More stories

  • in

    So you want to build a solar or wind farm? Here’s how to decide where.

    Deciding where to build new solar or wind installations is often left up to individual developers or utilities, with limited overall coordination. But a new study shows that regional-level planning using fine-grained weather data, information about energy use, and energy system modeling can make a big difference in the design of such renewable power installations. This also leads to more efficient and economically viable operations.The findings show the benefits of coordinating the siting of solar farms, wind farms, and storage systems, taking into account local and temporal variations in wind, sunlight, and energy demand to maximize the utilization of renewable resources. This approach can reduce the need for sizable investments in storage, and thus the total system cost, while maximizing availability of clean power when it’s needed, the researchers found.The study, appearing today in the journal Cell Reports Sustainability, was co-authored by Liying Qiu and Rahman Khorramfar, postdocs in MIT’s Department of Civil and Environmental Engineering, and professors Saurabh Amin and Michael Howland.Qiu, the lead author, says that with the team’s new approach, “we can harness the resource complementarity, which means that renewable resources of different types, such as wind and solar, or different locations can compensate for each other in time and space. This potential for spatial complementarity to improve system design has not been emphasized and quantified in existing large-scale planning.”Such complementarity will become ever more important as variable renewable energy sources account for a greater proportion of power entering the grid, she says. By coordinating the peaks and valleys of production and demand more smoothly, she says, “we are actually trying to use the natural variability itself to address the variability.”Typically, in planning large-scale renewable energy installations, Qiu says, “some work on a country level, for example saying that 30 percent of energy should be wind and 20 percent solar. That’s very general.” For this study, the team looked at both weather data and energy system planning modeling on a scale of less than 10-kilometer (about 6-mile) resolution. “It’s a way of determining where should we, exactly, build each renewable energy plant, rather than just saying this city should have this many wind or solar farms,” she explains.To compile their data and enable high-resolution planning, the researchers relied on a variety of sources that had not previously been integrated. They used high-resolution meteorological data from the National Renewable Energy Laboratory, which is publicly available at 2-kilometer resolution but rarely used in a planning model at such a fine scale. These data were combined with an energy system model they developed to optimize siting at a sub-10-kilometer resolution. To get a sense of how the fine-scale data and model made a difference in different regions, they focused on three U.S. regions — New England, Texas, and California — analyzing up to 138,271 possible siting locations simultaneously for a single region.By comparing the results of siting based on a typical method vs. their high-resolution approach, the team showed that “resource complementarity really helps us reduce the system cost by aligning renewable power generation with demand,” which should translate directly to real-world decision-making, Qiu says. “If an individual developer wants to build a wind or solar farm and just goes to where there is the most wind or solar resource on average, it may not necessarily guarantee the best fit into a decarbonized energy system.”That’s because of the complex interactions between production and demand for electricity, as both vary hour by hour, and month by month as seasons change. “What we are trying to do is minimize the difference between the energy supply and demand rather than simply supplying as much renewable energy as possible,” Qiu says. “Sometimes your generation cannot be utilized by the system, while at other times, you don’t have enough to match the demand.”In New England, for example, the new analysis shows there should be more wind farms in locations where there is a strong wind resource during the night, when solar energy is unavailable. Some locations tend to be windier at night, while others tend to have more wind during the day.These insights were revealed through the integration of high-resolution weather data and energy system optimization used by the researchers. When planning with lower resolution weather data, which was generated at a 30-kilometer resolution globally and is more commonly used in energy system planning, there was much less complementarity among renewable power plants. Consequently, the total system cost was much higher. The complementarity between wind and solar farms was enhanced by the high-resolution modeling due to improved representation of renewable resource variability.The researchers say their framework is very flexible and can be easily adapted to any region to account for the local geophysical and other conditions. In Texas, for example, peak winds in the west occur in the morning, while along the south coast they occur in the afternoon, so the two naturally complement each other.Khorramfar says that this work “highlights the importance of data-driven decision making in energy planning.” The work shows that using such high-resolution data coupled with carefully formulated energy planning model “can drive the system cost down, and ultimately offer more cost-effective pathways for energy transition.”One thing that was surprising about the findings, says Amin, who is a principal investigator in the MIT Laboratory of Information and Data Systems, is how significant the gains were from analyzing relatively short-term variations in inputs and outputs that take place in a 24-hour period. “The kind of cost-saving potential by trying to harness complementarity within a day was not something that one would have expected before this study,” he says.In addition, Amin says, it was also surprising how much this kind of modeling could reduce the need for storage as part of these energy systems. “This study shows that there is actually a hidden cost-saving potential in exploiting local patterns in weather, that can result in a monetary reduction in storage cost.”The system-level analysis and planning suggested by this study, Howland says, “changes how we think about where we site renewable power plants and how we design those renewable plants, so that they maximally serve the energy grid. It has to go beyond just driving down the cost of energy of individual wind or solar farms. And these new insights can only be realized if we continue collaborating across traditional research boundaries, by integrating expertise in fluid dynamics, atmospheric science, and energy engineering.”The research was supported by the MIT Climate and Sustainability Consortium and MIT Climate Grand Challenges. More

