More stories

  • in

    Using seismology for groundwater management

    As climate change increases the number of extreme weather events, such as megadroughts, groundwater management is key for sustaining water supply. But current groundwater monitoring tools are either costly or insufficient for deeper aquifers, limiting our ability to monitor and practice sustainable management in populated areas.

    Now, a new paper published in Nature Communications bridges seismology and hydrology with a pilot application that uses seismometers as a cost-effective way to monitor and map groundwater fluctuations.

    “Our measurements are independent from and complementary to traditional observations,” says Shujuan Mao PhD ’21, lead author on the paper. “It provides a new way to dictate groundwater management and evaluate the impact of human activity on shaping underground hydrologic systems.”

    Mao, currently a Thompson Postdoctoral Fellow in the Geophysics department at Stanford University, conducted most of the research during her PhD in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). Other contributors to the paper include EAPS department chair and Schlumberger Professor of Earth and Planetary Sciences Robert van der Hilst, as well as Michel Campillo and Albanne Lecointre from the Institut des Sciences de la Terre in France.

    While there are a few different methods currently used for measuring groundwater, they all come with notable drawbacks. Hydraulic heads, which drill through the ground and into the aquifers, are expensive and can only give limited information at the specific location they’re placed. Noninvasive techniques based on satellite- or airborne-sensing lack the sensitivity and resolution needed to observe deeper depths.

    Mao proposes using seismometers, which are instruments used to measure ground vibrations such as the waves produced by earthquakes. They can measure seismic velocity, which is the propagation speed of seismic waves. Seismic velocity measurements are unique to the mechanical state of rocks, or the ways rocks respond to their physical environment, and can tell us a lot about them.

    The idea of using seismic velocity to characterize property changes in rocks has long been used in laboratory-scale analysis, but only recently have scientists been able to measure it continuously in realistic-scale geological settings. For aquifer monitoring, Mao and her team associate the seismic velocity with the hydraulic property, or the water content, in the rocks.

    Seismic velocity measurements make use of ambient seismic fields, or background noise, recorded by seismometers. “The Earth’s surface is always vibrating, whether due to ocean waves, winds, or human activities,” she explains. “Most of the time those vibrations are really small and are considered ‘noise’ by traditional seismologists. But in recent years scientists have shown that the continuous noise records in fact contain a wealth of information about the properties and structures of the Earth’s interior.”

    To extract useful information from the noise records, Mao and her team used a technique called seismic interferometry, which analyzes wave interference to calculate the seismic velocity of the medium the waves pass through. For their pilot application, Mao and her team applied this analysis to basins in the Metropolitan Los Angeles region, an area suffering from worsening drought and a growing population.

    By doing this, Mao and her team were able to see how the aquifers changed physically over time at a high resolution. Their seismic velocity measurements verified measurements taken by hydraulic heads over the last 20 years, and the images matched very well with satellite data. They could also see differences in how the storage areas changed between counties in the area that used different water pumping practices, which is important for developing water management protocol.

    Mao also calls using the seismometers a “buy-one get-one free” deal, since seismometers are already in use for earthquake and tectonic studies not just across California, but worldwide, and could help “avoid the expensive cost of drilling and maintaining dedicated groundwater monitoring wells,” she says.

    Mao emphasizes that this study is just the beginning of exploring possible applications of seismic noise interferometry in this way. It can be used to monitor other near-surface systems, such as geothermal or volcanic systems, and Mao is currently applying it to oil and gas fields. But in places like California currently experiencing megadroughts, and who rely on groundwater for a large portion of their water needs, this kind of information is key for sustainable water management.

    “It’s really important, especially now, to characterize these changes in groundwater storage so that we can promote data-informed policymaking to help them thrive under increasing water stress,” she says.

    This study was funded, in part, by the European Research Council, with additional support from the Thompson Fellowship at Stanford University. More

  • in

    MIT J-WAFS announces 2022 seed grant recipients

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) at MIT has awarded eight MIT principal investigators with 2022 J-WAFS seed grants. The grants support innovative MIT research that has the potential to have significant impact on water- and food-related challenges.

    The only program at MIT that is dedicated to water- and food-related research, J-WAFS has offered seed grant funding to MIT principal investigators and their teams for the past eight years. The grants provide up to $75,000 per year, overhead-free, for two years to support new, early-stage research in areas such as water and food security, safety, supply, and sustainability. Past projects have spanned many diverse disciplines, including engineering, science, technology, and business innovation, as well as social science and economics, architecture, and urban planning. 

