the vane, producing a dense forest of fibers that can hold water through capillary action. At the same time, the barbules in the outer zone curl inward, helping to hold the water in.

    The microscopy techniques used in the new study allowed the dimensions of the different parts of the feather to be measured. In the inner zone, the barb shafts are large and stiff enough to provide a rigid base about which the other parts of the feather deform, and the barbules are small and flexible enough that surface tension is sufficient to bend the straight extensions into tear-like structures that hold water. And in the outer zone, the barb shafts and barbules are smaller still, allowing them to curl around the inner zone, further retaining water.

    While previous work had suggested that surface tension produced the water retention characteristics, “what we did was make measurements of the dimensions and do some calculations to show that that’s what is actually happening,” Gibson says. Her group’s work demonstrated that the varying stiffnesses of the different feather parts plays a key role in their ability to hold water.

    The study was mostly driven by intellectual curiosity about this unique behavioral phenomenon, Gibson says. “We just wanted to see how it works. The whole story just seemed so interesting.” But she says it might lead to some useful applications. For example, in desert regions where water is scarce but fog and dew regularly occur, such as in Chile’s Atacama Desert, some adaptation of this feather structure might be incorporated into the systems of huge nets that are used to collect water. “You could imagine this could be a way to improve those systems,” she says. “A material with this kind of structure might be more effective at fog harvesting and holding the water.”

    “This fascinating and in-depth study reveals how the different parts of the sandgrouse’s belly feathers — including the microscopic barb shafts and barbules — work together to hold water,” says Mary Caswell Stoddard, an evolutionary biologist at Princeton University, who was not associated with this study. “By using a suite of advanced imaging techniques to describe the belly feathers and estimate their bending stiffnesses, Mueller and Gibson add rich new details to our understanding of the sandgrouse’s water-carrying feathers. … This study may inspire others to take a closer look at diverse feather microstructures across bird species — and to wonder whether these structures, as in sandgrouse, help support unusual or surprising functions.”

    The work was partly supported by the National Science Foundation and the Matoula S. Salapatas Professorship in Materials Science and Engineering at MIT. More

  • in

    A new microneedle-based drug delivery technique for plants

    Increasing environmental conditions caused by climate change, an ever-growing human population, scarcity of arable land, and limited resources are pressuring the agriculture industry to adopt more sustainable and precise practices that foster more efficient use of resources (e.g., water, fertilizers, and pesticides) and mitigation of environmental impacts. Developing delivery systems that efficiently deploy agrochemicals such as micronutrients, pesticides, and antibiotics in crops will help ensure high productivity and high produce quality, while minimizing the waste of resources, is crucial.

    Now, researchers in Singapore and the U.S. have developed the first-ever microneedle-based drug delivery technique for plants. The method can be used to precisely deliver controlled amounts of agrochemicals to specific plant tissues for research purposes. When applied in the field, it could one day be used in precision agriculture to improve crop quality and disease management.

    The work is led by researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group at the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their collaborators from MIT and the Temasek Life Sciences Laboratory (TLL).

    Current and standard practices for agrochemical application in plants, such as foliar spray, are inefficient due to off-target application, quick runoff in the rain, and actives’ rapid degradation. These practices also cause significant detrimental environmental side effects, such as water and soil contamination, biodiversity loss, and degraded ecosystems; and public health concerns, such as respiratory problems, chemical exposure, and food contamination.

    The novel silk-based microneedles technique circumvents these limitations by deploying and targeting a known amount of payload directly into a plant’s deep tissues, which will lead to higher efficacy of plant growth and help with disease management. The technique is minimally invasive, as it delivers the compound without causing long-term damage to the plants, and is environmentally sustainable. It minimizes resource wastage and mitigates the adverse side effects caused by agrochemical contamination of the environment. Additionally, it will help foster precise agricultural practices and provide new tools to study plants and design crop traits, helping to ensure food security.

    Described in a paper titled “Drug Delivery in Plants Using Silk Microneedles,” published in a recent issue of Advanced Materials, the research studies the first-ever polymeric microneedles used to deliver small compounds to a wide variety of plants and the plant response to biomaterial injection. Through gene expression analysis, the researchers could closely examine the reactions to drug delivery following microneedle injection. Minimal scar and callus formation were observed, suggesting minimal injection-induced wounding to the plant. The proof of concept provided in this study opens the door to plant microneedles’ application in plant biology and agriculture, enabling new means to regulate plant physiology and study metabolisms via efficient and effective delivery of payloads.

