More stories

  • in

    Scientists chart how exercise affects the body

    Exercise is well-known to help people lose weight and avoid gaining it. However, identifying the cellular mechanisms that underlie this process has proven difficult because so many cells and tissues are involved.

    In a new study in mice that expands researchers’ understanding of how exercise and diet affect the body, MIT and Harvard Medical School researchers have mapped out many of the cells, genes, and cellular pathways that are modified by exercise or high-fat diet. The findings could offer potential targets for drugs that could help to enhance or mimic the benefits of exercise, the researchers say.

    “It is extremely important to understand the molecular mechanisms that are drivers of the beneficial effects of exercise and the detrimental effects of a high-fat diet, so that we can understand how we can intervene, and develop drugs that mimic the impact of exercise across multiple tissues,” says Manolis Kellis, a professor of computer science in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and a member of the Broad Institute of MIT and Harvard.

    The researchers studied mice with high-fat or normal diets, who were either sedentary or given the opportunity to exercise whenever they wanted. Using single-cell RNA sequencing, the researchers cataloged the responses of 53 types of cells found in skeletal muscle and two types of fatty tissue.

    “One of the general points that we found in our study, which is overwhelmingly clear, is how high-fat diets push all of these cells and systems in one way, and exercise seems to be pushing them nearly all in the opposite way,” Kellis says. “It says that exercise can really have a major effect throughout the body.”

    Kellis and Laurie Goodyear, a professor of medicine at Harvard Medical School and senior investigator at the Joslin Diabetes Center, are the senior authors of the study, which appears today in the journal Cell Metabolism. Jiekun Yang, a research scientist in MIT CSAIL; Maria Vamvini, an instructor of medicine at the Joslin Diabetes Center; and Pasquale Nigro, an instructor of medicine at the Joslin Diabetes Center, are the lead authors of the paper.

    The risks of obesity

    Obesity is a growing health problem around the world. In the United States, more than 40 percent of the population is considered obese, and nearly 75 percent is overweight. Being overweight is a risk factor for many diseases, including heart disease, cancer, Alzheimer’s disease, and even infectious diseases such as Covid-19.

    “Obesity, along with aging, is a global factor that contributes to every aspect of human health,” Kellis says.

    Several years ago, his lab performed a study on the FTO gene region, which has been strongly linked to obesity risk. In that 2015 study, the research team found that genes in this region control a pathway that prompts immature fat cells called progenitor adipocytes to either become fat-burning cells or fat-storing cells.

    That finding, which demonstrated a clear genetic component to obesity, motivated Kellis to begin looking at how exercise, a well-known behavioral intervention that can prevent obesity, might act on progenitor adipocytes at the cellular level.

    To explore that question, Kellis and his colleagues decided to perform single-cell RNA sequencing of three types of tissue — skeletal muscle, visceral white adipose tissue (found packed around internal organs, where it stores fat), and subcutaneous white adipose tissue (which is found under the skin and primarily burns fat).

    These tissues came from mice from four different experimental groups. For three weeks, two groups of mice were fed either a normal diet or a high-fat diet. For the next three weeks, each of those two groups were further divided into a sedentary group and an exercise group, which had continuous access to a treadmill.

    By analyzing tissues from those mice, the researchers were able to comprehensively catalog the genes that were activated or suppressed by exercise in 53 different cell types.

    The researchers found that in all three tissue types, mesenchymal stem cells (MSCs) appeared to control many of the diet and exercise-induced effects that they observed. MSCs are stem cells that can differentiate into other cell types, including fat cells and fibroblasts. In adipose tissue, the researchers found that a high-fat diet modulated MSCs’ capacity to differentiate into fat-storing cells, while exercise reversed this effect.

    In addition to promoting fat storage, the researchers found that a high-fat diet also stimulated MSCs to secrete factors that remodel the extracellular matrix (ECM) — a network of proteins and other molecules that surround and support cells and tissues in the body. This ECM remodeling helps provide structure for enlarged fat-storing cells and also creates a more inflammatory environment.

    “As the adipocytes become overloaded with lipids, there’s an extreme amount of stress, and that causes low-grade inflammation, which is systemic and preserved for a long time,” Kellis says. “That is one of the factors that is contributing to many of the adverse effects of obesity.”

    Circadian effects

    The researchers also found that high-fat diets and exercise had opposing effects on cellular pathways that control circadian rhythms — the 24-hour cycles that govern many functions, from sleep to body temperature, hormone release, and digestion. The study revealed that exercise boosts the expression of genes that regulate these rhythms, while a high-fat diet suppresses them.

    “There have been a lot of studies showing that when you eat during the day is extremely important in how you absorb the calories,” Kellis says. “The circadian rhythm connection is a very important one, and shows how obesity and exercise are in fact directly impacting that circadian rhythm in peripheral organs, which could act systemically on distal clocks and regulate stem cell functions and immunity.”

    The researchers then compared their results to a database of human genes that have been linked with metabolic traits. They found that two of the circadian rhythm genes they identified in this study, known as DBP and CDKN1A, have genetic variants that have been associated with a higher risk of obesity in humans.

    “These results help us see the translational values of these targets, and how we could potentially target specific biological processes in specific cell types,” Yang says.

    The researchers are now analyzing samples of small intestine, liver, and brain tissue from the mice in this study, to explore the effects of exercise and high-fat diets on those tissues. They are also conducting work with human volunteers to sample blood and biopsies and study similarities and differences between human and mouse physiology. They hope that their findings will help guide drug developers in designing drugs that might mimic some of the beneficial effects of exercise.

    “The message for everyone should be, eat a healthy diet and exercise if possible,” Kellis says. “For those for whom this is not possible, due to low access to healthy foods, or due to disabilities or other factors that prevent exercise, or simply lack of time to have a healthy diet or a healthy lifestyle, what this study says is that we now have a better handle on the pathways, the specific genes, and the specific molecular and cellular processes that we should be manipulating therapeutically.”