    Seven new projects led by eight researchers will be supported this year. With funding going to four different MIT departments, the projects address a range of challenges by employing advanced materials, technology innovations, and new approaches to resource management. The new projects aim to remove harmful chemicals from water sources, develop drought monitoring systems for farmers, improve management of the shellfish industry, optimize water purification materials, and more.

    “Climate change, the pandemic, and most recently the war in Ukraine have exacerbated and put a spotlight on the serious challenges facing global water and food systems,” says J-WAFS director John H. Lienhard. He adds, “The proposals chosen this year have the potential to create measurable, real-world impacts in both the water and food sectors.”  

    The 2022 J-WAFS seed grant researchers and their projects are:

    Gang Chen, the Carl Richard Soderberg Professor of Power Engineering in MIT’s Department of Mechanical Engineering, is using sunlight to desalinate water. The use of solar energy for desalination is not a new idea, particularly solar thermal evaporation methods. However, the solar thermal evaporation process has an overall low efficiency because it relies on breaking hydrogen bonds among individual water molecules, which is very energy-intensive. Chen and his lab recently discovered a photomolecular effect that dramatically lowers the energy required for desalination. 

    The bonds among water molecules inside a water cluster in liquid water are mostly hydrogen bonds. Chen discovered that a photon with energy larger than the bonding energy between the water cluster and the remaining water liquids can cleave off the water cluster at the water-air interface, colliding with air molecules and disintegrating into 60 or even more individual water molecules. This effect has the potential to significantly boost clean water production via new desalination technology that produces a photomolecular evaporation rate that exceeds pure solar thermal evaporation by at least ten-fold. 

    John E. Fernández is the director of the MIT Environmental Solutions Initiative (ESI) and a professor in the Department of Architecture, and also affiliated with the Department of Urban Studies and Planning. Fernández is working with Scott D. Odell, a postdoc in the ESI, to better understand the impacts of mining and climate change in water-stressed regions of Chile.

    The country of Chile is one of the world’s largest exporters of both agricultural and mineral products; however, little research has been done on climate change effects at the intersection of these two sectors. Fernández and Odell will explore how desalination is being deployed by the mining industry to relieve pressure on continental water supplies in Chile, and with what effect. They will also research how climate change and mining intersect to affect Andean glaciers and agricultural communities dependent upon them. The researchers intend for this work to inform policies to reduce social and environmental harms from mining, desalination, and climate change.

    Ariel L. Furst is the Raymond (1921) and Helen St. Laurent Career Development Professor of Chemical Engineering at MIT. Her 2022 J-WAFS seed grant project seeks to effectively remove dangerous and long-lasting chemicals from water supplies and other environmental areas. 

    Perfluorooctanoic acid (PFOA), a component of Teflon, is a member of a group of chemicals known as per- and polyfluoroalkyl substances (PFAS). These human-made chemicals have been extensively used in consumer products like nonstick cooking pans. Exceptionally high levels of PFOA have been measured in water sources near manufacturing sites, which is problematic as these chemicals do not readily degrade in our bodies or the environment. The majority of humans have detectable levels of PFAS in their blood, which can lead to significant health issues including cancer, liver damage, and thyroid effects, as well as developmental effects in infants. Current remediation methods are limited to inefficient capture and are mostly confined to laboratory settings. Furst’s proposed method utilizes low-energy, scaffolded enzyme materials to move beyond simple capture to degrade these hazardous pollutants.

    Heather J. Kulik is an associate professor in the Department of Chemical Engineering at MIT who is developing novel computational strategies to identify optimal materials for purifying water. Water treatment requires purification by selectively separating small ions from water. However, human-made, scalable materials for water purification and desalination are often not stable in typical operating conditions and lack precision pores for good separation. 

    Metal-organic frameworks (MOFs) are promising materials for water purification because their pores can be tailored to have precise shapes and chemical makeup for selective ion affinity. Yet few MOFs have been assessed for their properties relevant to water purification. Kulik plans to use virtual high-throughput screening accelerated by machine learning models and molecular simulation to accelerate discovery of MOFs. Specifically, Kulik will be looking for MOFs with ultra-stable structures in water that do not break down at certain temperatures. 