  • in

    A new biodegradable material to replace certain microplastics

    Microplastics are an environmental hazard found nearly everywhere on Earth, released by the breakdown of tires, clothing, and plastic packaging. Another significant source of microplastics is tiny beads that are added to some cleansers, cosmetics, and other beauty products.In an effort to cut off some of these microplastics at their source, MIT researchers have developed a class of biodegradable materials that could replace the plastic beads now used in beauty products. These polymers break down into harmless sugars and amino acids.“One way to mitigate the microplastics problem is to figure out how to clean up existing pollution. But it’s equally important to look ahead and focus on creating materials that won’t generate microplastics in the first place,” says Ana Jaklenec, a principal investigator at MIT’s Koch Institute for Integrative Cancer Research.These particles could also find other applications. In the new study, Jaklenec and her colleagues showed that the particles could be used to encapsulate nutrients such as vitamin A. Fortifying foods with encapsulated vitamin A and other nutrients could help some of the 2 billion people around the world who suffer from nutrient deficiencies.Jaklenec and Robert Langer, an MIT Institute Professor and member of the Koch Institute, are the senior authors of the paper, which appears today in Nature Chemical Engineering. The paper’s lead author is Linzixuan (Rhoda) Zhang, an MIT graduate student in chemical engineering.Biodegradable plasticsIn 2019, Jaklenec, Langer, and others reported a polymer material that they showed could be used to encapsulate vitamin A and other essential nutrients. They also found that people who consumed bread made from flour fortified with encapsulated iron showed increased iron levels.However, since then, the European Union has classified this polymer, known as BMC, as a microplastic and included it in a ban that went into effect in 2023. As a result, the Bill and Melinda Gates Foundation, which funded the original research, asked the MIT team if they could design an alternative that would be more environmentally friendly.The researchers, led by Zhang, turned to a type of polymer that Langer’s lab had previously developed, known as poly(beta-amino esters). These polymers, which have shown promise as vehicles for gene delivery and other medical applications, are biodegradable and break down into sugars and amino acids.By changing the composition of the material’s building blocks, researchers can tune properties such as hydrophobicity (ability to repel water), mechanical strength, and pH sensitivity. After creating five different candidate materials, the MIT team tested them and identified one that appeared to have the optimal composition for microplastic applications, including the ability to dissolve when exposed to acidic environments such as the stomach.The researchers showed that they could use these particles to encapsulate vitamin A, as well as vitamin D, vitamin E, vitamin C, zinc, and iron. Many of these nutrients are susceptible to heat and light degradation, but when encased in the particles, the researchers found that the nutrients could withstand exposure to boiling water for two hours.They also showed that even after being stored for six months at high temperature and high humidity, more than half of the encapsulated vitamins were undamaged.To demonstrate their potential for fortifying food, the researchers incorporated the particles into bouillon cubes, which are commonly consumed in many African countries. They found that when incorporated into bouillon, the nutrients remained intact after being boiled for two hours.“Bouillon is a staple ingredient in sub-Saharan Africa, and offers a significant opportunity to improve the nutritional status of many billions of people in those regions,” Jaklenec says.In this study, the researchers also tested the particles’ safety by exposing them to cultured human intestinal cells and measuring their effects on the cells. At the doses that would be used for food fortification, they found no damage to the cells.Better cleansingTo explore the particles’ ability to replace the microbeads that are often added to cleansers, the researchers mixed the particles with soap foam. This mixture, they found, could remove permanent marker and waterproof eyeliner from skin much more effectively than soap alone.Soap mixed with the new microplastic was also more effective than a cleanser that includes polyethylene microbeads, the researchers found. They also discovered that the new biodegradable particles did a better job of absorbing potentially toxic elements such as heavy metals.“We wanted to use this as a first step to demonstrate how it’s possible to develop a new class of materials, to expand from existing material categories, and then to apply it to different applications,” Zhang says.With a grant from Estée Lauder, the researchers are now working on further testing the microbeads as a cleanser and potentially other applications, and they plan to run a small human trial later this year. They are also gathering safety data that could be used to apply for GRAS (generally regarded as safe) classification from the U.S. Food and Drug Administration and are planning a clinical trial of foods fortified with the particles.The researchers hope their work could help to significantly reduce the amount of microplastic released into the environment from health and beauty products.“This is just one small part of the broader microplastics issue, but as a society we’re beginning to acknowledge the seriousness of the problem. This work offers a step forward in addressing it,” Jaklenec says. “Polymers are incredibly useful and essential in countless applications in our daily lives, but they come with downsides. This is an example of how we can reduce some of those negative aspects.”The research was funded by the Gates Foundation and the U.S. National Science Foundation. More

