More stories

  • in

    Tracking emissions to help companies reduce their environmental footprint

    Amidst a global wave of corporate pledges to decarbonize or reach net-zero emissions, a system for verifying actual greenhouse gas reductions has never been more important. Context Labs, founded by former MIT Sloan Fellow and serial entrepreneur Dan Harple SM ’13, is rising to meet that challenge with an analytics platform that brings more transparency to emissions data.The company’s platform adds context to data from sources like equipment sensors and satellites, provides third-party verification, and records all that information on a blockchain. Context Labs also provides an interactive view of emissions across every aspect of a company’s operations, allowing leaders to pinpoint the dirtiest parts of their business.“There’s an old adage: Unless you measure something, you can’t change it,” says Harple, who is the firm’s CEO. “I think of what we’re doing as an AI-driven digital lens into what’s happening across organizations. Our goal is to help the planet get better, faster.”Context Labs is already working with some of the largest energy companies in the world — including EQT, Williams Companies, and Coterra Energy — to verify emissions reductions. A partnership with Microsoft, announced at last year’s COP28 United Nations climate summit, allows any organization on Microsoft’s Azure cloud to integrate their sensor data into Context Lab’s platform to get a granular view of their environmental impact.Harple says the progress enables more informed sustainability initiatives at scale. He also sees the work as a way to combat overly vague statements about sustainable practices that don’t lead to actual emissions reductions, or what’s known as “greenwashing.”“Just producing data isn’t good enough, and our customers realize that, because they know even if they have good intentions to reduce emissions, no one is going to believe them,” Harple says. “One way to think about our platform is as antigreenwashing insurance, because if you get attacked for your emissions, we unbundle the data like it’s in shrink-wrap and roll it back through time on the blockchain. You can click on it and see exactly where and how it was measured, monitored, timestamped, its serial number, everything. It’s really the gold standard of proof.”An unconventional master’sHarple came to MIT as a serial founder whose companies had pioneered several foundational internet technologies, including real-time video streaming technology still used in applications like Zoom and Netflix, as well as some of the core technology for the popular Chinese microblogging website Weibo.Harple’s introduction to MIT started with a paper he wrote for his venture capital contacts in the U.S. to make the case for investment in the Netherlands, where he was living with his family. The paper caught the attention of MIT Professor Stuart Madnick, the John Norris Maguire Professor of Information Technology at the MIT Sloan School of Management, who suggested Harple come to MIT as a Sloan Fellow to further develop his ideas about what makes a strong innovation ecosystem.Having successfully founded and exited multiple companies, Harple was not a typical MIT student when he began the Sloan Fellows program in 2011. At one point, he held a summit at MIT for a group of leading Dutch entrepreneurs and government officials that included tours of major labs and a meeting with former MIT President L. Rafael Reif.“Everyone was super enamored with MIT, and that kicked off what became a course that I started at MIT called REAL, Regional Entrepreneurial Acceleration Lab,” Harple says. REAL was eventually absorbed by what is now REAP — the Regional Entrepreneurship Acceleration Program, which has worked with communities around the world.Harple describes REAL as a framework vehicle to put his theories on supporting innovation into action. Over his time at MIT, which also included collaborating with the Media Lab, he systematized those theories into what he calls pentalytics, which is a way to measure and predict the resilience of innovation ecosystems.“My sense was MIT should be analytical and data-driven,” Harple says. “The thesis I wrote was a framework for AI-driven network graph analytics. So, you can model things using analytics, and you can use AI to do predictive analytics to see where the innovation ecosystem is going to thrive.”Once Harple’s pentalytics theory was established, he wanted to put it to the test with a company. His initial idea for Context Labs was to build a verification platform to combat fake news, deepfakes, and other misinformation on the internet. Around 2018, Harple met climate investor Jeremy Grantham, who he says helped him realize the most important data are about the planet. Harple began to believe that U.S. Environmental Protection Agency (EPA) emissions estimates for things like driving a car or operating an oil rig were just that — estimates — and left room for improvement.“Our approach was very MIT-ish,” Harple says. “We said, ‘Let’s, measure it and let’s monitor it, and then let’s contextualize that data so you can never go back and say they faked it. I think there’s a lot of fakery that’s happened, and that’s why the voluntary carbon markets cratered in the last year. Our view is they cratered because the data wasn’t empirical enough.”Context Labs’ solution starts with a technology platform it calls Immutably that continuously combines disparate data streams, encrypts that information, and records it on a blockchain. Immutably also verifies the information with one or more third parties. (Context Labs has partnered with the global accounting firm KPMG.)On top of Immutably, Context Labs has built applications, including a product called Decarbonization-as-a-Service (DaaS), which uses Immutably’s data to give companies a digital twin of their entire operations. Customers can use DaaS to explore the emissions of their assets and create a certificate of verified CO2-equivalent emissions, which can be used in carbon credit markets.Putting emissions data into contextContext Labs is working with oil and gas companies, utilities, data centers, and large industrial operators, some using the platform to analyze more than 3 billion data points each day. For instance, EQT, the largest natural gas producer in the U.S., uses Context Labs to verify its lower-emission products and create carbon credits. Other customers include the nonprofits Rocky Mountain Institute and the Environmental Defense Fund.“I often get asked how big the total addressable market is,” Harple says. “My view is it’s the largest market in history. Why? Because every country needs a decarbonization plan, along with instrumentation and a digital platform to execute, as does every company.”With its headquarters in Kendall Square in Cambridge, Massachusetts, Context Labs is also serving as a test for Harple’s pentalytics theory for innovation ecosystems. It also has operations in Houston and Amsterdam.“This company is a living lab for pentalytics,” Harple says. “I believe Kendall Square 1.0 was factory buildings, Kendall Square 2.0 is biotech, and Kendall Square 3.0 will be climate tech.” More