    Gregory C. Rutledge is the Lammot du Pont Professor of Chemical Engineering at MIT. He is leading a project that will explore how to better separate oils from water. This is an important problem to solve given that industry-generated oil-contaminated water is a major source of pollution to the environment.

    Emulsified oils are particularly challenging to remove from water due to their small droplet sizes and long settling times. Microfiltration is an attractive technology for the removal of emulsified oils, but its major drawback is fouling, or the accumulation of unwanted material on solid surfaces. Rutledge will examine the mechanism of separation behind liquid-infused membranes (LIMs) in which an infused liquid coats the surface and pores of the membrane, preventing fouling. Robustness of the LIM technology for removal of different types of emulsified oils and oil mixtures will be evaluated. César Terrer is an assistant professor in the Department of Civil and Environmental Engineering whose J-WAFS project seeks to answer the question: How can satellite images be used to provide a high-resolution drought monitoring system for farmers? 

    Drought is recognized as one of the world’s most pressing issues, with direct impacts on vegetation that threaten water resources and food production globally. However, assessing and monitoring the impact of droughts on vegetation is extremely challenging as plants’ sensitivity to lack of water varies across species and ecosystems. Terrer will leverage a new generation of remote sensing satellites to provide high-resolution assessments of plant water stress at regional to global scales. The aim is to provide a plant drought monitoring product with farmland-specific services for water and socioeconomic management.

    Michael Triantafyllou is the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering. He is developing a web-based system for natural resources management that will deploy geospatial analysis, visualization, and reporting to better manage and facilitate aquaculture data.  By providing value to commercial fisheries’ permit holders who employ significant numbers of people and also to recreational shellfish permit holders who contribute to local economies, the project has attracted support from the Massachusetts Division of Marine Fisheries as well as a number of local resource management departments.

    Massachusetts shell fisheries generated roughly $339 million in 2020, accounting for 17 percent of U.S. East Coast production. Managing such a large industry is a time-consuming process, given there are thousands of acres of coastal areas grouped within over 800 classified shellfish growing areas. Extreme climate events present additional challenges. Triantafyllou’s research will help efforts to enforce environmental regulations, support habitat restoration efforts, and prevent shellfish-related food safety issues. More

  • in

    Improving predictions of sea level rise for the next century

    When we think of climate change, one of the most dramatic images that comes to mind is the loss of glacial ice. As the Earth warms, these enormous rivers of ice become a casualty of the rising temperatures. But, as ice sheets retreat, they also become an important contributor to one the more dangerous outcomes of climate change: sea-level rise. At MIT, an interdisciplinary team of scientists is determined to improve sea level rise predictions for the next century, in part by taking a closer look at the physics of ice sheets.

    Last month, two research proposals on the topic, led by Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), were announced as finalists in the MIT Climate Grand Challenges initiative. Launched in July 2020, Climate Grand Challenges fielded almost 100 project proposals from collaborators across the Institute who heeded the bold charge: to develop research and innovations that will deliver game-changing advances in the world’s efforts to address the climate challenge.

    As finalists, Minchew and his collaborators from the departments of Urban Studies and Planning, Economics, Civil and Environmental Engineering, the Haystack Observatory, and external partners, received $100,000 to develop their research plans. A subset of the 27 proposals tapped as finalists will be announced next month, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    One goal of both Minchew proposals is to more fully understand the most fundamental processes that govern rapid changes in glacial ice, and to use that understanding to build next-generation models that are more predictive of ice sheet behavior as they respond to, and influence, climate change.

    “We need to develop more accurate and computationally efficient models that provide testable projections of sea-level rise over the coming decades. To do so quickly, we want to make better and more frequent observations and learn the physics of ice sheets from these data,” says Minchew. “For example, how much stress do you have to apply to ice before it breaks?”

    Currently, Minchew’s Glacier Dynamics and Remote Sensing group uses satellites to observe the ice sheets on Greenland and Antarctica primarily with interferometric synthetic aperture radar (InSAR). But the data are often collected over long intervals of time, which only gives them “before and after” snapshots of big events. By taking more frequent measurements on shorter time scales, such as hours or days, they can get a more detailed picture of what is happening in the ice.

    “Many of the key unknowns in our projections of what ice sheets are going to look like in the future, and how they’re going to evolve, involve the dynamics of glaciers, or our understanding of how the flow speed and the resistances to flow are related,” says Minchew.

