More stories

  • in

    3 Questions: Blue hydrogen and the world’s energy systems

    In the past several years, hydrogen energy has increasingly become a more central aspect of the clean energy transition. Hydrogen can produce clean, on-demand energy that could complement variable renewable energy sources such as wind and solar power. That being said, pathways for deploying hydrogen at scale have yet to be fully explored. In particular, the optimal form of hydrogen production remains in question.

    MIT Energy Initiative Research Scientist Emre Gençer and researchers from a wide range of global academic and research institutions recently published “On the climate impacts of blue hydrogen production,” a comprehensive life-cycle assessment analysis of blue hydrogen, a term referring to natural gas-based hydrogen production with carbon capture and storage. Here, Gençer describes blue hydrogen and the role that hydrogen will play more broadly in decarbonizing the world’s energy systems.

    Q: What are the differences between gray, green, and blue hydrogen?

    A: Though hydrogen does not generate any emissions directly when it is used, hydrogen production can have a huge environmental impact. Colors of hydrogen are increasingly used to distinguish different production methods and as a proxy to represent the associated environmental impact. Today, close to 95 percent of hydrogen production comes from fossil resources. As a result, the carbon dioxide (CO2) emissions from hydrogen production are quite high. Gray, black, and brown hydrogen refer to fossil-based production. Gray is the most common form of production and comes from natural gas, or methane, using steam methane reformation but without capturing CO2.

    There are two ways to move toward cleaner hydrogen production. One is applying carbon capture and storage to the fossil fuel-based hydrogen production processes. Natural gas-based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored, such hydrogen could be a low-carbon energy carrier. The second way to produce cleaner hydrogen is by using electricity to produce hydrogen via electrolysis. In this case, the source of the electricity determines the environmental impact of the hydrogen, with the lowest impact being achieved when electricity is generated from renewable sources, such as wind and solar. This is known as green hydrogen.

    Q: What insights have you gleaned with a life cycle assessment (LCA) of blue hydrogen and other low-carbon energy systems?

    A: Mitigating climate change requires significant decarbonization of the global economy. Accurate estimation of cumulative greenhouse gas (GHG) emissions and its reduction pathways is critical irrespective of the source of emissions. An LCA approach allows the quantification of the environmental life cycle of a commercial product, process, or service impact with all the stages (cradle-to-grave). The LCA-based comparison of alternative energy pathways, fuel options, etc., provides an apples-to-apples comparison of low-carbon energy choices. In the context of low-carbon hydrogen, it is essential to understand the GHG impact of supply chain options. Depending on the production method, contribution of life-cycle stages to the total emissions might vary. For example, with natural gas–based hydrogen production, emissions associated with production and transport of natural gas might be a significant contributor based on its leakage and flaring rates. If these rates are not precisely accounted for, the environmental impact of blue hydrogen can be underestimated. However, the same rationale is also true for electricity-based hydrogen production. If the electricity is not supplied from low-
carbon sources such as wind, solar, or nuclear, the carbon intensity of hydrogen can be significantly underestimated. In the case of nuclear, there are also other environmental impact considerations.

    An LCA approach — if performed with consistent system boundaries — can provide an accurate environmental impact comparison. It should also be noted that these estimations can only be as good as the assumptions and correlations used unless they are supported by measurements. 

    Q: What conditions are needed to make blue hydrogen production most effective, and how can it complement other decarbonization pathways?

    A: Hydrogen is considered one of the key vectors for the decarbonization of hard-to-abate sectors such as heavy-duty transportation. Currently, more than 95 percent of global hydrogen production is fossil-fuel based. In the next decade, massive amounts of hydrogen must be produced to meet this anticipated demand. It is very hard, if not impossible, to meet this demand without leveraging existing production assets. The immediate and relatively cost-effective option is to retrofit existing plants with carbon capture and storage (blue hydrogen).

    The environmental impact of blue hydrogen may vary over large ranges but depends on only a few key parameters: the methane emission rate of the natural gas supply chain, the CO2 removal rate at the hydrogen production plant, and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates, combined with natural gas supply featuring low methane emissions, substantially reduces GHG emissions compared to conventional natural gas reforming. Under these conditions, blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However, neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Studying floods to better predict their dangers

    “My job is basically flooding Cambridge,” says Katerina “Katya” Boukin, a graduate student in civil and environmental engineering at MIT and the MIT Concrete Sustainability Hub’s resident expert on flood simulations. 

    You can often find her fine-tuning high-resolution flood risk models for the City of Cambridge, Massachusetts, or talking about hurricanes with fellow researcher Ipek Bensu Manav.

    Flooding represents one of the world’s gravest natural hazards. Extreme climate events inducing flooding, like severe storms, winter storms, and tropical cyclones, caused an estimated $128.1 billion of damages in 2021 alone. 

    Climate simulation models suggest that severe storms will become more frequent in the coming years, necessitating a better understanding of which parts of cities are most vulnerable — an understanding that can be improved through modeling.

    A problem with current flood models is that they struggle to account for an oft-misunderstood type of flooding known as pluvial flooding. 

    “You might think of flooding as the overflowing of a body of water, like a river. This is fluvial flooding. This can be somewhat predictable, as you can think of proximity to water as a risk factor,” Boukin explains.

    However, the “flash flooding” that causes many deaths each year can happen even in places nowhere near a body of water. This is an example of pluvial flooding, which is affected by terrain, urban infrastructure, and the dynamic nature of storm loads.