  • in

    Liquid on Mars was not necessarily all water

    Dry river channels and lake beds on Mars point to the long-ago presence of a liquid on the planet’s surface, and the minerals observed from orbit and from landers seem to many to prove that the liquid was ordinary water. Not so fast, the authors of a new Perspectives article in Nature Geoscience suggest. Water is only one of two possible liquids under what are thought to be the conditions present on ancient Mars. The other is liquid carbon dioxide (CO2), and it may actually have been easier for CO2 in the atmosphere to condense into a liquid under those conditions than for water ice to melt. While others have suggested that liquid CO2 (LCO2) might be the source of some of the river channels seen on Mars, the mineral evidence has seemed to point uniquely to water. However, the new paper cites recent studies of carbon sequestration, the process of burying liquefied CO2 recovered from Earth’s atmosphere deep in underground caverns, which show that similar mineral alteration can occur in liquid CO2 as in water, sometimes even more rapidly.The new paper is led by Michael Hecht, principal investigator of the MOXIE instrument aboard the NASA Mars Rover Perseverance. Hecht, a research scientist at MIT’s Haystack Observatory and a former associate director, says, “Understanding how sufficient liquid water was able to flow on early Mars to explain the morphology and mineralogy we see today is probably the greatest unsettled question of Mars science. There is likely no one right answer, and we are merely suggesting another possible piece of the puzzle.”In the paper, the authors discuss the compatibility of their proposal with current knowledge of Martian atmospheric content and implications for Mars surface mineralogy. They also explore the latest carbon sequestration research and conclude that “LCO2–mineral reactions are consistent with the predominant Mars alteration products: carbonates, phyllosilicates, and sulfates.” The argument for the probable existence of liquid CO2 on the Martian surface is not an all-or-nothing scenario; either liquid CO2, liquid water, or a combination may have brought about such geomorphological and mineralogical evidence for a liquid Mars.Three plausible cases for liquid CO2 on the Martian surface are proposed and discussed: stable surface liquid, basal melting under CO2 ice, and subsurface reservoirs. The likelihood of each depends on the actual inventory of CO2 at the time, as well as the temperature conditions on the surface.The authors acknowledge that the tested sequestration conditions, where the liquid CO2 is above room temperature at pressures of tens of atmospheres, are very different from the cold, relatively low-pressure conditions that might have produced liquid CO2 on early Mars. They call for further laboratory investigations under more realistic conditions to test whether the same chemical reactions occur.Hecht explains, “It’s difficult to say how likely it is that this speculation about early Mars is actually true. What we can say, and we are saying, is that the likelihood is high enough that the possibility should not be ignored.”  More