    At the heart of the two proposals is the creation of SACOS, the Stratospheric Airborne Climate Observatory System. The group envisions developing solar-powered drones that can fly in the stratosphere for months at a time, taking more frequent measurements using a new lightweight, low-power radar and other high-resolution instrumentation. They also propose air-dropping sensors directly onto the ice, equipped with seismometers and GPS trackers to measure high-frequency vibrations in the ice and pinpoint the motions of its flow.

    How glaciers contribute to sea level rise

    Current climate models predict an increase in sea levels over the next century, but by just how much is still unclear. Estimates are anywhere from 20 centimeters to two meters, which is a large difference when it comes to enacting policy or mitigation. Minchew points out that response measures will be different, depending on which end of the scale it falls toward. If it’s closer to 20 centimeters, coastal barriers can be built to protect low-level areas. But with higher surges, such measures become too expensive and inefficient to be viable, as entire portions of cities and millions of people would have to be relocated.

    “If we’re looking at a future where we could get more than a meter of sea level rise by the end of the century, then we need to know about that sooner rather than later so that we can start to plan and to do our best to prepare for that scenario,” he says.

    There are two ways glaciers and ice sheets contribute to rising sea levels: direct melting of the ice and accelerated transport of ice to the oceans. In Antarctica, warming waters melt the margins of the ice sheets, which tends to reduce the resistive stresses and allow ice to flow more quickly to the ocean. This thinning can also cause the ice shelves to be more prone to fracture, facilitating the calving of icebergs — events which sometimes cause even further acceleration of ice flow.

    Using data collected by SACOS, Minchew and his group can better understand what material properties in the ice allow for fracturing and calving of icebergs, and build a more complete picture of how ice sheets respond to climate forces. 

    “What I want is to reduce and quantify the uncertainties in projections of sea level rise out to the year 2100,” he says.

    From that more complete picture, the team — which also includes economists, engineers, and urban planning specialists — can work on developing predictive models and methods to help communities and governments estimate the costs associated with sea level rise, develop sound infrastructure strategies, and spur engineering innovation.

    Understanding glacier dynamics

    More frequent radar measurements and the collection of higher-resolution seismic and GPS data will allow Minchew and the team to develop a better understanding of the broad category of glacier dynamics — including calving, an important process in setting the rate of sea level rise which is currently not well understood.  

    “Some of what we’re doing is quite similar to what seismologists do,” he says. “They measure seismic waves following an earthquake, or a volcanic eruption, or things of this nature and use those observations to better understand the mechanisms that govern these phenomena.”

    Air-droppable sensors will help them collect information about ice sheet movement, but this method comes with drawbacks — like installation and maintenance, which is difficult to do out on a massive ice sheet that is moving and melting. Also, the instruments can each only take measurements at a single location. Minchew equates it to a bobber in water: All it can tell you is how the bobber moves as the waves disturb it.

    But by also taking continuous radar measurements from the air, Minchew’s team can collect observations both in space and in time. Instead of just watching the bobber in the water, they can effectively make a movie of the waves propagating out, as well as visualize processes like iceberg calving happening in multiple dimensions.

    Once the bobbers are in place and the movies recorded, the next step is developing machine learning algorithms to help analyze all the new data being collected. While this data-driven kind of discovery has been a hot topic in other fields, this is the first time it has been applied to glacier research.

    “We’ve developed this new methodology to ingest this huge amount of data,” he says, “and from that create an entirely new way of analyzing the system to answer these fundamental and critically important questions.”  More

  • in

    New maps show airplane contrails over the U.S. dropped steeply in 2020

    As Covid-19’s initial wave crested around the world, travel restrictions and a drop in passengers led to a record number of grounded flights in 2020. The air travel reduction cleared the skies of not just jets but also the fluffy white contrails they produce high in the atmosphere.

    MIT engineers have mapped the contrails that were generated over the United States in 2020, and compared the results to prepandemic years. They found that on any given day in 2018, and again in 2019, contrails covered a total area equal to Massachusetts and Connecticut combined. In 2020, this contrail coverage shrank by about 20 percent, mirroring a similar drop in U.S. flights.  

    While 2020’s contrail dip may not be surprising, the findings are proof that the team’s mapping technique works. Their study marks the first time researchers have captured the fine and ephemeral details of contrails over a large continental scale.