    “If we don’t know how a flood is propagating, we don’t know the risk it poses to the urban environment. And if we don’t understand the risk, we can’t really discuss mitigation strategies,” says Boukin, “That’s why I pursue improving flood propagation models.”

    Boukin is leading development of a new flood prediction method that seeks to address these shortcomings. By better representing the complex morphology of cities, Boukin’s approach may provide a clearer forecast of future urban flooding.

    Katya Boukin developed this model of the City of Cambridge, Massachusetts. The base model was provided through a collaboration between MIT, the City of Cambridge, and Dewberry Engineering.

    Image: Katya Boukin

    Previous item
    Next item

    “In contrast to the more typical traditional catchment model, our method has rainwater spread around the urban environment based on the city’s topography, below-the-surface features like sewer pipes, and the characteristics of local soils,” notes Boukin.

    “We can simulate the flooding of regions with local rain forecasts. Our results can show how flooding propagates by the foot and by the second,” she adds.

    While Boukin’s current focus is flood simulation, her unconventional academic career has taken her research in many directions, like examining structural bottlenecks in dense urban rail systems and forecasting ground displacement due to tunneling. 

    “I’ve always been interested in the messy side of problem-solving. I think that difficult problems present a real chance to gain a deeper understanding,” says Boukin.

    Boukin credits her upbringing for giving her this perspective. A native of Israel, Boukin says that civil engineering is the family business. “My parents are civil engineers, my mom’s parents are, too, her grandfather was a professor in civil engineering, and so on. Civil engineering is my bloodline.”

    However, the decision to follow the family tradition did not come so easily. “After I took the Israeli equivalent of the SAT, I was at a decision point: Should I go to engineering school or medical school?” she recalls.

    “I decided to go on a backpacking trip to help make up my mind. It’s sort of an Israeli rite to explore internationally, so I spent six months in South America. I think backpacking is something everyone should do.”

    After this soul searching, Boukin landed on engineering school, where she fell in love with structural engineering. “It was the option that felt most familiar and interesting. I grew up playing with AutoCAD on the family computer, and now I use AutoCAD professionally!” she notes.

    “For my master’s degree, I was looking to study in a department that would help me integrate knowledge from fields like climatology and civil engineering. I found the MIT Department of Civil and Environmental Engineering to be an excellent fit,” she says.

    “I am lucky that MIT has so many people that work together as well as they do. I ended up at the Concrete Sustainability Hub, where I’m working on projects which are the perfect fit between what I wanted to do and what the department wanted to do.” 

    Boukin’s move to Cambridge has given her a new perspective on her family and childhood. 

    “My parents brought me to Israel when I was just 1 year old. In moving here as a second-time immigrant, I have a new perspective on what my parents went through during the move to Israel. I moved when I was 27 years old, the same age as they were. They didn’t have a support network and worked any job they could find,” she explains.

    “I am incredibly grateful to them for the morals they instilled in my sister, who recently graduated medical school, and I. I know I can call my parents if I ever need something, and they will do whatever they can to help.”

    Boukin hopes to honor her parents’ efforts through her research.

    “Not only do I want to help stakeholders understand flood risks, I want to make awareness of flooding more accessible. Each community needs different things to be resilient, and different cultures have different ways of delivering and receiving information,” she says.

    “Everyone should understand that they, in addition to the buildings and infrastructure around them, are part of a complex ecosystem. Any change to a city can affect the rest of it. If designers and residents are aware of this when considering flood mitigation strategies, we can better design cities and understand the consequences of damage.” More

  • in

    Simulating neutron behavior in nuclear reactors

    Amelia Trainer applied to MIT because she lost a bet.

    As part of what the fourth-year nuclear science and engineering (NSE) doctoral student labels her “teenage rebellious phase,” Trainer was quite convinced she would just be wasting the application fee were she to submit an application. She wasn’t even “super sure” she wanted to go to college. But a high-school friend was convinced Trainer would get into a “top school” if she only applied. A bet followed: If Trainer lost, she would have to apply to MIT. Trainer lost — and is glad she did.

    Growing up in Daytona Beach, Florida, good grades were Trainer’s thing. Seeing friends participate in interschool math competitions, Trainer decided she would tag along and soon found she loved them. She remembers being adept at reading the room: If teams were especially struggling over a problem, Trainer figured the answer had to be something easy, like zero or one. “The hardest problems would usually have the most goofball answers,” she laughs.

    Simulating neutron behavior

    As a doctoral student, hard problems in math, specifically computational reactor physics, continue to be Trainer’s forte.

    Her research, under the guidance of Professor Benoit Forget in MIT NSE’s Computational Reactor Physics Group (CRPG), focuses on modeling complicated neutron behavior in reactors. Simulation helps forecast the behavior of reactors before millions of dollars sink into development of a potentially uneconomical unit. Using simulations, Trainer can see “where the neutrons are going, how much heat is being produced, and how much power the reactor can generate.” Her research helps form the foundation for the next generation of nuclear power plants.

    To simulate neutron behavior inside of a nuclear reactor, you first need to know how neutrons will interact with the various materials inside the system. These neutrons can have wildly different energies, thereby making them susceptible to different physical phenomena. For the entirety of her graduate studies, Trainer has been primarily interested in the physics regarding slow-moving neutrons and their scattering behavior.

    When a slow neutron scatters off of a material, it can induce or cancel out molecular vibrations between the material’s atoms. The effect that material vibrations can have on neutron energies, and thereby on reactor behavior, has been heavily approximated over the years. Trainer is primarily interested in chipping away at these approximations by creating scattering data for materials that have historically been misrepresented and by exploring new techniques for preparing slow-neutron scattering data.