  • in

    A new catalyst can turn methane into something useful

    Although it is less abundant than carbon dioxide, methane gas contributes disproportionately to global warming because it traps more heat in the atmosphere than carbon dioxide, due to its molecular structure.MIT chemical engineers have now designed a new catalyst that can convert methane into useful polymers, which could help reduce greenhouse gas emissions.“What to do with methane has been a longstanding problem,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study. “It’s a source of carbon, and we want to keep it out of the atmosphere but also turn it into something useful.”The new catalyst works at room temperature and atmospheric pressure, which could make it easier and more economical to deploy at sites of methane production, such as power plants and cattle barns.Daniel Lundberg PhD ’24 and MIT postdoc Jimin Kim are the lead authors of the study, which appears today in Nature Catalysis. Former postdoc Yu-Ming Tu and postdoc Cody Ritt also authors of the paper.Capturing methaneMethane is produced by bacteria known as methanogens, which are often highly concentrated in landfills, swamps, and other sites of decaying biomass. Agriculture is a major source of methane, and methane gas is also generated as a byproduct of transporting, storing, and burning natural gas. Overall, it is believed to account for about 15 percent of global temperature increases.At the molecular level, methane is made of a single carbon atom bound to four hydrogen atoms. In theory, this molecule should be a good building block for making useful products such as polymers. However, converting methane to other compounds has proven difficult because getting it to react with other molecules usually requires high temperature and high pressures.To achieve methane conversion without that input of energy, the MIT team designed a hybrid catalyst with two components: a zeolite and a naturally occurring enzyme. Zeolites are abundant, inexpensive clay-like minerals, and previous work has found that they can be used to catalyze the conversion of methane to carbon dioxide.In this study, the researchers used a zeolite called iron-modified aluminum silicate, paired with an enzyme called alcohol oxidase. Bacteria, fungi, and plants use this enzyme to oxidize alcohols.This hybrid catalyst performs a two-step reaction in which zeolite converts methane to methanol, and then the enzyme converts methanol to formaldehyde. That reaction also generates hydrogen peroxide, which is fed back into the zeolite to provide a source of oxygen for the conversion of methane to methanol.This series of reactions can occur at room temperature and doesn’t require high pressure. The catalyst particles are suspended in water, which can absorb methane from the surrounding air. For future applications, the researchers envision that it could be painted onto surfaces.“Other systems operate at high temperature and high pressure, and they use hydrogen peroxide, which is an expensive chemical, to drive the methane oxidation. But our enzyme produces hydrogen peroxide from oxygen, so I think our system could be very cost-effective and scalable,” Kim says.Creating a system that incorporates both enzymes and artificial catalysts is a “smart strategy,” says Damien Debecker, a professor at the Institute of Condensed Matter and Nanosciences at the University of Louvain, Belgium.“Combining these two families of catalysts is challenging, as they tend to operate in rather distinct operation conditions. By unlocking this constraint and mastering the art of chemo-enzymatic cooperation, hybrid catalysis becomes key-enabling: It opens new perspectives to run complex reaction systems in an intensified way,” says Debecker, who was not involved in the research.Building polymersOnce formaldehyde is produced, the researchers showed they could use that molecule to generate polymers by adding urea, a nitrogen-containing molecule found in urine. This resin-like polymer, known as urea-formaldehyde, is now used in particle board, textiles and other products.The researchers envision that this catalyst could be incorporated into pipes used to transport natural gas. Within those pipes, the catalyst could generate a polymer that could act as a sealant to heal cracks in the pipes, which are a common source of methane leakage. The catalyst could also be applied as a film to coat surfaces that are exposed to methane gas, producing polymers that could be collected for use in manufacturing, the researchers say.Strano’s lab is now working on catalysts that could be used to remove carbon dioxide from the atmosphere and combine it with nitrate to produce urea. That urea could then be mixed with the formaldehyde produced by the zeolite-enzyme catalyst to produce urea-formaldehyde.The research was funded by the U.S. Department of Energy. More