    The research was funded by the National Institutes of Health and the Novo Nordisk Research Center in Seattle. More

  • in

    Small eddies play a big role in feeding ocean microbes

    Subtropical gyres are enormous rotating ocean currents that generate sustained circulations in the Earth’s subtropical regions just to the north and south of the equator. These gyres are slow-moving whirlpools that circulate within massive basins around the world, gathering up nutrients, organisms, and sometimes trash, as the currents rotate from coast to coast.

    For years, oceanographers have puzzled over conflicting observations within subtropical gyres. At the surface, these massive currents appear to host healthy populations of phytoplankton — microbes that feed the rest of the ocean food chain and are responsible for sucking up a significant portion of the atmosphere’s carbon dioxide.

    But judging from what scientists know about the dynamics of gyres, they estimated the currents themselves wouldn’t be able to maintain enough nutrients to sustain the phytoplankton they were seeing. How, then, were the microbes able to thrive?

    Now, MIT researchers have found that phytoplankton may receive deliveries of nutrients from outside the gyres, and that the delivery vehicle is in the form of eddies — much smaller currents that swirl at the edges of a gyre. These eddies pull nutrients in from high-nutrient equatorial regions and push them into the center of a gyre, where the nutrients are then taken up by other currents and pumped to the surface to feed phytoplankton.

    Ocean eddies, the team found, appear to be an important source of nutrients in subtropical gyres. Their replenishing effect, which the researchers call a “nutrient relay,” helps maintain populations of phytoplankton, which play a central role in the ocean’s ability to sequester carbon from the atmosphere. While climate models tend to project a decline in the ocean’s ability to sequester carbon over the coming decades, this “nutrient relay” could help sustain carbon storage over the subtropical oceans.

    “There’s a lot of uncertainty about how the carbon cycle of the ocean will evolve as climate continues to change, ” says Mukund Gupta, a postdoc at Caltech who led the study as a graduate student at MIT. “As our paper shows, getting the carbon distribution right is not straightforward, and depends on understanding the role of eddies and other fine-scale motions in the ocean.”

    Gupta and his colleagues report their findings this week in the Proceedings of the National Academy of Sciences. The study’s co-authors are Jonathan Lauderdale, Oliver Jahn, Christopher Hill, Stephanie Dutkiewicz, and Michael Follows at MIT, and Richard Williams at the University of Liverpool.

    A snowy puzzle

    A cross-section of an ocean gyre resembles a stack of nesting bowls that is stratified by density: Warmer, lighter layers lie at the surface, while colder, denser waters make up deeper layers. Phytoplankton live within the ocean’s top sunlit layers, where the microbes require sunlight, warm temperatures, and nutrients to grow.

    When phytoplankton die, they sink through the ocean’s layers as “marine snow.” Some of this snow releases nutrients back into the current, where they are pumped back up to feed new microbes. The rest of the snow sinks out of the gyre, down to the deepest layers of the ocean. The deeper the snow sinks, the more difficult it is for it to be pumped back to the surface. The snow is then trapped, or sequestered, along with any unreleased carbon and nutrients.

    Oceanographers thought that the main source of nutrients in subtropical gyres came from recirculating marine snow. But as a portion of this snow inevitably sinks to the bottom, there must be another source of nutrients to explain the healthy populations of phytoplankton at the surface. Exactly what that source is “has left the oceanography community a little puzzled for some time,” Gupta says.

    Swirls at the edge

    In their new study, the team sought to simulate a subtropical gyre to see what other dynamics may be at work. They focused on the North Pacific gyre, one of the Earth’s five major gyres, which circulates over most of the North Pacific Ocean, and spans more than 20 million square kilometers. 

    The team started with the MITgcm, a general circulation model that simulates the physical circulation patterns in the atmosphere and oceans. To reproduce the North Pacific gyre’s dynamics as realistically as possible, the team used an MITgcm algorithm, previously developed at NASA and MIT, which tunes the model to match actual observations of the ocean, such as ocean currents recorded by satellites, and temperature and salinity measurements taken by ships and drifters.  

    “We use a simulation of the physical ocean that is as realistic as we can get, given the machinery of the model and the available observations,” Lauderdale says.

    Play video

    An animation of the North Pacific Ocean shows phosphate nutrient concentrations at 500 meters below the ocean surface. The swirls represent small eddies transporting phosphate from the nutrient-rich equator (lighter colors), northward toward the nutrient-depleted subtropics (darker colors). This nutrient relay mechanism helps sustain biological activity and carbon sequestration in the subtropical ocean. Credit: Oliver Jahn

    The realistic model captured finer details, at a resolution of less than 20 kilometers per pixel, compared to other models that have a more limited resolution. The team combined the simulation of the ocean’s physical behavior with the Darwin model — a simulation of microbe communities such as phytoplankton, and how they grow and evolve with ocean conditions.

    The team ran the combined simulation of the North Pacific gyre over a decade, and created animations to visualize the pattern of currents and the nutrients they carried, in and around the gyre. What emerged were small eddies that ran along the edges of the enormous gyre and appeared to be rich in nutrients.

    “We were picking up on little eddy motions, basically like weather systems in the ocean,” Lauderdale says. “These eddies were carrying packets of high-nutrient waters, from the equator, north into the center of the gyre and downwards along the sides of the bowls. We wondered if these eddy transfers made an important delivery mechanism.”

    Surprisingly, the nutrients first move deeper, away from the sunlight, before being returned upwards where the phytoplankton live. The team found that ocean eddies could supply up to 50 percent of the nutrients in subtropical gyres.

    “That is very significant,” Gupta says. “The vertical process that recycles nutrients from marine snow is only half the story. The other half is the replenishing effect of these eddies. As subtropical gyres contribute a significant part of the world’s oceans, we think this nutrient relay is of global importance.”

    This research was supported, in part, by the Simons Foundation and NASA. More

  • in

    Ocean scientists measure sediment plume stirred up by deep-sea-mining vehicle

    What will be the impact to the ocean if humans are to mine the deep sea? It’s a question that’s gaining urgency as interest in marine minerals has grown.