    Trainer remembers waiting for a simulation to complete in the early days of the Covid-19 pandemic, when she discovered a way to predict neutron behavior with limited input data. Traditionally, “people have to store large tables of what neutrons will do under specific circumstances,” she says. “I’m really happy about it because it’s this really cool method of sampling what your neutron does from very little information,” Trainer says.

    Amelia Trainer — Modeling complicated neutron behavior in nuclear reactors

    As part of her research, Trainer often works closely with two software packages: OpenMC and NJOY. OpenMC is a Monte Carlo neutron transport simulation code that was developed in the CRPG and is used to simulate neutron behavior in reactor systems. NJOY is a nuclear data processing tool, and is used to create, augment, and prepare material data that is fed into tools like OpenMC. By editing both these codes to her specifications, Trainer is able to observe the effect that “upstream” material data has on the “downstream” reactor calculations. Through this, she hopes to identify additional problems: approximations that could lead to a noticeable misrepresentation of the physics.

    A love of geometry and poetry

    Trainer discovered the coolness of science as a child. Her mother, who cares for indoor plants and runs multiple greenhouses, and her father, a blacksmith and farrier, who explored materials science through his craft, were self-taught inspirations.

    Trainer’s father urged his daughter to learn and pursue any topics that she found exciting and encouraged her to read poems from “Calvin and Hobbes” out loud when she struggled with a speech impediment in early childhood. Reading the same passages every day helped her memorize them. “The natural manifestation of that extended into [a love of] poetry,” Trainer says.

    A love of poetry, combined with Trainer’s propensity for fun, led her to compose an ode to pi as part of an MIT-sponsored event for alumni. “I was really only in it for the cupcake,” she laughs. (Participants received an indulgent treat).

    Play video

    MIT Matters: A Love Poem to Pi

    Computations and nuclear science

    After being accepted at MIT, Trainer knew she wanted to study in a field that would take her skills at the levels they were at — “my math skills were pretty underdeveloped in the grand scheme of things,” she says. An open-house weekend at MIT, where she met with faculty from the NSE department, and the opportunity to contribute to a discipline working toward clean energy, cemented Trainer’s decision to join NSE.

    As a high schooler, Trainer won a scholarship to Embry-Riddle Aeronautical University to learn computer coding and knew computational physics might be more aligned with her interests. After she joined MIT as an undergraduate student in 2014, she realized that the CRPG, with its focus on coding and modeling, might be a good fit. Fortunately, a graduate student from Forget’s team welcomed Trainer’s enthusiasm for research even as an undergraduate first-year. She has stayed with the lab ever since. 

    Research internships at Los Alamos National Laboratory, the creators of NJOY, have furthered Trainer’s enthusiasm for modeling and computational physics. She met a Los Alamos scientist after he presented a talk at MIT and it snowballed into a collaboration where she could work on parts of the NJOY code. “It became a really cool collaboration which led me into a deep dive into physics and data preparation techniques, which was just so fulfilling,” Trainer says. As for what’s next, Trainer was awarded the Rickover fellowship in nuclear engineering by the the Department of Energy’s Naval Reactors Division and will join the program in Pittsburgh after she graduates.

    For many years, Trainer’s cats, Jacques and Monster, have been a constant companion. “Neutrons, computers, and cats, that’s my personality,” she laughs. Work continues to fuel her passion. To borrow a favorite phrase from Spaceman Spiff, Trainer’s favorite “Calvin” avatar, Trainer’s approach to research has invariably been: “Another day, another mind-boggling adventure.” More

  • in

    Scientists chart how exercise affects the body

    Exercise is well-known to help people lose weight and avoid gaining it. However, identifying the cellular mechanisms that underlie this process has proven difficult because so many cells and tissues are involved.

    In a new study in mice that expands researchers’ understanding of how exercise and diet affect the body, MIT and Harvard Medical School researchers have mapped out many of the cells, genes, and cellular pathways that are modified by exercise or high-fat diet. The findings could offer potential targets for drugs that could help to enhance or mimic the benefits of exercise, the researchers say.

    “It is extremely important to understand the molecular mechanisms that are drivers of the beneficial effects of exercise and the detrimental effects of a high-fat diet, so that we can understand how we can intervene, and develop drugs that mimic the impact of exercise across multiple tissues,” says Manolis Kellis, a professor of computer science in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and a member of the Broad Institute of MIT and Harvard.

    The researchers studied mice with high-fat or normal diets, who were either sedentary or given the opportunity to exercise whenever they wanted. Using single-cell RNA sequencing, the researchers cataloged the responses of 53 types of cells found in skeletal muscle and two types of fatty tissue.

    “One of the general points that we found in our study, which is overwhelmingly clear, is how high-fat diets push all of these cells and systems in one way, and exercise seems to be pushing them nearly all in the opposite way,” Kellis says. “It says that exercise can really have a major effect throughout the body.”

    Kellis and Laurie Goodyear, a professor of medicine at Harvard Medical School and senior investigator at the Joslin Diabetes Center, are the senior authors of the study, which appears today in the journal Cell Metabolism. Jiekun Yang, a research scientist in MIT CSAIL; Maria Vamvini, an instructor of medicine at the Joslin Diabetes Center; and Pasquale Nigro, an instructor of medicine at the Joslin Diabetes Center, are the lead authors of the paper.