  • in

    An inflatable gastric balloon could help people lose weight

    Gastric balloons — silicone balloons filled with air or saline and placed in the stomach — can help people lose weight by making them feel too full to overeat. However, this effect eventually can wear off as the stomach becomes used to the sensation of fullness.To overcome that limitation, MIT engineers have designed a new type of gastric balloon that can be inflated and deflated as needed. In an animal study, they showed that inflating the balloon before a meal caused the animals to reduce their food intake by 60 percent.This type of intervention could offer an alternative for people who don’t want to undergo more invasive treatments such as gastric bypass surgery, or people who don’t respond well to weight-loss drugs, the researchers say.“The basic concept is we can have this balloon that is dynamic, so it would be inflated right before a meal and then you wouldn’t feel hungry. Then it would be deflated in between meals,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, and the senior author of the study.Neil Zixun Jia, who received a PhD from MIT in 2023, is the lead author of the paper, which appears today in the journal Device.An inflatable balloonGastric balloons filled with saline are currently approved for use in the United States. These balloons stimulate a sense of fullness in the stomach, and studies have shown that they work well, but the benefits are often temporary.“Gastric balloons do work initially. Historically, what has been seen is that the balloon is associated with weight loss. But then in general, the weight gain resumes the same trajectory,” Traverso says. “What we reasoned was perhaps if we had a system that simulates that fullness in a transient way, meaning right before a meal, that could be a way of inducing weight loss.”To achieve a longer-lasting effect in patients, the researchers set out to design a device that could expand and contract on demand. They created two prototypes: One is a traditional balloon that inflates and deflates, and the other is a mechanical device with four arms that expand outward, pushing out an elastic polymer shell that presses on the stomach wall.In animal tests, the researchers found that the mechanical-arm device could effectively expand to fill the stomach, but they ended up deciding to pursue the balloon option instead.“Our sense was that the balloon probably distributed the force better, and down the line, if you have balloon that is applying the pressure, that is probably a safer approach in the long run,” Traverso says.The researchers’ new balloon is similar to a traditional gastric balloon, but it is inserted into the stomach through an incision in the abdominal wall. The balloon is connected to an external controller that can be attached to the skin and contains a pump that inflates and deflates the balloon when needed. Inserting this device would be similar to the procedure used to place a feeding tube into a patient’s stomach, which is commonly done for people who are unable to eat or drink.“If people, for example, are unable to swallow, they receive food through a tube like this. We know that we can keep tubes in for years, so there is already precedent for other systems that can stay in the body for a very long time. That gives us some confidence in the longer-term compatibility of this system,” Traverso says.Reduced food intakeIn tests in animals, the researchers found that inflating the balloon before meals led to a 60 percent reduction in the amount of food consumed. These studies were done over the course of a month, but the researchers now plan to do longer-term studies to see if this reduction leads to weight loss.“The deployment for traditional gastric balloons is usually six months, if not more, and only then you will see good amount of weight loss. We will have to evaluate our device in a similar or longer time span to prove it really works better,” Jia says.If developed for use in humans, the new gastric balloon could offer an alternative to existing obesity treatments. Other treatments for obesity include gastric bypass surgery, “stomach stapling” (a surgical procedure in which the stomach capacity is reduced), and drugs including GLP-1 receptor agonists such as semaglutide.The gastric balloon could be an option for patients who are not good candidates for surgery or don’t respond well to weight-loss drugs, Traverso says.“For certain patients who are higher-risk, who cannot undergo surgery, or did not tolerate the medication or had some other contraindication, there are limited options,” he says. “Traditional gastric balloons are still being used, but they come with a caveat that eventually the weight loss can plateau, so this is a way of trying to address that fundamental limitation.”The research was funded by MIT’s Department of Mechanical Engineering, the Karl van Tassel Career Development Professorship, the Whitaker Health Sciences Fund Fellowship, the T.S. Lin Fellowship, the MIT Undergraduate Research Opportunities Program, and the Boston University Yawkey Funded Internship Program.  More

  • in

    Is there enough land on Earth to fight climate change and feed the world?