  • in

    Q&A: “As long as you have a future, you can still change it”

    Tristan Brown is the S.C. Fang Chinese Language and Culture Career Development Professor at MIT. He specializes in law, science, environment and religion of late imperial China, a period running from the 16th through early 20th centuries.In this Q&A, Brown discusses how his areas of historical research can be useful for examining today’s pressing environmental challenges. This is part of an ongoing series exploring how the MIT School of Humanities, Arts, and Social Sciences is addressing the climate crisis.Q: Why does this era of Chinese history resonate so much for you? How is it relevant to contemporary times and challenges?A: China has always been interesting to historians because it has a long-recorded history, with data showing how people have coped with environmental and climate changes over the centuries. We have tons of records of various kinds of ecological issues, environmental crises, and the associated outbreaks of calamities, famine, epidemics, and warfare. Historians of China have a lot to offer ongoing conversations about climate.More specifically, I research conflicts over land and resources that erupted when China was undergoing huge environmental, economic, demographic, and political pressures, and the role that feng shui played as local communities and the state tried to mediate those conflicts. [Feng shui is an ancient Chinese practice combining cosmology, spatial aesthetics, and measurement to divine the right balance between the natural and built environment.] Ultimately, the Qing (1644-1912) state was unable to manage these conflicts, and feng shui–based attempts to make decisions about conserving or exploiting certain areas blew up by the end of the 19th century in the face of pressures to industrialize. This is the subject of my first book, “Laws of the Land: Fengshui and the State in Qing Dynasty China.”Q: Can you give a sense of how feng shui was used to determine outcomes in environmental cases?A: We tend to think of feng shui as a popular design mechanism today. While this isn’t completely inaccurate, there was much more to it than that in Chinese history, when it evolved over many centuries. Specifically, there are lots of insights in feng shui that reflect the ways in which people recorded the natural world, explained how components in the environment related to one another, and understood why and how bad things happened. There is an interesting concept in feng shui that your environment affects your health,and specifically your children’s (i.e., descendants and progeny) health. That concept is found across premodern feng shui literature and is one of fundamental principles of the whole knowledge system.During the period I research, the Qing, the primary fuel energy sources in China came from timber and coal. There were legal cases where communities argued against efforts to mine a local mountain, saying that it could injure the feng shui (i.e., undermine the cosmological balance of natural forces and spatial integrity) of a mountain and hurt the fortunes of an entire region. People were suspicious of coal mining in their communities. They had seen or heard about mines collapsing and flooded mine shafts, they had watched runoff ruin good farmland, causing crops to fail, and even perhaps children to fall ill. Coal mining disturbed the human-earth connection, and thus the relationship between people and nature. People invoked feng shui to express an idea that the extraction of rocks and minerals from the land can have detrimental effects on living communities. Whether out of a sincere community-based concern or out of a more self-interested NIMBYism, feng shui was the primary discourse invoked in these cases.Not all efforts to conserve areas from mining succeeded, especially as foreign imperialism encroached on China, threatening government and local control over the economy. It became gradually clear to China’s elites that the country had to industrialize to survive, and this involved the difficult and even violent process of taking people from farm work and bringing them to cities, building railways, cutting millions of trees, and mining coal to power it all.Q: This makes it seem as if the Chinese swept away feng shui whenever it presented a hurdle, putting the country on the path to coal dependence, pollution, and a carbon-emitting future.A: Feng shui has not disappeared in China, but there’s no doubt about it that development in the form of industrialization took precedence in the 20th century, when it became officially labelled a “superstition” on the national stage. When I first went to China in 2007, city air was so polluted I couldn’t see the horizon. I was 18 years old and the air in some northern cities like Shijiazhuang honestly felt scary. I’ve returned many times since then, of course, and there has been great improvement in air quality, because the government made it a priority.Feng shui is a future-oriented knowledge, concerned with identifying events that have happened in the past that are related to things happening today, and using that information to influence future events. As Richard Smith of Rice University argues, Chinese have used history to order the past, ritual to order the present, and divination to order the future. Consider, for instance, Xiong’an, a new development area outside of Beijing that is physically marking the era of Xi Jinping’s tenure as paramount leader. As soon as the site was selected, people in China started talking about its feng shui, both out of potential environmental concerns and as a subtle form of political commentary. MIT’s own Sol Andrew Stokols in the Department of Urban Studies and Planning (DUSP) has a fantastic new dissertation examining that new area.In short, the feng shui masters of old said there will be floods and droughts and bad stuff happening in the future if a course correction isn’t made. But at the same time, in feng shui there’s never a situation that is hopeless; there is no lost cause. So, there is optimism in the knowledge and rhetoric of feng shui that I think might be applicable as time goes on with climate change. As long as you have a future, you can still change it. Q: In 2023, you were awarded one of the first grants of MIT’s Climate Nucleus, the faculty committee charged with seeing through the Institute’s climate action plan over the decade. What have you been up to courtesy of this fund?A: Well, it all started years ago, when I started thinking about great number of mountains in China associated with Buddhism or Daoism that have become national parks in recent decades. Some of these mountains host trees and plant species that are not found in any other part of China. For my grant, I wanted to find out how these mountains have managed to incubate such rare species for the last 2,000 years. And it’s not as simple as just saying, well, Buddhism, right? Because there are plenty of Buddhist mountains that have not fared as well ecologically. The religious landscape is part of the answer, but there’s also all the messiness of material history that surrounds such a mountain.With this grant, I am bringing together a group of scholars of religion, historians, as well as engineers working in conservation ecology, and we’re trying to figure out what makes some of these places religiously and environmentally distinctive. People come to the project with different approaches. My MIT colleague Serguei Saavedra in the Department of Civil and Environmental Engineering uses new models in system ecology to measure the resilience of environments under various stresses. My colleague in religious studies, Or Porath at Tel Aviv University, is asking when and how Asian religions have centered — or ignored — animals and animal welfare. Another collaboration with MIT’s Siqi Zheng in DUSP and Wen-Chi Liao at the National University of Singapore is looking at how we can use artificial intelligence, machine learning, and classical feng shui manuals to teach computers how to analyze the value of a property’s feng shui in Sinophone communities around the world. There’s a lot going on!Q: How do you bring China’s unique environmental history and law into your classroom, and make it immediate and relevant to the world students face today?A: History is always part of the answer. I mean, whether it’s for an economist, a political scientist, or an architect, history matters. Likewise, when you’re confronting climate change and all these struggles regarding the environment and various crises involving ecosystems, it’s always a good idea to look at how human beings in the past dealt with similar crises. It doesn’t give you a prediction on what would happen in the future, but it gives you some range of possibilities, many of which may at first appear counterintuitive or surprising.That’s exactly what the humanities do. My job is to make MIT undergraduates care about a people who are no longer alive, who walked the earth a thousand years ago, who confronted terrible times of conflict and hunger. Sometimes these people left behind a written record about their world, and sometimes they didn’t. But we try to hear them out regardless. I want students to develop empathy for these strangers and wonder what it would be like to walk in their shoes. Every one of those people is someone’s ancestor, and they very well could have been your ancestor.In my class 21H.186 (Nature and Environment in China), we look at the historical precedents that might be useful for today’s environmental challenges, ranging from urban pollution or domestic recycling systems. The fact we’re still here to ask historical questions is itself significant. When we feel despair about climate change, we can ask, “How did individuals endure the changed course of the Yellow River or the Little Ice Age?” Even when it is recording tragedies, history can be understood as an enduring form of hope.  More