    Now, the researchers are applying the technique to predict where in the atmosphere contrails are likely to form. The cloud-like formations are known to play a significant role in aviation-related global warming. The team is working with major airlines to forecast regions in the atmosphere where contrails may form, and to reroute planes around these regions to minimize contrail production.

    “This kind of technology can help divert planes to prevent contrails, in real time,” says Steven Barrett, professor and associate head of MIT’s Department of Aeronautics and Astronautics. “There’s an unusual opportunity to halve aviation’s climate impact by eliminating most of the contrails produced today.”

    Barrett and his colleagues have published their results today in the journal Environmental Research Letters. His co-authors at MIT include graduate student Vincent Meijer, former graduate student Luke Kulik, research scientists Sebastian Eastham, Florian Allroggen, and Raymond Speth, and LIDS Director and professor Sertac Karaman.

    Trail training

    About half of the aviation industry’s contribution to global warming comes directly from planes’ carbon dioxide emissions. The other half is thought to be a consequence of their contrails. The signature white tails are produced when a plane’s hot, humid exhaust mixes with cool humid air high in the atmosphere. Emitted in thin lines, contrails quickly spread out and can act as blankets that trap the Earth’s outgoing heat.

    While a single contrail may not have much of a warming effect, taken together contrails have a significant impact. But the estimates of this effect are uncertain and based on computer modeling as well as limited satellite data. What’s more, traditional computer vision algorithms that analyze contrail data have a hard time discerning the wispy tails from natural clouds.

    To precisely pick out and track contrails over a large scale, the MIT team looked to images taken by NASA’s GOES-16, a geostationary satellite that hovers over the same swath of the Earth, including the United States, taking continuous, high-resolution images.

    The team first obtained about 100 images taken by the satellite, and trained a set of people to interpret remote sensing data and label each image’s pixel as either part of a contrail or not. They used this labeled dataset to train a computer-vision algorithm to discern a contrail from a cloud or other image feature.

    The researchers then ran the algorithm on about 100,000 satellite images, amounting to nearly 6 trillion pixels, each pixel representing an area of about 2 square kilometers. The images covered the contiguous U.S., along with parts of Canada and Mexico, and were taken about every 15 minutes, between Jan. 1, 2018, and Dec. 31, 2020.

    The algorithm automatically classified each pixel as either a contrail or not a contrail, and generated daily maps of contrails over the United States. These maps mirrored the major flight paths of most U.S. airlines, with some notable differences. For instance, contrail “holes” appeared around major airports, which reflects the fact that planes landing and taking off around airports are generally not high enough in the atmosphere for contrails to form.

    “The algorithm knows nothing about where planes fly, and yet when processing the satellite imagery, it resulted in recognizable flight routes,” Barrett says. “That’s one piece of evidence that says this method really does capture contrails over a large scale.”

    Cloudy patterns

    Based on the algorithm’s maps, the researchers calculated the total area covered each day by contrails in the US. On an average day in 2018 and in 2019, U.S. contrails took up about 43,000 square kilometers. This coverage dropped by 20 percent in March of 2020 as the pandemic set in. From then on, contrails slowly reappeared as air travel resumed through the year.

    The team also observed daily and seasonal patterns. In general, contrails appeared to peak in the morning and decline in the afternoon. This may be a training artifact: As natural cirrus clouds are more likely to form in the afternoon, the algorithm may have trouble discerning contrails amid the clouds later in the day. But it might also be an important indication about when contrails form most. Contrails also peaked in late winter and early spring, when more of the air is naturally colder and more conducive for contrail formation.

    The team has now adapted the technique to predict where contrails are likely to form in real time. Avoiding these regions, Barrett says, could take a significant, almost immediate chunk out of aviation’s global warming contribution.  

    “Most measures to make aviation sustainable take a long time,” Barrett says. “(Contrail avoidance) could be accomplished in a few years, because it requires small changes to how aircraft are flown, with existing airplanes and observational technology. It’s a near-term way of reducing aviation’s warming by about half.”

    The team is now working towards this objective of large-scale contrail avoidance using realtime satellite observations.