    The risks of obesity

    Obesity is a growing health problem around the world. In the United States, more than 40 percent of the population is considered obese, and nearly 75 percent is overweight. Being overweight is a risk factor for many diseases, including heart disease, cancer, Alzheimer’s disease, and even infectious diseases such as Covid-19.

    “Obesity, along with aging, is a global factor that contributes to every aspect of human health,” Kellis says.

    Several years ago, his lab performed a study on the FTO gene region, which has been strongly linked to obesity risk. In that 2015 study, the research team found that genes in this region control a pathway that prompts immature fat cells called progenitor adipocytes to either become fat-burning cells or fat-storing cells.

    That finding, which demonstrated a clear genetic component to obesity, motivated Kellis to begin looking at how exercise, a well-known behavioral intervention that can prevent obesity, might act on progenitor adipocytes at the cellular level.

    To explore that question, Kellis and his colleagues decided to perform single-cell RNA sequencing of three types of tissue — skeletal muscle, visceral white adipose tissue (found packed around internal organs, where it stores fat), and subcutaneous white adipose tissue (which is found under the skin and primarily burns fat).

    These tissues came from mice from four different experimental groups. For three weeks, two groups of mice were fed either a normal diet or a high-fat diet. For the next three weeks, each of those two groups were further divided into a sedentary group and an exercise group, which had continuous access to a treadmill.

    By analyzing tissues from those mice, the researchers were able to comprehensively catalog the genes that were activated or suppressed by exercise in 53 different cell types.

    The researchers found that in all three tissue types, mesenchymal stem cells (MSCs) appeared to control many of the diet and exercise-induced effects that they observed. MSCs are stem cells that can differentiate into other cell types, including fat cells and fibroblasts. In adipose tissue, the researchers found that a high-fat diet modulated MSCs’ capacity to differentiate into fat-storing cells, while exercise reversed this effect.

    In addition to promoting fat storage, the researchers found that a high-fat diet also stimulated MSCs to secrete factors that remodel the extracellular matrix (ECM) — a network of proteins and other molecules that surround and support cells and tissues in the body. This ECM remodeling helps provide structure for enlarged fat-storing cells and also creates a more inflammatory environment.

    “As the adipocytes become overloaded with lipids, there’s an extreme amount of stress, and that causes low-grade inflammation, which is systemic and preserved for a long time,” Kellis says. “That is one of the factors that is contributing to many of the adverse effects of obesity.”

    Circadian effects

    The researchers also found that high-fat diets and exercise had opposing effects on cellular pathways that control circadian rhythms — the 24-hour cycles that govern many functions, from sleep to body temperature, hormone release, and digestion. The study revealed that exercise boosts the expression of genes that regulate these rhythms, while a high-fat diet suppresses them.

    “There have been a lot of studies showing that when you eat during the day is extremely important in how you absorb the calories,” Kellis says. “The circadian rhythm connection is a very important one, and shows how obesity and exercise are in fact directly impacting that circadian rhythm in peripheral organs, which could act systemically on distal clocks and regulate stem cell functions and immunity.”

    The researchers then compared their results to a database of human genes that have been linked with metabolic traits. They found that two of the circadian rhythm genes they identified in this study, known as DBP and CDKN1A, have genetic variants that have been associated with a higher risk of obesity in humans.

    “These results help us see the translational values of these targets, and how we could potentially target specific biological processes in specific cell types,” Yang says.

    The researchers are now analyzing samples of small intestine, liver, and brain tissue from the mice in this study, to explore the effects of exercise and high-fat diets on those tissues. They are also conducting work with human volunteers to sample blood and biopsies and study similarities and differences between human and mouse physiology. They hope that their findings will help guide drug developers in designing drugs that might mimic some of the beneficial effects of exercise.

    “The message for everyone should be, eat a healthy diet and exercise if possible,” Kellis says. “For those for whom this is not possible, due to low access to healthy foods, or due to disabilities or other factors that prevent exercise, or simply lack of time to have a healthy diet or a healthy lifestyle, what this study says is that we now have a better handle on the pathways, the specific genes, and the specific molecular and cellular processes that we should be manipulating therapeutically.”

    The research was funded by the National Institutes of Health and the Novo Nordisk Research Center in Seattle. More

  • in

    Small eddies play a big role in feeding ocean microbes

    Subtropical gyres are enormous rotating ocean currents that generate sustained circulations in the Earth’s subtropical regions just to the north and south of the equator. These gyres are slow-moving whirlpools that circulate within massive basins around the world, gathering up nutrients, organisms, and sometimes trash, as the currents rotate from coast to coast.

    For years, oceanographers have puzzled over conflicting observations within subtropical gyres. At the surface, these massive currents appear to host healthy populations of phytoplankton — microbes that feed the rest of the ocean food chain and are responsible for sucking up a significant portion of the atmosphere’s carbon dioxide.

    But judging from what scientists know about the dynamics of gyres, they estimated the currents themselves wouldn’t be able to maintain enough nutrients to sustain the phytoplankton they were seeing. How, then, were the microbes able to thrive?

    Now, MIT researchers have found that phytoplankton may receive deliveries of nutrients from outside the gyres, and that the delivery vehicle is in the form of eddies — much smaller currents that swirl at the edges of a gyre. These eddies pull nutrients in from high-nutrient equatorial regions and push them into the center of a gyre, where the nutrients are then taken up by other currents and pumped to the surface to feed phytoplankton.