    The ocean’s deep-sea bed is scattered with ancient, potato-sized rocks called “polymetallic nodules” that contain nickel and cobalt — minerals that are in high demand for the manufacturing of batteries, such as for powering electric vehicles and storing renewable energy, and in response to factors such as increasing urbanization. The deep ocean contains vast quantities of mineral-laden nodules, but the impact of mining the ocean floor is both unknown and highly contested.

    Now MIT ocean scientists have shed some light on the topic, with a new study on the cloud of sediment that a collector vehicle would stir up as it picks up nodules from the seafloor.

    The study, appearing today in Science Advances, reports the results of a 2021 research cruise to a region of the Pacific Ocean known as the Clarion Clipperton Zone (CCZ), where polymetallic nodules abound. There, researchers equipped a pre-prototype collector vehicle with instruments to monitor sediment plume disturbances as the vehicle maneuvered across the seafloor, 4,500 meters below the ocean’s surface. Through a sequence of carefully conceived maneuvers. the MIT scientists used the vehicle to monitor its own sediment cloud and measure its properties.

    Their measurements showed that the vehicle created a dense plume of sediment in its wake, which spread under its own weight, in a phenomenon known in fluid dynamics as a “turbidity current.” As it gradually dispersed, the plume remained relatively low, staying within 2 meters of the seafloor, as opposed to immediately lofting higher into the water column as had been postulated.

    “It’s quite a different picture of what these plumes look like, compared to some of the conjecture,” says study co-author Thomas Peacock, professor of mechanical engineering at MIT. “Modeling efforts of deep-sea mining plumes will have to account for these processes that we identified, in order to assess their extent.”

    The study’s co-authors include lead author Carlos Muñoz-Royo, Raphael Ouillon, and Souha El Mousadik of MIT; and Matthew Alford of the Scripps Institution of Oceanography.

    Deep-sea maneuvers

    To collect polymetallic nodules, some mining companies are proposing to deploy tractor-sized vehicles to the bottom of the ocean. The vehicles would vacuum up the nodules along with some sediment along their path. The nodules and sediment would then be separated inside of the vehicle, with the nodules sent up through a riser pipe to a surface vessel, while most of the sediment would be discharged immediately behind the vehicle.

    Peacock and his group have previously studied the dynamics of the sediment plume that associated surface operation vessels may pump back into the ocean. In their current study, they focused on the opposite end of the operation, to measure the sediment cloud created by the collectors themselves.

    In April 2021, the team joined an expedition led by Global Sea Mineral Resources NV (GSR), a Belgian marine engineering contractor that is exploring the CCZ for ways to extract metal-rich nodules. A European-based science team, Mining Impacts 2, also conducted separate studies in parallel. The cruise was the first in over 40 years to test a “pre-prototype” collector vehicle in the CCZ. The machine, called Patania II, stands about 3 meters high, spans 4 meters wide, and is about one-third the size of what a commercial-scale vehicle is expected to be.

    While the contractor tested the vehicle’s nodule-collecting performance, the MIT scientists monitored the sediment cloud created in the vehicle’s wake. They did so using two maneuvers that the vehicle was programmed to take: a “selfie,” and a “drive-by.”

    Both maneuvers began in the same way, with the vehicle setting out in a straight line, all its suction systems turned on. The researchers let the vehicle drive along for 100 meters, collecting any nodules in its path. Then, in the “selfie” maneuver, they directed the vehicle to turn off its suction systems and double back around to drive through the cloud of sediment it had just created. The vehicle’s installed sensors measured the concentration of sediment during this “selfie” maneuver, allowing the scientists to monitor the cloud within minutes of the vehicle stirring it up.

    Play video

    A movie of the Patania II pre-prototype collector vehicle entering, driving through, and leaving the low-lying turbidity current plume as part of a selfie operation. For scale, the instrumentation post attached to the front of the vehicle reaches about 3m above the seabed. The movie is sped up by a factor of 20. Credit: Global Sea Mineral Resources

    For the “drive-by” maneuver, the researchers placed a sensor-laden mooring 50 to 100 meters from the vehicle’s planned tracks. As the vehicle drove along collecting nodules, it created a plume that eventually spread past the mooring after an hour or two. This “drive-by” maneuver enabled the team to monitor the sediment cloud over a longer timescale of several hours, capturing the plume evolution.

    Out of steam

    Over multiple vehicle runs, Peacock and his team were able to measure and track the evolution of the sediment plume created by the deep-sea-mining vehicle.

    “We saw that the vehicle would be driving in clear water, seeing the nodules on the seabed,” Peacock says. “And then suddenly there’s this very sharp sediment cloud coming through when the vehicle enters the plume.”

    From the selfie views, the team observed a behavior that was predicted by some of their previous modeling studies: The vehicle stirred up a heavy amount of sediment that was dense enough that, even after some mixing with the surrounding water, it generated a plume that behaved almost as a separate fluid, spreading under its own weight in what’s known as a turbidity current.

    “The turbidity current spreads under its own weight for some time, tens of minutes, but as it does so, it’s depositing sediment on the seabed and eventually running out of steam,” Peacock says. “After that, the ocean currents get stronger than the natural spreading, and the sediment transitions to being carried by the ocean currents.”

    By the time the sediment drifted past the mooring, the researchers estimate that 92 to 98 percent of the sediment either settled back down or remained within 2 meters of the seafloor as a low-lying cloud. There is, however, no guarantee that the sediment always stays there rather than drifting further up in the water column. Recent and future studies by the research team are looking into this question, with the goal of consolidating understanding for deep-sea mining sediment plumes.

    “Our study clarifies the reality of what the initial sediment disturbance looks like when you have a certain type of nodule mining operation,” Peacock says. “The big takeaway is that there are complex processes like turbidity currents that take place when you do this kind of collection. So, any effort to model a deep-sea-mining operation’s impact will have to capture these processes.”