  • in

    Mission directors announced for the Climate Project at MIT

    The Climate Project at MIT has appointed leaders for each of its six focal areas, or Climate Missions, President Sally Kornbluth announced in a letter to the MIT community today.Introduced in February, the Climate Project at MIT is a major new effort to change the trajectory of global climate outcomes for the better over the next decade. The project will focus MIT’s strengths on six broad climate-related areas where progress is urgently needed. The mission directors in these fields, representing diverse areas of expertise, will collaborate with faculty and researchers across MIT, as well as each other, to accelerate solutions that address climate change.“The mission directors will be absolutely central as the Climate Project seeks to marshal the Institute’s talent and resources to research, develop, deploy and scale up serious solutions to help change the planet’s climate trajectory,” Kornbluth wrote in her letter, adding: “To the faculty members taking on these pivotal roles: We could not be more grateful for your skill and commitment, or more enthusiastic about what you can help us all achieve, together.”The Climate Project will expand and accelerate MIT’s efforts to both reduce greenhouse gas emissions and respond to climate effects such as extreme heat, rising sea levels, and reduced crop yields. At the urgent pace needed, the project will help the Institute create new external collaborations and deepen existing ones to develop and scale climate solutions.The Institute has pledged an initial $75 million to the project, including $25 million from the MIT Sloan School of Management to launch a complementary effort, the new MIT Climate Policy Center. MIT has more than 300 faculty and senior researchers already working on climate issues, in collaboration with their students and staff. The Climate Project at MIT builds on their work and the Institute’s 2021 “Fast Forward” climate action plan.Richard Lester, MIT’s vice provost for international activities and the Japan Steel Industry Professor of Nuclear Science and Engineering, has led the Climate Project’s formation; MIT will shortly hire a vice president for climate to oversee the project. The six Climate Missions and the new mission directors are as follows:Decarbonizing energy and industryThis mission supports advances in the electric power grid as well as the transition across all industry — including transportation, computing, heavy production, and manufacturing — to low-emissions pathways.The mission director is Elsa Olivetti PhD ’07, who is MIT’s associate dean of engineering, the Jerry McAfee Professor in Engineering, and a professor of materials science and engineering since 2014.Olivetti analyzes and improves the environmental sustainability of materials throughout the life cycle and across the supply chain, by linking physical and chemical processes to systems impact. She researches materials design and synthesis using natural language processing, builds models of material supply and technology demand, and assesses the potential for recovering value from industrial waste through experimental approaches. Olivetti has experience building partnerships across the Institute and working with industry to implement large-scale climate solutions through her role as co-director of the MIT Climate and Sustainability Consortium (MCSC) and as faculty lead for PAIA, an industry consortium on the carbon footprinting of computing.Restoring the atmosphere, protecting the land and oceansThis mission is centered on removing or storing greenhouse gases that have already been emitted into the atmosphere, such as carbon dioxide and methane, and on protecting ocean and land ecosystems, including food and water systems.MIT has chosen two mission directors: Andrew Babbin and Jesse Kroll. The two bring together research expertise from two critical domains of the Earth system, oceans and the atmosphere, as well as backgrounds in both the science and engineering underlying our understanding of Earth’s climate. As co-directors, they jointly link MIT’s School of Science and School of Engineering in this domain.Babbin is the Cecil and Ida Green Career Development Professor in MIT’s Program in Atmospheres, Oceans, and Climate. He is a marine biogeochemist whose specialty is studying the carbon and nitrogen cycle of the oceans, work that is related to evaluating the ocean’s capacity for carbon storage, an essential element of this mission’s work. He has been at MIT since 2017.Kroll is a professor in MIT’s Department of of Civil and Environmental Engineering, a professor of chemical engineering, and the director of the Ralph M. Parsons Laboratory. He is a chemist who studies organic compounds and particulate matter in the atmosphere, in order to better understand how