    Ocean eddies, the team found, appear to be an important source of nutrients in subtropical gyres. Their replenishing effect, which the researchers call a “nutrient relay,” helps maintain populations of phytoplankton, which play a central role in the ocean’s ability to sequester carbon from the atmosphere. While climate models tend to project a decline in the ocean’s ability to sequester carbon over the coming decades, this “nutrient relay” could help sustain carbon storage over the subtropical oceans.

    “There’s a lot of uncertainty about how the carbon cycle of the ocean will evolve as climate continues to change, ” says Mukund Gupta, a postdoc at Caltech who led the study as a graduate student at MIT. “As our paper shows, getting the carbon distribution right is not straightforward, and depends on understanding the role of eddies and other fine-scale motions in the ocean.”

    Gupta and his colleagues report their findings this week in the Proceedings of the National Academy of Sciences. The study’s co-authors are Jonathan Lauderdale, Oliver Jahn, Christopher Hill, Stephanie Dutkiewicz, and Michael Follows at MIT, and Richard Williams at the University of Liverpool.

    A snowy puzzle

    A cross-section of an ocean gyre resembles a stack of nesting bowls that is stratified by density: Warmer, lighter layers lie at the surface, while colder, denser waters make up deeper layers. Phytoplankton live within the ocean’s top sunlit layers, where the microbes require sunlight, warm temperatures, and nutrients to grow.

    When phytoplankton die, they sink through the ocean’s layers as “marine snow.” Some of this snow releases nutrients back into the current, where they are pumped back up to feed new microbes. The rest of the snow sinks out of the gyre, down to the deepest layers of the ocean. The deeper the snow sinks, the more difficult it is for it to be pumped back to the surface. The snow is then trapped, or sequestered, along with any unreleased carbon and nutrients.

    Oceanographers thought that the main source of nutrients in subtropical gyres came from recirculating marine snow. But as a portion of this snow inevitably sinks to the bottom, there must be another source of nutrients to explain the healthy populations of phytoplankton at the surface. Exactly what that source is “has left the oceanography community a little puzzled for some time,” Gupta says.

    Swirls at the edge

    In their new study, the team sought to simulate a subtropical gyre to see what other dynamics may be at work. They focused on the North Pacific gyre, one of the Earth’s five major gyres, which circulates over most of the North Pacific Ocean, and spans more than 20 million square kilometers. 

    The team started with the MITgcm, a general circulation model that simulates the physical circulation patterns in the atmosphere and oceans. To reproduce the North Pacific gyre’s dynamics as realistically as possible, the team used an MITgcm algorithm, previously developed at NASA and MIT, which tunes the model to match actual observations of the ocean, such as ocean currents recorded by satellites, and temperature and salinity measurements taken by ships and drifters.  

    “We use a simulation of the physical ocean that is as realistic as we can get, given the machinery of the model and the available observations,” Lauderdale says.

    Play video

    An animation of the North Pacific Ocean shows phosphate nutrient concentrations at 500 meters below the ocean surface. The swirls represent small eddies transporting phosphate from the nutrient-rich equator (lighter colors), northward toward the nutrient-depleted subtropics (darker colors). This nutrient relay mechanism helps sustain biological activity and carbon sequestration in the subtropical ocean. Credit: Oliver Jahn

    The realistic model captured finer details, at a resolution of less than 20 kilometers per pixel, compared to other models that have a more limited resolution. The team combined the simulation of the ocean’s physical behavior with the Darwin model — a simulation of microbe communities such as phytoplankton, and how they grow and evolve with ocean conditions.

    The team ran the combined simulation of the North Pacific gyre over a decade, and created animations to visualize the pattern of currents and the nutrients they carried, in and around the gyre. What emerged were small eddies that ran along the edges of the enormous gyre and appeared to be rich in nutrients.

    “We were picking up on little eddy motions, basically like weather systems in the ocean,” Lauderdale says. “These eddies were carrying packets of high-nutrient waters, from the equator, north into the center of the gyre and downwards along the sides of the bowls. We wondered if these eddy transfers made an important delivery mechanism.”

    Surprisingly, the nutrients first move deeper, away from the sunlight, before being returned upwards where the phytoplankton live. The team found that ocean eddies could supply up to 50 percent of the nutrients in subtropical gyres.

    “That is very significant,” Gupta says. “The vertical process that recycles nutrients from marine snow is only half the story. The other half is the replenishing effect of these eddies. As subtropical gyres contribute a significant part of the world’s oceans, we think this nutrient relay is of global importance.”

    This research was supported, in part, by the Simons Foundation and NASA. More

  • in

    Ocean scientists measure sediment plume stirred up by deep-sea-mining vehicle

    What will be the impact to the ocean if humans are to mine the deep sea? It’s a question that’s gaining urgency as interest in marine minerals has grown.

    The ocean’s deep-sea bed is scattered with ancient, potato-sized rocks called “polymetallic nodules” that contain nickel and cobalt — minerals that are in high demand for the manufacturing of batteries, such as for powering electric vehicles and storing renewable energy, and in response to factors such as increasing urbanization. The deep ocean contains vast quantities of mineral-laden nodules, but the impact of mining the ocean floor is both unknown and highly contested.

    Now MIT ocean scientists have shed some light on the topic, with a new study on the cloud of sediment that a collector vehicle would stir up as it picks up nodules from the seafloor.