    The study optimized the design of microneedles to target the systemic transport system in Arabidopsis (mouse-ear cress), the chosen model plant. Gibberellic acid (GA3), a widely used plant growth regulator in agriculture, was selected for the delivery. The researchers found that delivering GA3 through microneedles was more effective in promoting growth than traditional methods (such as foliar spray). They then confirmed the effectiveness using genetic methods and demonstrated that the technique is applicable to various plant species, including vegetables, cereals, soybeans, and rice.

    Professor Benedetto Marelli, co-corresponding author of the paper, principal investigator at DiSTAP, and associate professor of civil and environmental engineering at MIT, shares, “The technique saves resources as compared to current methods of agrochemical delivery, which suffer from wastage. During the application, the microneedles break through the tissue barriers and release compounds directly inside the plants, avoiding agrochemical losses. The technique also allows for precise control of the amounts of the agrochemical used, ensuring high-tech precision agriculture and crop growth to optimize yield.”

    “The first-of-its-kind technique is revolutionary for the agriculture industry. It also minimizes resource wastage and environmental contamination. In the future, with automated microneedle application as a possibility, the technique may be used in high-tech outdoor and indoor farms for precise agrochemical delivery and disease management,” adds Yunteng Cao, the first author of the paper and postdoc at MIT.

    “This work also highlights the importance of using genetic tools to study plant responses to biomaterials. Analyzing these responses at the genetic level offers a comprehensive understanding of these responses, thereby serving as a guide for the development of future biomaterials that can be used across the agri-food industry,” says Sally Koh, the co-first author of this work and PhD candidate from NUS and TLL.

    The future seems promising as Professor Daisuke Urano, co-corresponding author of the paper, TLL principal investigator, and NUS adjunct assistant professor elaborates, “Our research has validated the use of silk-based microneedles for agrochemical application, and we look forward to further developing the technique and microneedle design into a scalable model for manufacturing and commercialization. At the same time, we are also actively investigating potential applications that could have a significant impact on society.”

    The study of drug delivery in plants using silk microneedles expanded upon previous research supervised by Marelli. The original idea was conceived by SMART and MIT: Marelli, Cao, and Professor Nam-Hai Chua, co-lead principal investigator at DiSTAP. Researchers from TLL and the National University of Singapore, Professor Urano Daisuke and Koh, joined the study to contribute biological perspectives. The research is carried out by SMART and supported by the National Research Foundation Singapore (NRF) under its Campus for Research Excellence And Technological Enterprise (CREATE) program.

    SMART was established by MIT and NRF in 2007. SMART is the first entity in CREATE, developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research in areas of interest to both parties. SMART currently comprises an Innovation Center and interdisciplinary research groups: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, DiSTAP, Future Urban Mobility, and Low Energy Electronic Systems. More

  • in

    Study: Shutting down nuclear power could increase air pollution

    Nearly 20 percent of today’s electricity in the United States comes from nuclear power. The U.S. has the largest nuclear fleet in the world, with 92 reactors scattered around the country. Many of these power plants have run for more than half a century and are approaching the end of their expected lifetimes.

    Policymakers are debating whether to retire the aging reactors or reinforce their structures to continue producing nuclear energy, which many consider a low-carbon alternative to climate-warming coal, oil, and natural gas.

    Now, MIT researchers say there’s another factor to consider in weighing the future of nuclear power: air quality. In addition to being a low carbon-emitting source, nuclear power is relatively clean in terms of the air pollution it generates. Without nuclear power, how would the pattern of air pollution shift, and who would feel its effects?

    The MIT team took on these questions in a new study appearing today in Nature Energy. They lay out a scenario in which every nuclear power plant in the country has shut down, and consider how other sources such as coal, natural gas, and renewable energy would fill the resulting energy needs throughout an entire year.

    Their analysis reveals that indeed, air pollution would increase, as coal, gas, and oil sources ramp up to compensate for nuclear power’s absence. This in itself may not be surprising, but the team has put numbers to the prediction, estimating that the increase in air pollution would have serious health effects, resulting in an additional 5,200 pollution-related deaths over a single year.