    “Sediment plumes produced by deep-seabed mining are a major concern with regards to environmental impact, as they will spread over potentially large areas beyond the actual site of mining and affect deep-sea life,” says Henko de Stigter, a marine geologist at the Royal Netherlands Institute for Sea Research, who was not involved in the research. “The current paper provides essential insight in the initial development of these plumes.”

    This research was supported, in part, by the National Science Foundation, ARPA-E, the 11th Hour Project, the Benioff Ocean Initiative, and Global Sea Mineral Resources. The funders had no role in any aspects of the research analysis, the research team states. More

  • in

    Passive cooling system could benefit off-grid locations

    As the world gets warmer, the use of power-hungry air conditioning systems is projected to increase significantly, putting a strain on existing power grids and bypassing many locations with little or no reliable electric power. Now, an innovative system developed at MIT offers a way to use passive cooling to preserve food crops and supplement conventional air conditioners in buildings, with no need for power and only a small need for water.

    The system, which combines radiative cooling, evaporative cooling, and thermal insulation in a slim package that could resemble existing solar panels, can provide up to about 19 degrees Fahrenheit (9.3 degrees Celsius) of cooling from the ambient temperature, enough to permit safe food storage for about 40 percent longer under very humid conditions. It could triple the safe storage time under dryer conditions.

    The findings are reported today in the journal Cell Reports Physical Science, in a paper by MIT postdoc Zhengmao Lu, Arny Leroy PhD ’21, professors Jeffrey Grossman and Evelyn Wang, and two others. While more research is needed in order to bring down the cost of one key component of the system, the researchers say that eventually such a system could play a significant role in meeting the cooling needs of many parts of the world where a lack of electricity or water limits the use of conventional cooling systems.

    The system cleverly combines previous standalone cooling designs that each provide limited amounts of cooling power, in order to produce significantly more cooling overall — enough to help reduce food losses from spoilage in parts of the world that are already suffering from limited food supplies. In recognition of that potential, the research team has been partly supported by MIT’s Abdul Latif Jameel Water and Food Systems Lab.

    “This technology combines some of the good features of previous technologies such as evaporative cooling and radiative cooling,” Lu says. By using this combination, he says, “we show that you can achieve significant food life extension, even in areas where you have high humidity,” which limits the capabilities of conventional evaporative or radiative cooling systems.

    In places that do have existing air conditioning systems in buildings, the new system could be used to significantly reduce the load on these systems by sending cool water to the hottest part of the system, the condenser. “By lowering the condenser temperature, you can effectively increase the air conditioner efficiency, so that way you can potentially save energy,” Lu says.

    Other groups have also been pursuing passive cooling technologies, he says, but “by combining those features in a synergistic way, we are now able to achieve high cooling performance, even in high-humidity areas where previous technology generally cannot perform well.”

    The system consists of three layers of material, which together provide cooling as water and heat pass through the device. In practice, the device could resemble a conventional solar panel, but instead of putting out electricity, it would directly provide cooling, for example by acting as the roof of a food storage container. Or, it could be used to send chilled water through pipes to cool parts of an existing air conditioning system and improve its efficiency. The only maintenance required is adding water for the evaporation, but the consumption is so low that this need only be done about once every four days in the hottest, driest areas, and only once a month in wetter areas.

    The top layer is an aerogel, a material consisting mostly of air enclosed in the cavities of a sponge-like structure made of polyethylene. The material is highly insulating but freely allows both water vapor and infrared radiation to pass through. The evaporation of water (rising up from the layer below) provides some of the cooling power, while the infrared radiation, taking advantage of the extreme transparency of Earth’s atmosphere at those wavelengths, radiates some of the heat straight up through the air and into space — unlike air conditioners, which spew hot air into the immediate surrounding environment.

    Below the aerogel is a layer of hydrogel — another sponge-like material, but one whose pore spaces filled with water rather than air. It’s similar to material currently used commercially for products such as cooling pads or wound dressings. This provides the water source for evaporative cooling, as water vapor forms at its surface and the vapor passes up right through the aerogel layer and out to the environment.

    Below that, a mirror-like layer reflects any incoming sunlight that has reached it, sending it back up through the device rather than letting it heat up the materials and thus reducing their thermal load. And the top layer of aerogel, being a good insulator, is also highly solar-reflecting, limiting the amount of solar heating of the device, even under strong direct sunlight.

    “The novelty here is really just bringing together the radiative cooling feature, the evaporative cooling feature, and also the thermal insulation feature all together in one architecture,” Lu explains. The system was tested, using a small version, just 4 inches across, on the rooftop of a building at MIT, proving its effectiveness even during suboptimal weather conditions, Lu says, and achieving 9.3 C of cooling (18.7 F).

    “The challenge previously was that evaporative materials often do not deal with solar absorption well,” Lu says. “With these other materials, usually when they’re under the sun, they get heated, so they are unable to get to high cooling power at the ambient temperature.”

    The aerogel material’s properties are a key to the system’s overall efficiency, but that material at present is expensive to produce, as it requires special equipment for critical point drying (CPD) to remove solvents slowly from the delicate porous structure without damaging it. The key characteristic that needs to be controlled to provide the desired characteristics is the size of the pores in the aerogel, which is made by mixing the polyethylene material with solvents, allowing it to set like a bowl of Jell-O, and then getting the solvents out of it. The research team is currently exploring ways of either making this drying process more inexpensive, such as by using freeze-drying, or finding alternative materials that can provide the same insulating function at lower cost, such as membranes separated by an air gap.

    While the other materials used in the system are readily available and relatively inexpensive, Lu says, “the aerogel is the only material that’s a product from the lab that requires further development in terms of mass production.” And it’s impossible to predict how long that development might take before this system can be made practical for widespread use, he says.

    The research team included Lenan Zhang of MIT’s Department of Mechanical Engineering and Jatin Patil of the Department of Materials Science and Engineering. More

  • in

    Divorce is more common in albatross couples with shy males, study finds

    The wandering albatross is the poster bird for avian monogamy. The graceful glider is known to mate for life, partnering up with the same bird to breed, season after season, between long flights at sea.