    The study, appearing today in Science Advances, reports the results of a 2021 research cruise to a region of the Pacific Ocean known as the Clarion Clipperton Zone (CCZ), where polymetallic nodules abound. There, researchers equipped a pre-prototype collector vehicle with instruments to monitor sediment plume disturbances as the vehicle maneuvered across the seafloor, 4,500 meters below the ocean’s surface. Through a sequence of carefully conceived maneuvers. the MIT scientists used the vehicle to monitor its own sediment cloud and measure its properties.

    Their measurements showed that the vehicle created a dense plume of sediment in its wake, which spread under its own weight, in a phenomenon known in fluid dynamics as a “turbidity current.” As it gradually dispersed, the plume remained relatively low, staying within 2 meters of the seafloor, as opposed to immediately lofting higher into the water column as had been postulated.

    “It’s quite a different picture of what these plumes look like, compared to some of the conjecture,” says study co-author Thomas Peacock, professor of mechanical engineering at MIT. “Modeling efforts of deep-sea mining plumes will have to account for these processes that we identified, in order to assess their extent.”

    The study’s co-authors include lead author Carlos Muñoz-Royo, Raphael Ouillon, and Souha El Mousadik of MIT; and Matthew Alford of the Scripps Institution of Oceanography.

    Deep-sea maneuvers

    To collect polymetallic nodules, some mining companies are proposing to deploy tractor-sized vehicles to the bottom of the ocean. The vehicles would vacuum up the nodules along with some sediment along their path. The nodules and sediment would then be separated inside of the vehicle, with the nodules sent up through a riser pipe to a surface vessel, while most of the sediment would be discharged immediately behind the vehicle.

    Peacock and his group have previously studied the dynamics of the sediment plume that associated surface operation vessels may pump back into the ocean. In their current study, they focused on the opposite end of the operation, to measure the sediment cloud created by the collectors themselves.

    In April 2021, the team joined an expedition led by Global Sea Mineral Resources NV (GSR), a Belgian marine engineering contractor that is exploring the CCZ for ways to extract metal-rich nodules. A European-based science team, Mining Impacts 2, also conducted separate studies in parallel. The cruise was the first in over 40 years to test a “pre-prototype” collector vehicle in the CCZ. The machine, called Patania II, stands about 3 meters high, spans 4 meters wide, and is about one-third the size of what a commercial-scale vehicle is expected to be.

    While the contractor tested the vehicle’s nodule-collecting performance, the MIT scientists monitored the sediment cloud created in the vehicle’s wake. They did so using two maneuvers that the vehicle was programmed to take: a “selfie,” and a “drive-by.”

    Both maneuvers began in the same way, with the vehicle setting out in a straight line, all its suction systems turned on. The researchers let the vehicle drive along for 100 meters, collecting any nodules in its path. Then, in the “selfie” maneuver, they directed the vehicle to turn off its suction systems and double back around to drive through the cloud of sediment it had just created. The vehicle’s installed sensors measured the concentration of sediment during this “selfie” maneuver, allowing the scientists to monitor the cloud within minutes of the vehicle stirring it up.

    Play video

    A movie of the Patania II pre-prototype collector vehicle entering, driving through, and leaving the low-lying turbidity current plume as part of a selfie operation. For scale, the instrumentation post attached to the front of the vehicle reaches about 3m above the seabed. The movie is sped up by a factor of 20. Credit: Global Sea Mineral Resources

    For the “drive-by” maneuver, the researchers placed a sensor-laden mooring 50 to 100 meters from the vehicle’s planned tracks. As the vehicle drove along collecting nodules, it created a plume that eventually spread past the mooring after an hour or two. This “drive-by” maneuver enabled the team to monitor the sediment cloud over a longer timescale of several hours, capturing the plume evolution.

    Out of steam

    Over multiple vehicle runs, Peacock and his team were able to measure and track the evolution of the sediment plume created by the deep-sea-mining vehicle.

    “We saw that the vehicle would be driving in clear water, seeing the nodules on the seabed,” Peacock says. “And then suddenly there’s this very sharp sediment cloud coming through when the vehicle enters the plume.”

    From the selfie views, the team observed a behavior that was predicted by some of their previous modeling studies: The vehicle stirred up a heavy amount of sediment that was dense enough that, even after some mixing with the surrounding water, it generated a plume that behaved almost as a separate fluid, spreading under its own weight in what’s known as a turbidity current.

    “The turbidity current spreads under its own weight for some time, tens of minutes, but as it does so, it’s depositing sediment on the seabed and eventually running out of steam,” Peacock says. “After that, the ocean currents get stronger than the natural spreading, and the sediment transitions to being carried by the ocean currents.”

    By the time the sediment drifted past the mooring, the researchers estimate that 92 to 98 percent of the sediment either settled back down or remained within 2 meters of the seafloor as a low-lying cloud. There is, however, no guarantee that the sediment always stays there rather than drifting further up in the water column. Recent and future studies by the research team are looking into this question, with the goal of consolidating understanding for deep-sea mining sediment plumes.

    “Our study clarifies the reality of what the initial sediment disturbance looks like when you have a certain type of nodule mining operation,” Peacock says. “The big takeaway is that there are complex processes like turbidity currents that take place when you do this kind of collection. So, any effort to model a deep-sea-mining operation’s impact will have to capture these processes.”

    “Sediment plumes produced by deep-seabed mining are a major concern with regards to environmental impact, as they will spread over potentially large areas beyond the actual site of mining and affect deep-sea life,” says Henko de Stigter, a marine geologist at the Royal Netherlands Institute for Sea Research, who was not involved in the research. “The current paper provides essential insight in the initial development of these plumes.”