    If, however, more renewable energy sources become available to supply the energy grid, as they are expected to by the year 2030, air pollution would be curtailed, though not entirely. The team found that even under this heartier renewable scenario, there is still a slight increase in air pollution in some parts of the country, resulting in a total of 260 pollution-related deaths over one year.

    When they looked at the populations directly affected by the increased pollution, they found that Black or African American communities — a disproportionate number of whom live near fossil-fuel plants — experienced the greatest exposure.

    “This adds one more layer to the environmental health and social impacts equation when you’re thinking about nuclear shutdowns, where the conversation often focuses on local risks due to accidents and mining or long-term climate impacts,” says lead author Lyssa Freese, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS).

    “In the debate over keeping nuclear power plants open, air quality has not been a focus of that discussion,” adds study author Noelle Selin, a professor in MIT’s Institute for Data, Systems, and Society (IDSS) and EAPS. “What we found was that air pollution from fossil fuel plants is so damaging, that anything that increases it, such as a nuclear shutdown, is going to have substantial impacts, and for some people more than others.”

    The study’s MIT-affiliated co-authors also include Principal Research Scientist Sebastian Eastham and Guillaume Chossière SM ’17, PhD ’20, along with Alan Jenn of the University of California at Davis.

    Future phase-outs

    When nuclear power plants have closed in the past, fossil fuel use increased in response. In 1985, the closure of reactors in Tennessee Valley prompted a spike in coal use, while the 2012 shutdown of a plant in California led to an increase in natural gas. In Germany, where nuclear power has almost completely been phased out, coal-fired power increased initially to fill the gap.

    Noting these trends, the MIT team wondered how the U.S. energy grid would respond if nuclear power were completely phased out.

    “We wanted to think about what future changes were expected in the energy grid,” Freese says. “We knew that coal use was declining, and there was a lot of work already looking at the impact of what that would have on air quality. But no one had looked at air quality and nuclear power, which we also noticed was on the decline.”

    In the new study, the team used an energy grid dispatch model developed by Jenn to assess how the U.S. energy system would respond to a shutdown of nuclear power. The model simulates the production of every power plant in the country and runs continuously to estimate, hour by hour, the energy demands in 64 regions across the country.

    Much like the way the actual energy market operates, the model chooses to turn a plant’s production up or down based on cost: Plants producing the cheapest energy at any given time are given priority to supply the grid over more costly energy sources.

    The team fed the model available data on each plant’s changing emissions and energy costs throughout an entire year. They then ran the model under different scenarios, including: an energy grid with no nuclear power, a baseline grid similar to today’s that includes nuclear power, and a grid with no nuclear power that also incorporates the additional renewable sources that are expected to be added by 2030.

    They combined each simulation with an atmospheric chemistry model to simulate how each plant’s various emissions travel around the country and to overlay these tracks onto maps of population density. For populations in the path of pollution, they calculated the risk of premature death based on their degree of exposure.

    System response

    Play video

    Courtesy of the researchers, edited by MIT News

    Their analysis showed a clear pattern: Without nuclear power, air pollution worsened in general, mainly affecting regions in the East Coast, where nuclear power plants are mostly concentrated. Without those plants, the team observed an uptick in production from coal and gas plants, resulting in 5,200 pollution-related deaths across the country, compared to the baseline scenario.

    They also calculated that more people are also likely to die prematurely due to climate impacts from the increase in carbon dioxide emissions, as the grid compensates for nuclear power’s absence. The climate-related effects from this additional influx of carbon dioxide could lead to 160,000 additional deaths over the next century.

    “We need to be thoughtful about how we’re retiring nuclear power plants if we are trying to think about them as part of an energy system,” Freese says. “Shutting down something that doesn’t have direct emissions itself can still lead to increases in emissions, because the grid system will respond.”

    “This might mean that we need to deploy even more renewables, in order to fill the hole left by nuclear, which is essentially a zero-emissions energy source,” Selin adds. “Otherwise we will have a reduction in air quality that we weren’t necessarily counting on.”

    This study was supported, in part, by the U.S. Environmental Protection Agency. More