    But on rare occasions, an albatross pair will “divorce” — a term ornithologists use for instances when one partner leaves the pair for another mate while the other partner remains in the flock. Divorce rates vary widely across the avian world, and the divorce rate for wandering albatrosses is relatively low.

    Nevertheless, the giant drifters can split up. Scientists at MIT and the Woods Hole Oceanographic Institution (WHOI) have found that, at least for one particular population of wandering albatross, whether a pair will divorce boils down to one important factor: personality. 

    In a study appearing today in the journal Biology Letters, the team reports that an albatross couple’s chance of divorce is highly influenced by the male partner’s “boldness.” The bolder and more aggressive the male, the more likely the pair is to stay together. The shyer the male, the higher the chance that the pair will divorce.

    The researchers say their study is the first to link personality and divorce in a wild animal species.

    “We thought that bold males, being more aggressive, would be more likely to divorce, because they would be more likely to take the risk of switching partners to improve future reproductive outcomes,” says study senior author Stephanie Jenouvrier, an associate scientist and seabird ecologist in WHOI’s FLEDGE Lab. “Instead we find the shy divorce more because they are more likely to be forced to divorce by a more competitive intruder. We expect personality may impact divorce rates in many species, but in different ways.”

    Lead author Ruijiao Sun, a graduate student in the MIT-WHOI Joint Program and MIT’s Department of Earth, Atmospheric and Planetary Sciences, says that this new evidence of a link between personality and divorce in the wandering albatross may help scientists predict the resilience of the population.

    “The wandering albatross is a vulnerable species,” Sun says. “Understanding the effect of personality on divorce is important because it can help researchers predict the consequences for population dynamics, and implement conservation efforts.”

    The study’s co-authors include Joanie Van de Walle of WHOI, Samantha Patrick of the University of Liverpool, and Christophe Barbraud, Henri Weimerskirch, and Karine Delord of CNRS- La Rochelle University in France.

    Repeat divorcées

    The new study concentrates on a population of wandering albatross that return regularly to Possession Island in the Southern Indian Ocean to breed. This population has been the focus of a long-term study dating back to the 1950s, in which researchers have been monitoring the birds each breeding season and recording the pairings and breakups of individuals through the years.

    This particular population is skewed toward more male individuals than females because the foraging grounds of female albatrosses overlap with fishing vessels, where they are more prone to being accidentally caught in fishing lines as bycatch.  

    In earlier research, Sun analyzed data from this long-term study and picked up a curious pattern: Those individuals that divorced were more likely to do so again and again.

    “Then we wanted to know, what drives divorce, and why are some individuals divorcing more often,” Jenouvrier says. “In humans, you see this repetitive divorce pattern as well, linked to personality. And the wandering albatross is one of the rare species for which we have both demographic and personality data.”

    That personality data comes from an ongoing study that began in 2008 and is led by co-author Patrick, who has been measuring the personality of individuals among the same population of wandering albatross on Possession Island. In the study of animal behavior, personality is defined as a consistent behavioral difference displayed by an individual. Biologists mainly measure personality in animals as a gradient between shy and bold, or less to more aggressive.

    In Patrick’s study, researchers have measured boldness in albatrosses by gauging a bird’s reaction to a human approaching its nest, from a distance of about 5 meters. A bird is assigned a score depending on how it reacts (a bird that does not respond scores a zero, being the most shy, while a bird that lifts its head, and even stands up, can score higher, being the most bold).

    Patrick has made multiple personality assessments of the same individuals over multiple years. Sun and Jenouvrier wondered: Could an individual’s personality have anything to do with their chance to divorce?

    “We had seen this repetitive divorce pattern, and then talked with Sam (Patrick) to see, could this be related to personality?” Sun recalls. “We know that personality predicts divorce in human beings, and it would be intuitive to make the link between personality and divorce in wild populations.”

    Shy birds

    In their new study, the team used data from both the demographic and personality studies to see whether any patterns between the two emerged. They applied a statistical model to both datasets, to test whether the personality of individuals in an albatross pair affected the fate of that pair.

    They found that for females, personality had little to do with whether the birds divorced. But in males, the pattern was clear: Those that were identified as shy were more likely to divorce, while bolder males stayed with their partner.

    “Divorce does not happen very often,” Jenouvrier says. “But we found that the shyer a bird is, the more likely they are to divorce.”

    But why? In their study, the team puts forth an explanation, which ecologists call “forced divorce.” They point out that, in this particular population of wandering albatross, males far outnumber females and therefore are more likely to compete with each other for mates. Males that are already partnered up, therefore, may be faced with a third “intruder” — a male who is competing for a place in the pair.

    “When there is a third intruder that competes, shy birds could step away and give away their mates, where bolder individuals are aggressive and will guard their partner and secure their partnership,” Sun explains. “That’s why shyer individuals may have higher divorce rates.”

    The team is planning to extend their work to examine how the personality of individuals can affect how the larger population changes and evolves. 

    “Now we’re talking about a connection between personality and divorce at the individual level,” Sun says. “But we want to understand the impact at the population level.”

    This research was supported, in part, by the National Science Foundation. More

  • in

    SMART Innovation Center awarded five-year NRF grant for new deep tech ventures

    The Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore has announced a five-year grant awarded to the SMART Innovation Center (SMART IC) by the National Research Foundation Singapore (NRF) as part of its Research, Innovation and Enterprise 2025 Plan. The SMART IC plays a key role in accelerating innovation and entrepreneurship in Singapore and will channel the grant toward refining and commercializing developments in the field of deep technologies through financial support and training.

    Singapore has recently expanded its innovation ecosystem to hone deep technologies to solve complex problems in areas of pivotal importance. While there has been increased support for deep tech here, with investments in deep tech startups surging from $324 million in 2020 to $861 million in 2021, startups of this nature tend to take a longer time to scale, get acquired, or get publicly listed due to increased time, labor, and capital needed. By providing researchers with financial and strategic support from the early stages of their research and development, the SMART IC hopes to accelerate this process and help bring new and disruptive technologies to the market.