    This research was supported, in part, by the National Science Foundation, ARPA-E, the 11th Hour Project, the Benioff Ocean Initiative, and Global Sea Mineral Resources. The funders had no role in any aspects of the research analysis, the research team states. More

  • in

    Passive cooling system could benefit off-grid locations

    As the world gets warmer, the use of power-hungry air conditioning systems is projected to increase significantly, putting a strain on existing power grids and bypassing many locations with little or no reliable electric power. Now, an innovative system developed at MIT offers a way to use passive cooling to preserve food crops and supplement conventional air conditioners in buildings, with no need for power and only a small need for water.

    The system, which combines radiative cooling, evaporative cooling, and thermal insulation in a slim package that could resemble existing solar panels, can provide up to about 19 degrees Fahrenheit (9.3 degrees Celsius) of cooling from the ambient temperature, enough to permit safe food storage for about 40 percent longer under very humid conditions. It could triple the safe storage time under dryer conditions.

    The findings are reported today in the journal Cell Reports Physical Science, in a paper by MIT postdoc Zhengmao Lu, Arny Leroy PhD ’21, professors Jeffrey Grossman and Evelyn Wang, and two others. While more research is needed in order to bring down the cost of one key component of the system, the researchers say that eventually such a system could play a significant role in meeting the cooling needs of many parts of the world where a lack of electricity or water limits the use of conventional cooling systems.

    The system cleverly combines previous standalone cooling designs that each provide limited amounts of cooling power, in order to produce significantly more cooling overall — enough to help reduce food losses from spoilage in parts of the world that are already suffering from limited food supplies. In recognition of that potential, the research team has been partly supported by MIT’s Abdul Latif Jameel Water and Food Systems Lab.

    “This technology combines some of the good features of previous technologies such as evaporative cooling and radiative cooling,” Lu says. By using this combination, he says, “we show that you can achieve significant food life extension, even in areas where you have high humidity,” which limits the capabilities of conventional evaporative or radiative cooling systems.

    In places that do have existing air conditioning systems in buildings, the new system could be used to significantly reduce the load on these systems by sending cool water to the hottest part of the system, the condenser. “By lowering the condenser temperature, you can effectively increase the air conditioner efficiency, so that way you can potentially save energy,” Lu says.

    Other groups have also been pursuing passive cooling technologies, he says, but “by combining those features in a synergistic way, we are now able to achieve high cooling performance, even in high-humidity areas where previous technology generally cannot perform well.”

    The system consists of three layers of material, which together provide cooling as water and heat pass through the device. In practice, the device could resemble a conventional solar panel, but instead of putting out electricity, it would directly provide cooling, for example by acting as the roof of a food storage container. Or, it could be used to send chilled water through pipes to cool parts of an existing air conditioning system and improve its efficiency. The only maintenance required is adding water for the evaporation, but the consumption is so low that this need only be done about once every four days in the hottest, driest areas, and only once a month in wetter areas.

    The top layer is an aerogel, a material consisting mostly of air enclosed in the cavities of a sponge-like structure made of polyethylene. The material is highly insulating but freely allows both water vapor and infrared radiation to pass through. The evaporation of water (rising up from the layer below) provides some of the cooling power, while the infrared radiation, taking advantage of the extreme transparency of Earth’s atmosphere at those wavelengths, radiates some of the heat straight up through the air and into space — unlike air conditioners, which spew hot air into the immediate surrounding environment.

    Below the aerogel is a layer of hydrogel — another sponge-like material, but one whose pore spaces filled with water rather than air. It’s similar to material currently used commercially for products such as cooling pads or wound dressings. This provides the water source for evaporative cooling, as water vapor forms at its surface and the vapor passes up right through the aerogel layer and out to the environment.

    Below that, a mirror-like layer reflects any incoming sunlight that has reached it, sending it back up through the device rather than letting it heat up the materials and thus reducing their thermal load. And the top layer of aerogel, being a good insulator, is also highly solar-reflecting, limiting the amount of solar heating of the device, even under strong direct sunlight.

    “The novelty here is really just bringing together the radiative cooling feature, the evaporative cooling feature, and also the thermal insulation feature all together in one architecture,” Lu explains. The system was tested, using a small version, just 4 inches across, on the rooftop of a building at MIT, proving its effectiveness even during suboptimal weather conditions, Lu says, and achieving 9.3 C of cooling (18.7 F).

    “The challenge previously was that evaporative materials often do not deal with solar absorption well,” Lu says. “With these other materials, usually when they’re under the sun, they get heated, so they are unable to get to high cooling power at the ambient temperature.”

    The aerogel material’s properties are a key to the system’s overall efficiency, but that material at present is expensive to produce, as it requires special equipment for critical point drying (CPD) to remove solvents slowly from the delicate porous structure without damaging it. The key characteristic that needs to be controlled to provide the desired characteristics is the size of the pores in the aerogel, which is made by mixing the polyethylene material with solvents, allowing it to set like a bowl of Jell-O, and then getting the solvents out of it. The research team is currently exploring ways of either making this drying process more inexpensive, such as by using freeze-drying, or finding alternative materials that can provide the same insulating function at lower cost, such as membranes separated by an air gap.

    While the other materials used in the system are readily available and relatively inexpensive, Lu says, “the aerogel is the only material that’s a product from the lab that requires further development in terms of mass production.” And it’s impossible to predict how long that development might take before this system can be made practical for widespread use, he says.