perturbations to the atmosphere, both intentional and unintentional, can affect air pollution and climate.Empowering frontline communitiesThis mission focuses on the development of new climate solutions in support of the world’s most vulnerable populations, in areas ranging from health effects to food security, emergency planning, and risk forecasting.The mission director is Miho Mazereeuw, an associate professor of architecture and urbanism in MIT’s Department of Architecture in the School of Architecture and Planning, and director of MIT’s Urban Risk Lab. Mazereeuw researches disaster resilience, climate change, and coastal strategies. Her lab has engaged in design projects ranging from physical objects to software, while exploring methods of engaging communities and governments in preparedness efforts, skills she brings to bear on building strong collaborations with a broad range of stakeholders.Mazereeuw is also co-lead of one of the five projects selected in MIT’s Climate Grand Challenges competition in 2022, an effort to help communities prepare by understanding the risk of extreme weather events for specific locations.Building and adapting healthy, resilient citiesA majority of the world’s population lives in cities, so urban design and planning is a crucial part of climate work, involving transportation, infrastructure, finance, government, and more.Christoph Reinhart, the Alan and Terri Spoon Professor of Architecture and Climate and director of MIT’s Building Technology Program in the School of Architecture and Planning, is the mission director in this area. The Sustainable Design Lab that Reinhart founded when he joined MIT in 2012 has launched several technology startups, including Mapdwell Solar System, now part of Palmetto Clean Technology, as well as Solemma, makers of an environmental building design software used in architectural practice and education worldwide. Reinhart’s online course on Sustainable Building Design has an enrollment of over 55,000 individuals and forms part of MIT’s XSeries Program in Future Energy Systems.Inventing new policy approachesClimate change is a unique crisis. With that in mind, this mission aims to develop new institutional structures and incentives — in carbon markets, finance, trade policy, and more — along with decision support tools and systems for scaling up climate efforts.Christopher Knittel brings extensive knowledge of these topics to the mission director role. The George P. Shultz Professor and Professor of Applied Economics at the MIT Sloan School of Management, Knittel has produced high-impact research in multiple areas; his studies on emissions and the automobile industry have evaluated fuel-efficiency standards, changes in vehicle fuel efficiency, market responses to fuel-price changes, and the health impact of automobiles.Beyond that, Knittel has also studied the impact of the energy transition on jobs, conducted high-level evaluations of climate policies, and examined energy market structures. He joined the MIT faculty in 2011. He also serves as the director of the MIT Climate Policy Center, which will work closely with all six missions.Wild cardsThis mission consists of what the Climate Project at MIT calls “unconventional solutions outside the scope of the other missions,” and will have a broad portfolio for innovation.While all the missions will be charged with encouraging unorthodox approaches within their domains, this mission will seek out unconventional solutions outside the scope of the others, and has a broad mandate for promoting them.The mission director in this case is Benedetto Marelli, the Paul M. Cook Career Development Associate Professor in MIT’s Department of Civil and Environmental Engineering. Marelli’s research group develops biopolymers and bioinspired materials with reduced environmental impact compared to traditional technologies. He engages with research at multiple scales, including nanofabrication, and the research group has conducted extensive work on food security and safety while exploring new techniques to reduce waste through enhanced food preservation and to precisely deliver agrochemicals in plants and in soil.As Lester and other MIT leaders have noted, the Climate Project at MIT is still being shaped, and will have the flexibility to accommodate a wide range of projects, partnerships, and approaches needed for thoughtful, fast-moving change. By filling out the leadership structure, today’s announcement is a major milestone in making the project operational.In addition to the six Climate Missions, the Climate Project at MIT includes Climate Frontier Projects, which are efforts launched by these missions, and a Climate HQ, which will support fundamental research, education, and outreach, as well as new resources to connect research to the practical work of climate response. More