    “SMART’s Innovation Center prides itself as being one of the key drivers of research and innovation, by identifying and nurturing emerging technologies and accelerating them towards commercialization,” says Howard Califano, director of SMART IC. “With the support of the NRF, we look forward to another five years of further growing the ecosystem by ensuring an environment where research — and research funds — are properly directed to what the market and society need. This is how we will be able to solve problems faster and more efficiently, and ensure that value is generated from scientific research.”

    Set up in 2009 by MIT and funded by the NRF, the SMART IC furthers SMART’s goals by nurturing promising and innovative technologies that faculty and research teams in Singapore are working on. Some emerging technologies include, but are not limited to, biotechnology, biomedical devices, information technology, new materials, nanotechnology, and energy innovations.

    Having trained over 300 postdocs since its inception, the SMART IC has supported the launch of 55 companies that have created over 3,300 jobs. Some of these companies were spearheaded by SMART’s interdisciplinary research groups, including biotech companies Theonys and Thrixen, autonomous vehicle software company nuTonomy, and integrated circuit company New Silicon. During the RIE 2020 period, 66 Ignition Grants and 69 Innovation Grants were awarded to SMART’s researchers, as well as faculty at other Singapore universities and research institutes.

    The following four programs are open to researchers from education and research facilities, as well as institutes of higher learning, in Singapore:

    Innovation Grant 2.0: The enhanced SMART Innovation Center’s flagship program, the Innovation Grant 2.0, is a gated three-phase program focused on enabling scientist-entrepreneurs to launch a successful venture, with training and intense monitoring across all phases. This grant program can provide up to $800,000 Singaporean dollars and is open to all areas of deep technology (engineering, artificial intelligence, biomedical, new materials, etc). The first grant call for the Innovation Grant 2.0 is open through Oct. 15. Researchers, scientists, and engineers at Singapore’s public institutions of higher learning, research centers, public hospitals, and medical research centers — especially those working on disruptive technologies with commercial potential — are invited to apply for the Innovation Grant 2.0.

    I2START Grant: In collaboration with SMART, the National Health Innovation Center Singapore, and Enterprise Singapore, this novel integrated program will develop master classes on venture building, with a focus on medical devices, diagnostics, and medical technologies. The grant amount is up to S$1,350,000. Applications are accepted throughout the year.

    STDR Stream 2: The Singapore Therapeutics Development Review (STDR) program is jointly operated by SMART, the Agency for Science, Technology and Research (A*STAR), and the Experimental Drug Development Center. The grant is available in two phases, a pre-pilot phase of S$100,000 and a Pilot phase of S$830,000, with a potential combined total of up to S$930,000. The next STDR Pre-Pilot grant call will open on Sept. 15.

    Central Gap Fund: The SMART IC is an Innovation and Enterprise Office under the NRF’s Central Gap Fund. This program helps projects that have already received an Innovation 2.0, STDR Stream 2, or I2START Grant but require additional funding to bridge to seed or Series A funding, with possible funding of up to S$5 million. Applications are accepted throughout the year.

    The SMART IC will also continue developing robust entrepreneurship mentorship programs and regular industry events to encourage closer collaboration among faculty innovators and the business community.

    “SMART, through the Innovation Center, is honored to be able to help researchers take these revolutionary technologies to the marketplace, where they can contribute to the economy and society. The projects we fund are commercialized in Singapore, ensuring that the local economy is the first to benefit,” says Eugene Fitzgerald, chief executive officer and director of SMART, and professor of materials science and engineering at MIT.

    SMART was established by MIT and the NRF in 2007 and serves as an intellectual and innovation hub for cutting-edge research of interest to both parties. SMART is the first entity in the Campus for Research Excellence and Technological Enterprise. SMART currently comprises an Innovation Center and five Interdisciplinary Research Groups: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.

    The SMART IC was set up by MIT and the NRF in 2009. It identifies and nurtures a broad range of emerging technologies including but not limited to biotechnology, biomedical devices, information technology, new materials, nanotechnology, and energy innovations, and accelerates them toward commercialization. The SMART IC runs a rigorous grant system that identifies and funds promising projects to help them de-risk their technologies, conduct proof-of-concept experiments, and determine go-to-market strategies. It also prides itself on robust entrepreneurship boot camps and mentorship, and frequent industry events to encourage closer collaboration among faculty innovators and the business community. SMART’s Innovation grant program is the only scheme that is open to all institutes of higher learning and research institutes across Singapore. More

  • in

    J-WAFS awards $150K Solutions grant to Patrick Doyle and team for rapid removal of micropollutants from water

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has awarded a 2022 J-WAFS Solutions grant to Patrick S. Doyle, the Robert T. Haslam Professor of Chemical Engineering at MIT, for his innovative system to tackle water pollution. Doyle will be working with co-Principal Investigator Rafael Gomez-Bombarelli, assistant professor in materials processing in the Department of Materials Science, as well as PhD students Devashish Gokhale and Tynan Perez. Building off of findings from a 2019 J-WAFS seed grant, Doyle and the research team will create cost-effective industry-scale processes to remove micropollutants from water. Project work will commence this month.

    The J-WAFS Solutions program provides one-year, renewable, commercialization grants to help move MIT technology from the laboratory to market. Grants of up to $150,000 are awarded to researchers with breakthrough technologies and inventions in water or food. Since its launch in 2015, J-WAFS Solutions grants have led to seven spinout companies and helped commercialize two products as open-source technologies. The grant program is supported by Community Jameel.

    A widespread problem 

    Micropollutants are contaminants that occur in low concentrations in the environment, yet continuous exposure and bioaccumulation of micropollutants make them a cause for concern. According to the U.S. Environmental Protection Agency, the plastics derivative Bisphenol A (BPA), the “forever chemicals” per-and polyfluoroalkyl substances (PFAS), and heavy metals like lead are common micropollutants known to be found in more than 85 percent of rivers, ponds, and lakes in the United States. Many of these bodies of water are sources of drinking water. Over long periods of time, exposure to micropollutants through drinking water can cause physiological damage in humans, increasing the risk of cancer, developmental disorders, and reproductive failure.