    This research was supported in part by NASA and the MIT Environmental Solutions Initiative. More

  • in

    Study reveals chemical link between wildfire smoke and ozone depletion

    The Australian wildfires in 2019 and 2020 were historic for how far and fast they spread, and for how long and powerfully they burned. All told, the devastating “Black Summer” fires blazed across more than 43 million acres of land, and extinguished or displaced nearly 3 billion animals. The fires also injected over 1 million tons of smoke particles into the atmosphere, reaching up to 35 kilometers above Earth’s surface — a mass and reach comparable to that of an erupting volcano.

    Now, atmospheric chemists at MIT have found that the smoke from those fires set off chemical reactions in the stratosphere that contributed to the destruction of ozone, which shields the Earth from incoming ultraviolet radiation. The team’s study, appearing this week in the Proceedings of the National Academy of Sciences, is the first to establish a chemical link between wildfire smoke and ozone depletion.

    In March 2020, shortly after the fires subsided, the team observed a sharp drop in nitrogen dioxide in the stratosphere, which is the first step in a chemical cascade that is known to end in ozone depletion. The researchers found that this drop in nitrogen dioxide directly correlates with the amount of smoke that the fires released into the stratosphere. They estimate that this smoke-induced chemistry depleted the column of ozone by 1 percent.

    To put this in context, they note that the phaseout of ozone-depleting gases under a worldwide agreement to stop their production has led to about a 1 percent ozone recovery from earlier ozone decreases over the past 10 years — meaning that the wildfires canceled those hard-won diplomatic gains for a short period. If future wildfires grow stronger and more frequent, as they are predicted to do with climate change, ozone’s projected recovery could be delayed by years. 

    “The Australian fires look like the biggest event so far, but as the world continues to warm, there is every reason to think these fires will become more frequent and more intense,” says lead author Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies at MIT. “It’s another wakeup call, just as the Antarctic ozone hole was, in the sense of showing how bad things could actually be.”

    The study’s co-authors include Kane Stone, a research scientist in MIT’s Department of Earth, Atmospheric, and Planetary Sciences, along with collaborators at multiple institutions including the University of Saskatchewan, Jinan University, the National Center for Atmospheric Research, and the University of Colorado at Boulder.

    Chemical trace

    Massive wildfires are known to generate pyrocumulonimbus — towering clouds of smoke that can reach into the stratosphere, the layer of the atmosphere that lies between about 15 and 50 kilometers above the Earth’s surface. The smoke from Australia’s wildfires reached well into the stratosphere, as high as 35 kilometers.

    In 2021, Solomon’s co-author, Pengfei Yu at Jinan University, carried out a separate study of the fires’ impacts and found that the accumulated smoke warmed parts of the stratosphere by as much as 2 degrees Celsius — a warming that persisted for six months. The study also found hints of ozone destruction in the Southern Hemisphere following the fires.

    Solomon wondered whether smoke from the fires could have depleted ozone through a chemistry similar to volcanic aerosols. Major volcanic eruptions can also reach into the stratosphere, and in 1989, Solomon discovered that the particles in these eruptions can destroy ozone through a series of chemical reactions. As the particles form in the atmosphere, they gather moisture on their surfaces. Once wet, the particles can react with circulating chemicals in the stratosphere, including dinitrogen pentoxide, which reacts with the particles to form nitric acid.

    Normally, dinitrogen pentoxide reacts with the sun to form various nitrogen species, including nitrogen dioxide, a compound that binds with chlorine-containing chemicals in the stratosphere. When volcanic smoke converts dinitrogen pentoxide into nitric acid, nitrogen dioxide drops, and the chlorine compounds take another path, morphing into chlorine monoxide, the main human-made agent that destroys ozone.

    “This chemistry, once you get past that point, is well-established,” Solomon says. “Once you have less nitrogen dioxide, you have to have more chlorine monoxide, and that will deplete ozone.”

    Cloud injection

    In the new study, Solomon and her colleagues looked at how concentrations of nitrogen dioxide in the stratosphere changed following the Australian fires. If these concentrations dropped significantly, it would signal that wildfire smoke depletes ozone through the same chemical reactions as some volcanic eruptions.

    The team looked to observations of nitrogen dioxide taken by three independent satellites that have surveyed the Southern Hemisphere for varying lengths of time. They compared each satellite’s record in the months and years leading up to and following the Australian fires. All three records showed a significant drop in nitrogen dioxide in March 2020. For one satellite’s record, the drop represented a record low among observations spanning the last 20 years.