  • in

    Collaborative effort supports an MIT resilient to the impacts of extreme heat

    Warmer weather can be a welcome change for many across the MIT community. But as climate impacts intensify, warm days are often becoming hot days with increased severity and frequency. Already this summer, heat waves in June and July brought daily highs of over 90 degrees Fahrenheit. According to the Resilient Cambridge report published in 2021, from the 1970s to 2000, data from the Boston Logan International Airport weather station reported an average of 10 days of 90-plus temperatures each year. Now, simulations are predicting that, in the current time frame of 2015-44, the number of days above 90 F could be triple the 1970-2000 average. While the increasing heat is all but certain, how institutions like MIT will be affected and how they respond continues to evolve. “We know what the science is showing, but how will this heat impact the ability of MIT to fulfill its mission and support its community?” asks Brian Goldberg, assistant director of the MIT Office of Sustainability. “What will be the real feel of these temperatures on campus?” These questions and more are guiding staff, researchers, faculty, and students working collaboratively to understand these impacts to MIT and inform decisions and action plans in response.This work is part of developing MIT’s forthcoming Climate Resiliency and Adaptation Roadmap, which is called for in MIT’s climate action plan, and is co-led by Goldberg; Laura Tenny, senior campus planner; and William Colehower, senior advisor to the vice president for campus services and stewardship. This effort is also supported by researchers in the departments of Urban Studies and Planning, Architecture, and Electrical Engineering and Computer Science (EECS), in the Urban Risk Lab and the Senseable City Lab, as well as by staff in MIT Emergency Management and Housing and Residential Services. The roadmap — which builds upon years of resiliency planning and research at MIT — will include an assessment of current and future conditions on campus as well as strategies and proposed interventions to support MIT’s community and campus in the face of increasing climate impacts.A key piece of the resiliency puzzleWhen the City of Cambridge released their Climate Change Vulnerability Assessment in 2015, the report identified flooding and heat as primary resiliency risks to the city. In response, Institute staff worked together with the city to create a full picture of potential flood risks to both Cambridge and the campus, with the latter becoming the MIT Climate Resiliency Dashboard. The dashboard, published in the MIT Sustainability DataPool, has played an important role in campus planning and resiliency efforts since its debut in 2021, but heat has been a missing piece of the tool. This is largely because for heat, unlike flooding, few data exist relative to building-level impacts. The original assessment from Cambridge showed a model of temperature averages that could be expected in portions of the city, but understanding the measured heat impacts down to the building level is essential because impacts of heat can vary so greatly. “Heat also doesn’t conform to topography like flooding, making it harder to map it with localized specificity,” notes Tenny. “Microclimates, humidity levels, shade or sun aspect, and other factors contribute to heat risk.”Collection efforts have been underway for the past three years to fill in this gap in baseline data. Members of the Climate and Resiliency Adaptation Roadmap team and partners have helped build and place heat sensors to record and analyze data. The current heat sensors, which are shoebox-shaped devices on tripods, can be found at multiple outdoor locations on campus during the summer, capturing and recording temperatures multiple times each hour. “Urban environmental phenomena are hyperlocal. While National Weather Service readouts at locations like Logan Airport are extremely valuable, this gives us a more high-resolution understanding of the urban microclimate on our campus,” notes Sanjana Paul, past technical associate with Senseable City and current graduate student in the Department of Urban Studies and Planning who helps oversee data collection and analysis.After collection, temperature data are analyzed and mapped. The data will soon be published in the updated Climate Resiliency Dashboard and will help inform actions through the Climate Resiliency and Adaptation Roadmap, but in the meantime, the information has already provided some important insights. “There were some parts of campus that were much hotter than I expected,” explains Paul. “Some of the temperature readings across campus were regularly going over 100 degrees during heat waves. It’s a bit surprising to see three digits on a temperature reading in Cambridge.” Some strategies are also already being put into action, including planting more trees to support the urban campus forest and launching cooling locations around campus to open during days of extreme heat.As data gathering enters its fourth summer, partners continue to expand. Senseable City first began capturing data in 2021 using sensors placed on MIT Recycling trucks, and the Urban Risk Lab has offered community-centered temperature data collection with the help of its director and associate professor of architecture, Miho Mazereeuw. More recently, students in course 6.900 (Engineering for Impact) worked to design heat sensors to aid in the data collection and grow the fleet of sensors on campus. Co-instructed by EECS senior lecturer Joe Steinmeyer and EECS professor Joel Voldman, students in the course were tasked with developing technology to solve challenges close at hand. “One of the goals of the class is to tackle real-world problems so students emerge with confidence as an engineer,” explains Voldman. “Having them work on a challenge that is outside their comfort zone and impacts them really helps to engage and inspire them.” Centering on peopleWhile the temperature data offer one piece of the resiliency planning puzzle, knowing how these temperatures will affect community members is another. “When we look at impacts to our campus from heat, people are the focus,” explains Goldberg. “While stress on campus infrastructure is one factor we are evaluating, our primary focus is the vulnerability of people to extreme heat.” Impacts to community members can range from disrupted nights of sleep to heat-related illnesses.As the team looked at the data and spoke with individuals across campus, it became clear that some community members might be more vulnerable than others to the impact of extreme heat days, including ground, janitorial, and maintenance crews who work outside; kitchen staff who work close to hot equipment; and student athletes exerting themselves on hot days. “We know that people on our campus are already experiencing these extreme heat days differently,” explains Susy Jones, senior sustainability project manager in the Office of Sustainability who focuses on environmental and climate justice. “We need to design strategies and augment existing interventions with equity in mind, ensuring everyone on campus can fulfill their role at MIT.”To support those strategy decisions, the resiliency team is seeking additional input from the MIT community. One hoped-for outcome of the roadmap and dashboard is for community members to review them and offer their own insight and experiences of heat conditions on campus. “These plans need to work at the campus level and the individual,” says Goldberg. “The data tells an important story, but individuals help us complete the picture.”A model for othersAs the dashboard update nears completion and the broader resiliency and adaptation roadmap of strategies launches, their purpose is twofold: help MIT develop and inform plans and procedures for mitigating and addressing heat on campus, and serve as a model for other universities and communities grappling with the same challenges. “This approach is the center of how we operate at MIT,” explains Director of Sustainability Julie Newman. “We seek to identify solutions for our own campus in a manner that others can learn from and potentially adapt for their own resiliency and climate planning purposes. We’re also looking to align with efforts at the city and state level.” By publishing the roadmap broadly, universities and municipalities can apply lessons and processes to their own spaces.When the updated Climate Resiliency Dashboard and Climate Resiliency and Adaptation Roadmap go live, it will mark the beginning of the next phase of work, rather than an end. “The dashboard is designed to present these impacts in a way everyone can understand so people across campus can respond and help us understand what is needed for them to continue to fulfill their role at MIT,” says Goldberg. Uncertainty plays a big role in resiliency planning, and the dashboard will reflect that. “This work is not something you ever say is done,” says Goldberg. “As information and data evolves, so does our work.”  More