    Since micropollutants occur in low concentrations, it is difficult to detect and monitor their presence, and the chemical diversity of micropollutants makes it difficult to inexpensively remove them from water. Currently, activated carbon is the industry standard for micropollutant elimination, but this method cannot efficiently remove contaminants at parts-per-billion and parts-per-trillion concentrations. There are also strong sustainability concerns associated with activated carbon production, which is energy-intensive and releases large volumes of carbon dioxide.

    A solution with societal and economic benefits

    Doyle and his team are developing a technology that uses sustainable hydrogel microparticles to remove micropollutants from water. The polymeric hydrogel microparticles use chemically anchored structures including micelles and other chelating agents that act like a sponge by absorbing organic micropollutants and heavy metal ions. The microparticles are large enough to separate from water using simple gravitational settling. The system is sustainable because the microparticles can be recycled for continuous use. In testing, the long-lasting, reusable microparticles show quicker removal of contaminants than commercial activated carbon. The researchers plan to utilize machine learning to find optimal microparticle compositions that maximize performance on complex combinations of micropollutants in simulated and real wastewater samples.

    Economically, the technology is a new offering that has applications in numerous large markets where micropollutant elimination is vital, including municipal and industrial water treatment equipment, as well as household water purification systems. The J-WAFS Solutions grant will allow the team to build and test prototypes of the water treatment system, identify the best use cases and customers, and perform technoeconomic analyses and market research to formulate a preliminary business plan. With J-WAFS commercialization support, the project could eventually lead to a startup company.

    “Emerging micropollutants are a growing threat to drinking water supplies worldwide,” says J-WAFS Director John H. Lienhard, the Abdul Latif Jameel Professor of Water at MIT. “Cost-effective and scalable technologies for micropollutant removal are urgently needed. This project will develop and commercialize a promising new tool for water treatment, with the goal of improving water quality for millions of people.” More

  • in

    Turning carbon dioxide into valuable products

    Carbon dioxide (CO2) is a major contributor to climate change and a significant product of many human activities, notably industrial manufacturing. A major goal in the energy field has been to chemically convert emitted CO2 into valuable chemicals or fuels. But while CO2 is available in abundance, it has not yet been widely used to generate value-added products. Why not?

    The reason is that CO2 molecules are highly stable and therefore not prone to being chemically converted to a different form. Researchers have sought materials and device designs that could help spur that conversion, but nothing has worked well enough to yield an efficient, cost-effective system.

    Two years ago, Ariel Furst, the Raymond (1921) and Helen St. Laurent Career Development Professor of Chemical Engineering at MIT, decided to try using something different — a material that gets more attention in discussions of biology than of chemical engineering. Already, results from work in her lab suggest that her unusual approach is paying off.

    The stumbling block

    The challenge begins with the first step in the CO2 conversion process. Before being transformed into a useful product, CO2 must be chemically converted into carbon monoxide (CO). That conversion can be encouraged using electrochemistry, a process in which input voltage provides the extra energy needed to make the stable CO2 molecules react. The problem is that achieving the CO2-to-CO conversion requires large energy inputs — and even then, CO makes up only a small fraction of the products that are formed.

    To explore opportunities for improving this process, Furst and her research group focused on the electrocatalyst, a material that enhances the rate of a chemical reaction without being consumed in the process. The catalyst is key to successful operation. Inside an electrochemical device, the catalyst is often suspended in an aqueous (water-based) solution. When an electric potential (essentially a voltage) is applied to a submerged electrode, dissolved CO2 will — helped by the catalyst — be converted to CO.

    But there’s one stumbling block: The catalyst and the CO2 must meet on the surface of the electrode for the reaction to occur. In some studies, the catalyst is dispersed in the solution, but that approach requires more catalyst and isn’t very efficient, according to Furst. “You have to both wait for the diffusion of CO2 to the catalyst and for the catalyst to reach the electrode before the reaction can occur,” she explains. As a result, researchers worldwide have been exploring different methods of “immobilizing” the catalyst on the electrode.

    Connecting the catalyst and the electrode

    Before Furst could delve into that challenge, she needed to decide which of the two types of CO2 conversion catalysts to work with: the traditional solid-state catalyst or a catalyst made up of small molecules. In examining the literature, she concluded that small-molecule catalysts held the most promise. While their conversion efficiency tends to be lower than that of solid-state versions, molecular catalysts offer one important advantage: They can be tuned to emphasize reactions and products of interest.

    Two approaches are commonly used to immobilize small-molecule catalysts on an electrode. One involves linking the catalyst to the electrode by strong covalent bonds — a type of bond in which atoms share electrons; the result is a strong, essentially permanent connection. The other sets up a non-covalent attachment between the catalyst and the electrode; unlike a covalent bond, this connection can easily be broken.

    Neither approach is ideal. In the former case, the catalyst and electrode are firmly attached, ensuring efficient reactions; but when the activity of the catalyst degrades over time (which it will), the electrode can no longer be accessed. In the latter case, a degraded catalyst can be removed; but the exact placement of the small molecules of the catalyst on the electrode can’t be controlled, leading to an inconsistent, often decreasing, catalytic efficiency — and simply increasing the amount of catalyst on the electrode surface without concern for where the molecules are placed doesn’t solve the problem.

    What was needed was a way to position the small-molecule catalyst firmly and accurately on the electrode and then release it when it degrades. For that task, Furst turned to what she and her team regard as a kind of “programmable molecular Velcro”: deoxyribonucleic acid, or DNA.

    Adding DNA to the mix

    Mention DNA to most people, and they think of biological functions in living things. But the members of Furst’s lab view DNA as more than just genetic code. “DNA has these really cool physical properties as a biomaterial that people don’t often think about,” she says. “DNA can be used as a molecular Velcro that can stick things together with very high precision.”

    Furst knew that DNA sequences had previously been used to immobilize molecules on surfaces for other purposes. So she devised a plan to use DNA to direct the immobilization of catalysts for CO2 conversion.