    Capping global warming at 1.5 degrees Celsius is a tall order. Achieving that goal will not only require a massive reduction in greenhouse gas emissions from human activities, but also a substantial reallocation of land to support that effort and sustain the biosphere, including humans. More land will be needed to accommodate a growing demand for bioenergy and nature-based carbon sequestration while ensuring sufficient acreage for food production and ecological sustainability.The expanding role of land in a 1.5 C world will be twofold — to remove carbon dioxide from the atmosphere and to produce clean energy. Land-based carbon dioxide removal strategies include bioenergy with carbon capture and storage; direct air capture; and afforestation/reforestation and other nature-based solutions. Land-based clean energy production includes wind and solar farms and sustainable bioenergy cropland. Any decision to allocate more land for climate mitigation must also address competing needs for long-term food security and ecosystem health.Land-based climate mitigation choices vary in terms of costs — amount of land required, implications for food security, impact on biodiversity and other ecosystem services — and benefits — potential for sequestering greenhouse gases and producing clean energy.Now a study in the journal Frontiers in Environmental Science provides the most comprehensive analysis to date of competing land-use and technology options to limit global warming to 1.5 C. Led by researchers at the MIT Center for Sustainability Science and Strategy (CS3), the study applies the MIT Integrated Global System Modeling (IGSM) framework to evaluate costs and benefits of different land-based climate mitigation options in Sky2050, a 1.5 C climate-stabilization scenario developed by Shell.Under this scenario, demand for bioenergy and natural carbon sinks increase along with the need for sustainable farming and food production. To determine if there’s enough land to meet all these growing demands, the research team uses the global hectare (gha) — an area of 10,000 square meters, or 2.471 acres — as the standard unit of measurement, and current estimates of the Earth’s total habitable land area (about 10 gha) and land area used for food production and bioenergy (5 gha).The team finds that with transformative changes in policy, land management practices, and consumption patterns, global land is sufficient to provide a sustainable supply of food and ecosystem services throughout this century while also reducing greenhouse gas emissions in alignment with the 1.5 C goal. These transformative changes include policies to protect natural ecosystems; stop deforestation and accelerate reforestation and afforestation; promote advances in sustainable agriculture technology and practice; reduce agricultural and food waste; and incentivize consumers to purchase sustainably produced goods.If such changes are implemented, 2.5–3.5 gha of land would be used for NBS practices to sequester 3–6 gigatonnes (Gt) of CO2 per year, and 0.4–0.6 gha of land would be allocated for energy production — 0.2–0.3 gha for bioenergy and 0.2–0.35 gha for wind and solar power generation.“Our scenario shows that there is enough land to support a 1.5 degree C future as long as effective policies at national and global levels are in place,” says CS3 Principal Research Scientist Angelo Gurgel, the study’s lead author. “These policies must not only promote efficient use of land for food, energy, and nature, but also be supported by long-term commitments from government and industry decision-makers.” More