    To check that the nitrogen dioxide decrease was a direct chemical effect of the fires’ smoke, the researchers carried out atmospheric simulations using a global, three-dimensional model that simulates hundreds of chemical reactions in the atmosphere, from the surface on up through the stratosphere.

    The team injected a cloud of smoke particles into the model, simulating what was observed from the Australian wildfires. They assumed that the particles, like volcanic aerosols, gathered moisture. They then ran the model multiple times and compared the results to simulations without the smoke cloud.

    In every simulation incorporating wildfire smoke, the team found that as the amount of smoke particles increased in the stratosphere, concentrations of nitrogen dioxide decreased, matching the observations of the three satellites.

    “The behavior we saw, of more and more aerosols, and less and less nitrogen dioxide, in both the model and the data, is a fantastic fingerprint,” Solomon says. “It’s the first time that science has established a chemical mechanism linking wildfire smoke to ozone depletion. It may only be one chemical mechanism among several, but it’s clearly there. It tells us these particles are wet and they had to have caused some ozone depletion.”

    She and her collaborators are looking into other reactions triggered by wildfire smoke that might further contribute to stripping ozone. For the time being, the major driver of ozone depletion remains chlorofluorocarbons, or CFCs — chemicals such as old refrigerants that have been banned under the Montreal Protocol, though they continue to linger in the stratosphere. But as global warming leads to stronger, more frequent wildfires, their smoke could have a serious, lasting impact on ozone.

    “Wildfire smoke is a toxic brew of organic compounds that are complex beasts,” Solomon says. “And I’m afraid ozone is getting pummeled by a whole series of reactions that we are now furiously working to unravel.”

    This research was supported in part by the National Science Foundation and NASA. More

  • in

    Understanding air pollution from space

    Climate change and air pollution are interlocking crises that threaten human health. Reducing emissions of some air pollutants can help achieve climate goals, and some climate mitigation efforts can in turn improve air quality.

    One part of MIT Professor Arlene Fiore’s research program is to investigate the fundamental science in understanding air pollutants — how long they persist and move through our environment to affect air quality.

    “We need to understand the conditions under which pollutants, such as ozone, form. How much ozone is formed locally and how much is transported long distances?” says Fiore, who notes that Asian air pollution can be transported across the Pacific Ocean to North America. “We need to think about processes spanning local to global dimensions.”

    Fiore, the Peter H. Stone and Paola Malanotte Stone Professor in Earth, Atmospheric and Planetary Sciences, analyzes data from on-the-ground readings and from satellites, along with models, to better understand the chemistry and behavior of air pollutants — which ultimately can inform mitigation strategies and policy setting.

    A global concern

    At the United Nations’ most recent climate change conference, COP26, air quality management was a topic discussed over two days of presentations.

    “Breathing is vital. It’s life. But for the vast majority of people on this planet right now, the air that they breathe is not giving life, but cutting it short,” said Sarah Vogel, senior vice president for health at the Environmental Defense Fund, at the COP26 session.

    “We need to confront this twin challenge now through both a climate and clean air lens, of targeting those pollutants that warm both the air and harm our health.”

    Earlier this year, the World Health Organization (WHO) updated its global air quality guidelines it had issued 15 years earlier for six key pollutants including ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). The new guidelines are more stringent based on what the WHO stated is the “quality and quantity of evidence” of how these pollutants affect human health. WHO estimates that roughly 7 million premature deaths are attributable to the joint effects of air pollution.

    “We’ve had all these health-motivated reductions of aerosol and ozone precursor emissions. What are the implications for the climate system, both locally but also around the globe? How does air quality respond to climate change? We study these two-way interactions between air pollution and the climate system,” says Fiore.

    But fundamental science is still required to understand how gases, such as ozone and nitrogen dioxide, linger and move throughout the troposphere — the lowermost layer of our atmosphere, containing the air we breathe.

    “We care about ozone in the air we’re breathing where we live at the Earth’s surface,” says Fiore. “Ozone reacts with biological tissue, and can be damaging to plants and human lungs. Even if you’re a healthy adult, if you’re out running hard during an ozone smog event, you might feel an extra weight on your lungs.”

    Telltale signs from space

    Ozone is not emitted directly, but instead forms through chemical reactions catalyzed by radiation from the sun interacting with nitrogen oxides — pollutants released in large part from burning fossil fuels—and volatile organic compounds. However, current satellite instruments cannot sense ground-level ozone.