    Her approach depends on a well-understood behavior of DNA called hybridization. The familiar DNA structure is a double helix that forms when two complementary strands connect. When the sequence of bases (the four building blocks of DNA) in the individual strands match up, hydrogen bonds form between complementary bases, firmly linking the strands together.

    Using that behavior for catalyst immobilization involves two steps. First, the researchers attach a single strand of DNA to the electrode. Then they attach a complementary strand to the catalyst that is floating in the aqueous solution. When the latter strand gets near the former, the two strands hybridize; they become linked by multiple hydrogen bonds between properly paired bases. As a result, the catalyst is firmly affixed to the electrode by means of two interlocked, self-assembled DNA strands, one connected to the electrode and the other to the catalyst.

    Better still, the two strands can be detached from one another. “The connection is stable, but if we heat it up, we can remove the secondary strand that has the catalyst on it,” says Furst. “So we can de-hybridize it. That allows us to recycle our electrode surfaces — without having to disassemble the device or do any harsh chemical steps.”

    Experimental investigation

    To explore that idea, Furst and her team — postdocs Gang Fan and Thomas Gill, former graduate student Nathan Corbin PhD ’21, and former postdoc Amruta Karbelkar — performed a series of experiments using three small-molecule catalysts based on porphyrins, a group of compounds that are biologically important for processes ranging from enzyme activity to oxygen transport. Two of the catalysts involve a synthetic porphyrin plus a metal center of either cobalt or iron. The third catalyst is hemin, a natural porphyrin compound used to treat porphyria, a set of disorders that can affect the nervous system. “So even the small-molecule catalysts we chose are kind of inspired by nature,” comments Furst.

    In their experiments, the researchers first needed to modify single strands of DNA and deposit them on one of the electrodes submerged in the solution inside their electrochemical cell. Though this sounds straightforward, it did require some new chemistry. Led by Karbelkar and third-year undergraduate researcher Rachel Ahlmark, the team developed a fast, easy way to attach DNA to electrodes. For this work, the researchers’ focus was on attaching DNA, but the “tethering” chemistry they developed can also be used to attach enzymes (protein catalysts), and Furst believes it will be highly useful as a general strategy for modifying carbon electrodes.

    Once the single strands of DNA were deposited on the electrode, the researchers synthesized complementary strands and attached to them one of the three catalysts. When the DNA strands with the catalyst were added to the solution in the electrochemical cell, they readily hybridized with the DNA strands on the electrode. After half-an-hour, the researchers applied a voltage to the electrode to chemically convert CO2 dissolved in the solution and used a gas chromatograph to analyze the makeup of the gases produced by the conversion.

    The team found that when the DNA-linked catalysts were freely dispersed in the solution, they were highly soluble — even when they included small-molecule catalysts that don’t dissolve in water on their own. Indeed, while porphyrin-based catalysts in solution often stick together, once the DNA strands were attached, that counterproductive behavior was no longer evident.

    The DNA-linked catalysts in solution were also more stable than their unmodified counterparts. They didn’t degrade at voltages that caused the unmodified catalysts to degrade. “So just attaching that single strand of DNA to the catalyst in solution makes those catalysts more stable,” says Furst. “We don’t even have to put them on the electrode surface to see improved stability.” When converting CO2 in this way, a stable catalyst will give a steady current over time. Experimental results showed that adding the DNA prevented the catalyst from degrading at voltages of interest for practical devices. Moreover, with all three catalysts in solution, the DNA modification significantly increased the production of CO per minute.

    Allowing the DNA-linked catalyst to hybridize with the DNA connected to the electrode brought further improvements, even compared to the same DNA-linked catalyst in solution. For example, as a result of the DNA-directed assembly, the catalyst ended up firmly attached to the electrode, and the catalyst stability was further enhanced. Despite being highly soluble in aqueous solutions, the DNA-linked catalyst molecules remained hybridized at the surface of the electrode, even under harsh experimental conditions.

    Immobilizing the DNA-linked catalyst on the electrode also significantly increased the rate of CO production. In a series of experiments, the researchers monitored the CO production rate with each of their catalysts in solution without attached DNA strands — the conventional setup — and then with them immobilized by DNA on the electrode. With all three catalysts, the amount of CO generated per minute was far higher when the DNA-linked catalyst was immobilized on the electrode.

    In addition, immobilizing the DNA-linked catalyst on the electrode greatly increased the “selectivity” in terms of the products. One persistent challenge in using CO2 to generate CO in aqueous solutions is that there is an inevitable competition between the formation of CO and the formation of hydrogen. That tendency was eased by adding DNA to the catalyst in solution — and even more so when the catalyst was immobilized on the electrode using DNA. For both the cobalt-porphyrin catalyst and the hemin-based catalyst, the formation of CO relative to hydrogen was significantly higher with the DNA-linked catalyst on the electrode than in solution. With the iron-porphyrin catalyst they were about the same. “With the iron, it doesn’t matter whether it’s in solution or on the electrode,” Furst explains. “Both of them have selectivity for CO, so that’s good, too.”

    Progress and plans

    Furst and her team have now demonstrated that their DNA-based approach combines the advantages of the traditional solid-state catalysts and the newer small-molecule ones. In their experiments, they achieved the highly efficient chemical conversion of CO2 to CO and also were able to control the mix of products formed. And they believe that their technique should prove scalable: DNA is inexpensive and widely available, and the amount of catalyst required is several orders of magnitude lower when it’s immobilized using DNA.

    Based on her work thus far, Furst hypothesizes that the structure and spacing of the small molecules on the electrode may directly impact both catalytic efficiency and product selectivity. Using DNA to control the precise positioning of her small-molecule catalysts, she plans to evaluate those impacts and then extrapolate design parameters that can be applied to other classes of energy-conversion catalysts. Ultimately, she hopes to develop a predictive algorithm that researchers can use as they design electrocatalytic systems for a wide variety of applications.

    This research was supported by a grant from the MIT Energy Initiative Seed Fund.

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More