  • in

    To design better water filters, MIT engineers look to manta rays

    Filter feeders are everywhere in the animal world, from tiny crustaceans and certain types of coral and krill, to various molluscs, barnacles, and even massive basking sharks and baleen whales. Now, MIT engineers have found that one filter feeder has evolved to sift food in ways that could improve the design of industrial water filters.In a paper appearing this week in the Proceedings of the National Academy of Sciences, the team characterizes the filter-feeding mechanism of the mobula ray — a family of aquatic rays that includes two manta species and seven devil rays. Mobula rays feed by swimming open-mouthed through plankton-rich regions of the ocean and filtering plankton particles into their gullet as water streams into their mouths and out through their gills.The floor of the mobula ray’s mouth is lined on either side with parallel, comb-like structures, called plates, that siphon water into the ray’s gills. The MIT team has shown that the dimensions of these plates may allow for incoming plankton to bounce all the way across the plates and further into the ray’s cavity, rather than out through the gills. What’s more, the ray’s gills absorb oxygen from the outflowing water, helping the ray to simultaneously breathe while feeding.“We show that the mobula ray has evolved the geometry of these plates to be the perfect size to balance feeding and breathing,” says study author Anette “Peko” Hosoi, the Pappalardo Professor of Mechanical Engineering at MIT.The engineers fabricated a simple water filter modeled after the mobula ray’s plankton-filtering features. They studied how water flowed through the filter when it was fitted with 3D-printed plate-like structures. The team took the results of these experiments and drew up a blueprint, which they say designers can use to optimize industrial cross-flow filters, which are broadly similar in configuration to that of the mobula ray.“We want to expand the design space of traditional cross-flow filtration with new knowledge from the manta ray,” says lead author and MIT postdoc Xinyu Mao PhD ’24. “People can choose a parameter regime of the mobula ray so they could potentially improve overall filter performance.”Hosoi and Mao co-authored the new study with Irmgard Bischofberger, associate professor of mechanical engineering at MIT.A better trade-offThe new study grew out of the group’s focus on filtration during the height of the Covid pandemic, when the researchers were designing face masks to filter out the virus. Since then, Mao has shifted focus to study filtration in animals and how certain filter-feeding mechanisms might improve filters used in industry, such as in water treatment plants.Mao observed that any industrial filter must strike a balance between permeability (how easily fluid can flow through a filter), and selectivity (how successful a filter is at keeping out particles of a target size). For instance, a membrane that is studded with large holes might be highly permeable, meaning a lot of water can be pumped through using very little energy. However, the membrane’s large holes would let many particles through, making it very low in selectivity. Likewise, a membrane with much smaller pores would be more selective yet also require more energy to pump the water through the smaller openings.“We asked ourselves, how do we do better with this tradeoff between permeability and selectivity?” Hosoi says.As Mao looked into filter-feeding animals, he found that the mobula ray has struck an ideal balance between permeability and selectivity: The ray is highly permeable, in that it can let water into its mouth and out through its gills quickly enough to capture oxygen to breathe. At the same time, it is highly selective, filtering and feeding on plankton rather than letting the particles stream out through the gills.The researchers realized that the ray’s filtering features are broadly similar to that of industrial cross-flow filters. These filters are designed such that fluid flows across a permeable membrane that lets through most of the fluid, while any polluting particles continue flowing across the membrane and eventually out into a reservoir of waste.The team wondered whether the mobula ray might inspire design improvements to industrial cross-flow filters. For that, they took a deeper dive into the dynamics of mobula ray filtration.A vortex keyAs part of their new study, the team fabricated a simple filter inspired by the mobula ray. The filter’s design is what engineers refer to as a “leaky channel” — effectively, a pipe with holes along its sides. In this case, the team’s “channel” consists of two flat, transparent acrylic plates that are glued together at the edges, with a slight opening between the plates through which fluid can be pumped. At one end of the channel, the researchers inserted 3D-printed structures resembling the grooved plates that run along the floor of the mobula ray’s mouth.The team then pumped water through the channel at various rates, along with colored dye to visualize the flow. They took images across the channel and observed an interesting transition: At slow pumping rates, the flow was “very peaceful,” and fluid easily slipped through the grooves in the printed plates and out into a reservoir. When the researchers increased the pumping rate, the faster-flowing fluid did not slip through, but appeared to swirl at the mouth of each groove, creating a vortex, similar to a small knot of hair between the tips of a comb’s teeth.“This vortex is not blocking water, but it is blocking particles,” Hosoi explains. “Whereas in a slower flow, particles go through the filter with the water, at higher flow rates, particles try to get through the filter but are blocked by this vortex and are shot down the channel instead. The vortex is helpful because it prevents particles from flowing out.”The team surmised that vortices are the key to mobula rays’ filter-feeding ability. The ray is able to swim at just the right speed that water, streaming into its mouth, can form vortices between the grooved plates. These vortices effectively block any plankton particles — even those that are smaller than the space between plates. The particles then bounce across the plates and head further into the ray’s cavity, while the rest of the water can still flow between the plates and out through the gills.The researchers used the results of their experiments, along with dimensions of the filtering features of mobula rays, to develop a blueprint for cross-flow filtration.“We have provided practical guidance on how to actually filter as the mobula ray does,” Mao offers.“You want to design a filter such that you’re in the regime where you generate vortices,” Hosoi says. “Our guidelines tell you: If you want your plant to pump at a certain rate, then your filter has to have a particular pore diameter and spacing to generate vortices that will filter out particles of this size. The mobula ray is giving us a really nice rule of thumb for rational design.”This work was supported, in part, by the U.S. National Institutes of Health, and the Harvey P. Greenspan Fellowship Fund.  More