    “We can’t retrieve surface- or even near-surface ozone from space,” says Fiore of the satellite data, “although the anticipated launch of a new instrument looks promising for new advances in retrieving lower-tropospheric ozone”. Instead, scientists can look at signatures from other gas emissions to get a sense of ozone formation. “Nitrogen dioxide and formaldehyde are a heavy focus of our research because they serve as proxies for two of the key ingredients that go on to form ozone in the atmosphere.”

    To understand ozone formation via these precursor pollutants, scientists have gathered data for more than two decades using spectrometer instruments aboard satellites that measure sunlight in ultraviolet and visible wavelengths that interact with these pollutants in the Earth’s atmosphere — known as solar backscatter radiation.

    Satellites, such as NASA’s Aura, carry instruments like the Ozone Monitoring Instrument (OMI). OMI, along with European-launched satellites such as the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY), and the newest generation TROPOspheric Monitoring instrument (TROPOMI), all orbit the Earth, collecting data during daylight hours when sunlight is interacting with the atmosphere over a particular location.

    In a recent paper from Fiore’s group, former graduate student Xiaomeng Jin (now a postdoc at the University of California at Berkeley), demonstrated that she could bring together and “beat down the noise in the data,” as Fiore says, to identify trends in ozone formation chemistry over several U.S. metropolitan areas that “are consistent with our on-the-ground understanding from in situ ozone measurements.”

    “This finding implies that we can use these records to learn about changes in surface ozone chemistry in places where we lack on-the-ground monitoring,” says Fiore. Extracting these signals by stringing together satellite data — OMI, GOME, and SCIAMACHY — to produce a two-decade record required reconciling the instruments’ differing orbit days, times, and fields of view on the ground, or spatial resolutions. 

    Currently, spectrometer instruments aboard satellites are retrieving data once per day. However, newer instruments, such as the Geostationary Environment Monitoring Spectrometer launched in February 2020 by the National Institute of Environmental Research in the Ministry of Environment of South Korea, will monitor a particular region continuously, providing much more data in real time.

    Over North America, the Tropospheric Emissions: Monitoring of Pollution Search (TEMPO) collaboration between NASA and the Smithsonian Astrophysical Observatory, led by Kelly Chance of Harvard University, will provide not only a stationary view of the atmospheric chemistry over the continent, but also a finer-resolution view — with the instrument recording pollution data from only a few square miles per pixel (with an anticipated launch in 2022).

    “What we’re very excited about is the opportunity to have continuous coverage where we get hourly measurements that allow us to follow pollution from morning rush hour through the course of the day and see how plumes of pollution are evolving in real time,” says Fiore.

    Data for the people

    Providing Earth-observing data to people in addition to scientists — namely environmental managers, city planners, and other government officials — is the goal for the NASA Health and Air Quality Applied Sciences Team (HAQAST).

    Since 2016, Fiore has been part of HAQAST, including collaborative “tiger teams” — projects that bring together scientists, nongovernment entities, and government officials — to bring data to bear on real issues.

    For example, in 2017, Fiore led a tiger team that provided guidance to state air management agencies on how satellite data can be incorporated into state implementation plans (SIPs). “Submission of a SIP is required for any state with a region in non-attainment of U.S. National Ambient Air Quality Standards to demonstrate their approach to achieving compliance with the standard,” says Fiore. “What we found is that small tweaks in, for example, the metrics we use to convey the science findings, can go a long way to making the science more usable, especially when there are detailed policy frameworks in place that must be followed.”

    Now, in 2021, Fiore is part of two tiger teams announced by HAQAST in late September. One team is looking at data to address environmental justice issues, by providing data to assess communities disproportionately affected by environmental health risks. Such information can be used to estimate the benefits of governmental investments in environmental improvements for disproportionately burdened communities. The other team is looking at urban emissions of nitrogen oxides to try to better quantify and communicate uncertainties in the estimates of anthropogenic sources of pollution.

    “For our HAQAST work, we’re looking at not just the estimate of the exposure to air pollutants, or in other words their concentrations,” says Fiore, “but how confident are we in our exposure estimates, which in turn affect our understanding of the public health burden due to exposure. We have stakeholder partners at the New York Department of Health who will pair exposure datasets with health data to help prioritize decisions around public health.

    “I enjoy working with stakeholders who have questions that require science to answer and can make a difference in their decisions.” Fiore says. More