  • in

    Students research pathways for MIT to reach decarbonization goals

    A number of emerging technologies hold promise for helping organizations move away from fossil fuels and achieve deep decarbonization. The challenge is deciding which technologies to adopt, and when.MIT, which has a goal of eliminating direct campus emissions by 2050, must make such decisions sooner than most to achieve its mission. That was the challenge at the heart of the recently concluded class 4.s42 (Building Technology — Carbon Reduction Pathways for the MIT Campus).The class brought together undergraduate and graduate students from across the Institute to learn about different technologies and decide on the best path forward. It concluded with a final report as well as student presentations to members of MIT’s Climate Nucleus on May 9.“The mission of the class is to put together a cohesive document outlining how MIT can reach its goal of decarbonization by 2050,” says Morgan Johnson Quamina, an undergraduate in the Department of Civil and Environmental Engineering. “We’re evaluating how MIT can reach these goals on time, what sorts of technologies can help, and how quickly and aggressively we’ll have to move. The final report details a ton of scenarios for partial and full implementation of different technologies, outlines timelines for everything, and features recommendations.”The class was taught by professor of architecture Christoph Reinhart but included presentations by other faculty about low- and zero-carbon technology areas in their fields, including advanced nuclear reactors, deep geothermal energy, carbon capture, and more.The students’ work served as an extension of MIT’s Campus Decarbonization Working Group, which Reinhart co-chairs with Director of Sustainability Julie Newman. The group is charged with developing a technology roadmap for the campus to reach its goal of decarbonizing its energy systems.Reinhart says the class was a way to leverage the energy and creativity of students to accelerate his group’s work.“It’s very much focused on establishing a vision for what could happen at MIT,” Reinhart says. “We are trying to bring these technologies together so that we see how this [decarbonization process] would actually look on our campus.”A class with impactThroughout the semester, every Thursday from 9 a.m. to 12 p.m., around 20 students gathered to explore different decarbonization technology pathways. They also discussed energy policies, methods for evaluating risk, and future electric grid supply changes in New England.“I love that this work can have a real-world impact,” says Emile Germonpre, a master’s student in the Department of Nuclear Science and Engineering. “You can tell people aren’t thinking about grades or workload — I think people would’ve loved it even if the workload was doubled. Everyone is just intrinsically motivated to help solve this problem.”The classes typically began with an introduction to one of 10 different technologies. The introductions covered technical maturity, ease of implementation, costs, and how to model the technology’s impact on campus emissions. Students were then split into teams to evaluate each technology’s feasibility.“I’ve learned a lot about decarbonization and climate change,” says Johnson Quamina. “As an undergrad, I haven’t had many focused classes like this. But it was really beneficial to learn about some of these technologies I hadn’t even heard of before. It’s awesome to be contributing to the community like this.”As part of the class, students also developed a model that visualizes each intervention’s effect on emissions, allowing users to select interventions or combinations of interventions to see how they shape emissions trajectories.“We have a physics-based model that takes into account every building,” says Reinhart. “You can look at variants where we retrofit buildings, where we add rooftop photovoltaics, nuclear, carbon capture, and adopting different types of district underground heating systems. The point is you can start to see how fast we could do something like this and what the real game-changers are.”The class also designed and conducted a preliminary survey, to be expanded in the fall, that captures the MIT community’s attitudes towards the different technologies. Preliminary results were shared with the Climate Nucleus during students’ May 9 presentations.“I think it’s this unique and wonderful intersection of the forward-looking and innovative nature of academia with real world impact and specificity that you’d typically only find in industry,” Germonpre says. “It lets you work on a tangible project, the MIT campus, while exploring technologies that companies today find too risky to be the first mover on.”From MIT’s campus to the worldThe students recommended MIT form a building energy team to audit and retrofit all campus buildings. They also suggested MIT order a comprehensive geological feasibility survey to support planning regarding shallow and deep borehole fields for harvesting underground heat. A third recommendation was to communicate with the MIT community as well as with regulators and policymakers in the area about the deployment of nuclear batteries and deep geothermal boreholes on campus.The students’ modeling tool can also help members of the working group explore various decarbonization pathways. For instance, installing rooftop photovoltaics now would effectively reduce emissions, but installing them in a few decades, when the regional electricity grid is expected to be reducing its reliance on fossil fuels anyways, would have a much smaller impact.“When you have students working together, the recommendations are a little less filtered, which I think is a good thing,” Reinhart says. “I think there’s a real sense of urgency in the class. For certain choices, we have to basically act now.”Reinhart plans to do more activities related to the Working Group and the class’ recommendations in the fall, and he says he’s currently engaged with the Massachusetts Governor’s Office to explore doing something similar for the state.Students say they plan to keep working on the survey this summer and continue studying their technology areas. In the longer term, they believe the experience will help them in their careers.“Decarbonization is really important, and understanding how we can implement new technologies on campuses or in buildings provides me with a more well-rounded vision for what I could design in my career,” says Johnson Quamina, who wants to work as a structural or environmental engineer but says the class has also inspired her to consider careers in energy.The students’ findings also have implications beyond MIT campus. In accordance with MIT’s 2015 climate plan that committed to using the campus community as a “test bed for change,” the students’ recommendations also hold value for organizations around the world.“The mission is definitely broader than just MIT,” Germonpre says. “We don’t just want to solve MIT’s problem. We’ve dismissed technologies that were too specific to MIT. The goal is for MIT to lead by example and help certain technologies mature so that we can accelerate their impact.” More