  • in

    New AI tool generates realistic satellite images of future flooding

    Visualizing the potential impacts of a hurricane on people’s homes before it hits can help residents prepare and decide whether to evacuate.MIT scientists have developed a method that generates satellite imagery from the future to depict how a region would look after a potential flooding event. The method combines a generative artificial intelligence model with a physics-based flood model to create realistic, birds-eye-view images of a region, showing where flooding is likely to occur given the strength of an oncoming storm.As a test case, the team applied the method to Houston and generated satellite images depicting what certain locations around the city would look like after a storm comparable to Hurricane Harvey, which hit the region in 2017. The team compared these generated images with actual satellite images taken of the same regions after Harvey hit. They also compared AI-generated images that did not include a physics-based flood model.The team’s physics-reinforced method generated satellite images of future flooding that were more realistic and accurate. The AI-only method, in contrast, generated images of flooding in places where flooding is not physically possible.The team’s method is a proof-of-concept, meant to demonstrate a case in which generative AI models can generate realistic, trustworthy content when paired with a physics-based model. In order to apply the method to other regions to depict flooding from future storms, it will need to be trained on many more satellite images to learn how flooding would look in other regions.“The idea is: One day, we could use this before a hurricane, where it provides an additional visualization layer for the public,” says Björn Lütjens, a postdoc in MIT’s Department of Earth, Atmospheric and Planetary Sciences, who led the research while he was a doctoral student in MIT’s Department of Aeronautics and Astronautics (AeroAstro). “One of the biggest challenges is encouraging people to evacuate when they are at risk. Maybe this could be another visualization to help increase that readiness.”To illustrate the potential of the new method, which they have dubbed the “Earth Intelligence Engine,” the team has made it available as an online resource for others to try.The researchers report their results today in the journal IEEE Transactions on Geoscience and Remote Sensing. The study’s MIT co-authors include Brandon Leshchinskiy; Aruna Sankaranarayanan; and Dava Newman, professor of AeroAstro and director of the MIT Media Lab; along with collaborators from multiple institutions.Generative adversarial imagesThe new study is an extension of the team’s efforts to apply generative AI tools to visualize future climate scenarios.“Providing a hyper-local perspective of climate seems to be the most effective way to communicate our scientific results,” says Newman, the study’s senior author. “People relate to their own zip code, their local environment where their family and friends live. Providing local climate simulations becomes intuitive, personal, and relatable.”For this study, the authors use a conditional generative adversarial network, or GAN, a type of machine learning method that can generate realistic images using two competing, or “adversarial,” neural networks. The first “generator” network is trained on pairs of real data, such as satellite images before and after a hurricane. The second “discriminator” network is then trained to distinguish between the real satellite imagery and the one synthesized by the first network.Each network automatically improves its performance based on feedback from the other network. The idea, then, is that such an adversarial push and pull should ultimately produce synthetic images that are indistinguishable from the real thing. Nevertheless, GANs can still produce “hallucinations,” or factually incorrect features in an otherwise realistic image that shouldn’t be there.“Hallucinations can mislead viewers,” says Lütjens, who began to wonder whether such hallucinations could be avoided, such that generative AI tools can be trusted to help inform people, particularly in risk-sensitive scenarios. “We were thinking: How can we use these generative AI models in a climate-impact setting, where having trusted data sources is so important?”Flood hallucinationsIn their new work, the researchers considered a risk-sensitive scenario in which generative AI is tasked with creating satellite images of future flooding that could be trustworthy enough to inform decisions of how to prepare and potentially evacuate people out of harm’s way.Typically, policymakers can get an idea of where flooding might occur based on visualizations in the form of color-coded maps. These maps are the final product of a pipeline of physical models that usually begins with a hurricane track model, which then feeds into a wind model that simulates the pattern and strength of winds over a local region. This is combined with a flood or storm surge model that forecasts how wind might push any nearby body of water onto land. A hydraulic model then maps out where flooding will occur based on the local flood infrastructure and generates a visual, color-coded map of flood elevations over a particular region.“The question is: Can visualizations of satellite imagery add another level to this, that is a bit more tangible and emotionally engaging than a color-coded map of reds, yellows, and blues, while still being trustworthy?” Lütjens says.The team first tested how generative AI alone would produce satellite images of future flooding. They trained a GAN on actual satellite images taken by satellites as they passed over Houston before and after Hurricane Harvey. When they tasked the generator to produce new flood images of the same regions, they found that the images resembled typical satellite imagery, but a closer look revealed hallucinations in some images, in the form of floods where flooding should not be possible (for instance, in locations at higher elevation).To reduce hallucinations and increase the trustworthiness of the AI-generated images, the team paired the GAN with a physics-based flood model that incorporates real, physical parameters and phenomena, such as an approaching hurricane’s trajectory, storm surge, and flood patterns. With this physics-reinforced method, the team generated satellite images around Houston that depict the same flood extent, pixel by pixel, as forecasted by the flood model.“We show a tangible way to combine machine learning with physics for a use case that’s risk-sensitive, which requires us to analyze the complexity of Earth’s systems and project future actions and possible scenarios to keep people out of harm’s way,” Newman says. “We can’t wait to get our generative AI tools into the hands of decision-makers at the local community level, which could make a significant difference and perhaps save lives.”The research was supported, in part, by the MIT Portugal Program, the DAF-MIT Artificial Intelligence Accelerator, NASA, and Google Cloud. More