    The research team included Lenan Zhang of MIT’s Department of Mechanical Engineering and Jatin Patil of the Department of Materials Science and Engineering. More

  • in

    Divorce is more common in albatross couples with shy males, study finds

    The wandering albatross is the poster bird for avian monogamy. The graceful glider is known to mate for life, partnering up with the same bird to breed, season after season, between long flights at sea.

    But on rare occasions, an albatross pair will “divorce” — a term ornithologists use for instances when one partner leaves the pair for another mate while the other partner remains in the flock. Divorce rates vary widely across the avian world, and the divorce rate for wandering albatrosses is relatively low.

    Nevertheless, the giant drifters can split up. Scientists at MIT and the Woods Hole Oceanographic Institution (WHOI) have found that, at least for one particular population of wandering albatross, whether a pair will divorce boils down to one important factor: personality. 

    In a study appearing today in the journal Biology Letters, the team reports that an albatross couple’s chance of divorce is highly influenced by the male partner’s “boldness.” The bolder and more aggressive the male, the more likely the pair is to stay together. The shyer the male, the higher the chance that the pair will divorce.

    The researchers say their study is the first to link personality and divorce in a wild animal species.

    “We thought that bold males, being more aggressive, would be more likely to divorce, because they would be more likely to take the risk of switching partners to improve future reproductive outcomes,” says study senior author Stephanie Jenouvrier, an associate scientist and seabird ecologist in WHOI’s FLEDGE Lab. “Instead we find the shy divorce more because they are more likely to be forced to divorce by a more competitive intruder. We expect personality may impact divorce rates in many species, but in different ways.”

    Lead author Ruijiao Sun, a graduate student in the MIT-WHOI Joint Program and MIT’s Department of Earth, Atmospheric and Planetary Sciences, says that this new evidence of a link between personality and divorce in the wandering albatross may help scientists predict the resilience of the population.

    “The wandering albatross is a vulnerable species,” Sun says. “Understanding the effect of personality on divorce is important because it can help researchers predict the consequences for population dynamics, and implement conservation efforts.”

    The study’s co-authors include Joanie Van de Walle of WHOI, Samantha Patrick of the University of Liverpool, and Christophe Barbraud, Henri Weimerskirch, and Karine Delord of CNRS- La Rochelle University in France.

    Repeat divorcées

    The new study concentrates on a population of wandering albatross that return regularly to Possession Island in the Southern Indian Ocean to breed. This population has been the focus of a long-term study dating back to the 1950s, in which researchers have been monitoring the birds each breeding season and recording the pairings and breakups of individuals through the years.

    This particular population is skewed toward more male individuals than females because the foraging grounds of female albatrosses overlap with fishing vessels, where they are more prone to being accidentally caught in fishing lines as bycatch.  

    In earlier research, Sun analyzed data from this long-term study and picked up a curious pattern: Those individuals that divorced were more likely to do so again and again.

    “Then we wanted to know, what drives divorce, and why are some individuals divorcing more often,” Jenouvrier says. “In humans, you see this repetitive divorce pattern as well, linked to personality. And the wandering albatross is one of the rare species for which we have both demographic and personality data.”

    That personality data comes from an ongoing study that began in 2008 and is led by co-author Patrick, who has been measuring the personality of individuals among the same population of wandering albatross on Possession Island. In the study of animal behavior, personality is defined as a consistent behavioral difference displayed by an individual. Biologists mainly measure personality in animals as a gradient between shy and bold, or less to more aggressive.

    In Patrick’s study, researchers have measured boldness in albatrosses by gauging a bird’s reaction to a human approaching its nest, from a distance of about 5 meters. A bird is assigned a score depending on how it reacts (a bird that does not respond scores a zero, being the most shy, while a bird that lifts its head, and even stands up, can score higher, being the most bold).

    Patrick has made multiple personality assessments of the same individuals over multiple years. Sun and Jenouvrier wondered: Could an individual’s personality have anything to do with their chance to divorce?

    “We had seen this repetitive divorce pattern, and then talked with Sam (Patrick) to see, could this be related to personality?” Sun recalls. “We know that personality predicts divorce in human beings, and it would be intuitive to make the link between personality and divorce in wild populations.”

    Shy birds

    In their new study, the team used data from both the demographic and personality studies to see whether any patterns between the two emerged. They applied a statistical model to both datasets, to test whether the personality of individuals in an albatross pair affected the fate of that pair.

    They found that for females, personality had little to do with whether the birds divorced. But in males, the pattern was clear: Those that were identified as shy were more likely to divorce, while bolder males stayed with their partner.

    “Divorce does not happen very often,” Jenouvrier says. “But we found that the shyer a bird is, the more likely they are to divorce.”

    But why? In their study, the team puts forth an explanation, which ecologists call “forced divorce.” They point out that, in this particular population of wandering albatross, males far outnumber females and therefore are more likely to compete with each other for mates. Males that are already partnered up, therefore, may be faced with a third “intruder” — a male who is competing for a place in the pair.

    “When there is a third intruder that competes, shy birds could step away and give away their mates, where bolder individuals are aggressive and will guard their partner and secure their partnership,” Sun explains. “That’s why shyer individuals may have higher divorce rates.”

    The team is planning to extend their work to examine how the personality of individuals can affect how the larger population changes and evolves. 

    “Now we’re talking about a connection between personality and divorce at the individual level,” Sun says. “But we want to understand the impact at the population level.”

    This research was supported, in part, by the National Science Foundation. More