  • in

    New MIT-LUMA Lab created to address climate challenges in the Mediterranean region

    The MIT School of Architecture and Planning (SA+P) and the LUMA Foundation announced today the establishment of the MIT-LUMA Lab to advance paradigm-shifting innovations at the nexus of art, science, technology, conservation, and design. The aim is to empower innovative thinkers to realize their ambitions, support local communities as they seek to address climate-related issues, and scale solutions to pressing challenges facing the Mediterranean region.  The main programmatic pillars of the lab will be collaborative scholarship and research around design, new materials, and sustainability; scholar exchange and education collaborations between the two organizations; innovation and entrepreneurship activities to transfer new ideas into practical applications; and co-production of exhibitions and events. The hope is that this engagement will create a novel model for other institutions to follow to craft innovative solutions to the leading challenge of our time.The MIT-LUMA Lab draws on an establishing gift from the LUMA Foundation, a nonprofit organization based in Zurich formed by Maja Hoffmann in 2004 to support contemporary artistic production. The foundation supports a range of multidisciplinary projects that increase understanding of the environment, human rights, education, and culture.These themes are explored through programs organized by LUMA Arles, a project begun in 2013 and housed on a 27-acre interdisciplinary campus known as the Parc des Ateliers in Arles, France, an experimental site of exhibitions, artists’ residencies, research laboratories, and educational programs.“The Luma Foundation is committed to finding ways to address the current climate emergencies we are facing, focusing on exploring the potentials that can be found in diversity and engagement in every possible form,” says Maja Hoffmann, founder and president of the LUMA Foundation. “Cultural diversity, pluralism, and biodiversity feature at the top of our mission and our work is informed by these concepts.” A focus on the Mediterranean region“The culturally rich area of the Mediterranean, which has produced some of the most remarkable civilizational paradigms across geographies and historical periods, plays an important role in our thinking. Focusing the efforts of the MIT-LUMA Lab on the Mediterranean means extending the possibilities for positive change throughout other global ecosystems,” says Hoffmann. “Our projects of LUMA Arles and its research laboratory on materials and natural resources, the Atelier Luma, our position in one of Europe’s most important natural reserves, in conjunction with the expertise and forward-thinking approach of MIT, define the perfect framework that will allow us to explore new frontiers and devise novel ways to tackle our most significant civilizational risks,” she adds. “Supporting the production of new forms of knowledge and practices, and with locations in Cambridge and in Arles, our collaboration and partnership with MIT will generate solutions and models for the future, for the generations to come, in order to provide them the same and even better opportunities that what we have experienced.”“We know we do not have all the answers at MIT, but we do know how to ask the right questions, how to design effective experiments, and how to build meaningful collaborations,” says Hashim Sarkis, dean of SA+P, which will host the lab. “I am grateful to the LUMA Foundation for offering support for faculty research deployment designed to engage local communities and create jobs, for course development to empower our faculty to teach classes centered on these issues, and for students who seek to dedicate their lives and careers to sustainability. We also look forward to hosting fellows and researchers from the foundation to strengthen our collaboration,” he adds.The Mediterranean region, the MIT-LUMA Lab’s focus, is one of the world’s most vital and fragile global commons. The future of climate relies on the sustainability of the region’s forests, oceans, and deserts that have for millennia created the environmental conditions and system-regulating functions necessary for life on Earth. Those who live in these areas are often the most severely affected by even relatively modest changes in the climate. Climate research and action: A priority at MITTo reverse negative trends and provide a new approach to addressing the climate crisis in these vast areas, SA+P is establishing international collaborations that bring know-how to the field, and in turn to learn from the communities and groups most challenged by climate impacts.The MIT-LUMA Lab is the first in what is envisioned as a series of regionally focused labs at SA+P under the conceptual aegis of a collaborative platform called Our Global Commons. This project will support progress on today’s climate challenges by focusing on community empowerment, long-term local collaborations around research and education, and job creation. Faculty-led fieldwork, engagements with local stakeholders, and student involvement will be the key elements.The creation of Our Global Commons comes as MIT works to dramatically expand its efforts to address climate change. In February 2024, President Sally Kornbluth announced the Climate Project at MIT, a major new initiative to mobilize the Institute’s resources and capabilities to research, develop, deploy, and scale-up new climate solutions. The Institute will hire its first-ever vice president for climate to oversee the new effort. “With the Climate Project at MIT, we aim to help make a decisive difference, at scale, on crucial global climate challenges — and we can only do that by engaging with outstanding colleagues around the globe,” says Kornbluth. “By connecting us to creative thinkers steeped in the cultural and environmental history and emerging challenges of the Mediterranean region, the MIT-LUMA Lab promises to spark important new ideas and collaborations.”“We are excited that the LUMA team will be joining in MIT’s engagement with climate issues, especially given their expertise in advancing vital work at the intersection of art and science, and their long-standing commitment to expanding the frontiers of sustainability and biodiversity,” says Sarkis. “With climate change upending many aspects of our society, the time is now for us to reaffirm and strengthen our SA+P tradition of on-the-ground work with and for communities around the world. Shared efforts among local communities, governments and corporations, and academia are necessary to bring about real change.” More

  • in

    Convening for cultural change

    Whether working with fellow students in the Netherlands to design floating cities or interning for a local community-led environmental justice organization, Cindy Xie wants to help connect people grappling with the implications of linked social and environmental crises.The MIT senior’s belief that climate action is a collective endeavor grounded in systems change has led her to work at a variety of community organizations, and to travel as far as Malaysia and Cabo Verde to learn about the social and cultural aspects of global environmental change.“With climate action, there is such a need for collective change. We all need to be a part of creating the solutions,” she says.Xie recently returned from Kuala Lumpur, where she attended the Planetary Health Annual Meeting hosted by Sunway University, and met researchers, practitioners, and students from around the world who are working to address challenges facing human and planetary health.Since January 2023, Xie has been involved with the Planetary Health Alliance, a consortium of organizations working at the intersection of human health and global environmental change. As a campus ambassador, she organized events at MIT that built on students’ interests in climate change and health while exploring themes of community and well-being.“I think doing these events on campus and bringing people together has been my way of trying to understand how to put conceptual ideas into action,” she says.Grassroots community-buildingAn urban studies and planning major with minors in anthropology and biology, Xie is also earning her master’s degree in city planning in a dual degree program, which she will finish next year.Through her studies and numerous community activities, she has developed a multidimensional view of public health and the environment that includes spirituality and the arts as well as science and technology. “What I appreciate about being here at MIT is the opportunities to try to connect the sciences back to other disciplines,” she says.As a campus ambassador for the Planetary Health Alliance, Xie hosted a club mixer event during Earth Month last year, that brought together climate, health, and social justice groups from across the Institute. She also created a year-long series that concluded its final event last month, called Cultural Transformation for Planetary Health. Organized with the Radius Forum and other partners, the series explored social and cultural implications of the climate crisis, with a focus on how environmental change affects health and well-being.Xie has also worked with the Planetary Health Alliance’s Constellation Project through a Public Service Fellowship from the PKG Center, which she describes as “an effort to convene people from across different areas of the world to talk about the intersections of spirituality, the climate, and environmental change and planetary health.”She has also interned at the Comunidades Enraizadas Community Land Trust, the National Institutes of Health, and the World Wildlife Fund U.S. Markets Institute. And, she has taken her studies abroad through MIT International Science and Technology Initiatives (MISTI). In 2023 she spent her Independent Activities Period in a pilot MISTI Global Classroom program in Amsterdam, and in the summer of 2023, she spent two months in Cabo Verde helping to start a new research collaboration tracking the impacts of climate change on human health.The power of storytellingGrowing up, Xie was drawn to storytelling as a means of understanding the intersections of culture and health within diverse communities. This has largely driven her interest in medical anthropology and medical humanities, and impacts her work as a member of the Asian American Initiative.The AAI is a student-led organization that provides a space for pan-Asian advocacy and community building on campus. Xie joined the group in 2022 and currently serves as a member of the executive board as well as co-leader of the Mental Health Project Team. She credits this team with inspiring discussions on holistic framings of mental health.“Conversations on mental health stigma can sometimes frame it as a fault within certain communities,” she says. “It’s also important to highlight alternate paradigms for conceptualizing mental health beyond the highly individualized models often presented in U.S. higher education settings.”Last spring, the AAI Mental Health team led a listening tour with Asian American clinicians, academic experts, and community organizations in Greater Boston, expanding the group’s connections. That led the group to volunteer last November at the Asian Mental Health Careers Day, hosted by the Let’s Talk! Conference at the Harvard Graduate School of Education. In March, the club also traveled to Yale University to participate in the East Coast Asian American Student Union Conference alongside hundreds of attendees from different college campuses.On campus, the team hosts dialogue events where students convene in an informal setting to discuss topics such as family ties and burnout and overachievement. Recently, AAI also hosted a storytelling night in partnership with MIT Taara and the newly formed South Asian Initiative. “There’s been something really powerful about being in those kinds of settings and building collective stories among peers,” Xie says.Community connectionsWriting, both creative and non-fiction, is another of Xie’s longstanding interests. From 2022 to 2023, she wrote for The Yappie, a youth-led news publication covering Asian American and Pacific Islander policy and politics. She has also written articles for The Tech, MIT Science Policy Review, MISTI Blogs, and more. Last year, she was a spread writer for MIT’s fashion publication, Infinite Magazine, for which she interviewed the founder of a local streetwear company that aims to support victims of sexual violence in the Democratic Republic of Congo.This year, she performed a spoken word piece in the “MIT Monologues,” an annual production at MIT that features stories of gender, relationships, race, and more. Her poetry was recently published in Sine Theta and included in MassPoetry’s 2024 Intercollegiate Showcase. Xie has previously been involved in the a capella group MIT Muses and enjoys live music and concerts as well. Tapping into her 2023 MISTI experience, Xie recently went to the concert of a Cabo Verdean artist at the Strand Theatre in Dorchester. “The crowd was packed,” she says. “It was just like being back in Cabo Verde. I feel very grateful to have seen these local connections.”After graduating, Xie hopes to continue building interdisciplinary connections. “I’m interested in working in policy or academia or somewhere in between the two, sort of around this idea of partnership and alliance building. My experiences abroad during my time at MIT have also made me more interested in working in an international context in the future.” More

  • in

    HPI-MIT design research collaboration creates powerful teams

    The recent ransomware attack on ChangeHealthcare, which severed the network connecting health care providers, pharmacies, and hospitals with health insurance companies, demonstrates just how disruptive supply chain attacks can be. In this case, it hindered the ability of those providing medical services to submit insurance claims and receive payments.This sort of attack and other forms of data theft are becoming increasingly common and often target large, multinational corporations through the small and mid-sized vendors in their corporate supply chains, enabling breaks in these enormous systems of interwoven companies.Cybersecurity researchers at MIT and the Hasso Plattner Institute (HPI) in Potsdam, Germany, are focused on the different organizational security cultures that exist within large corporations and their vendors because it’s that difference that creates vulnerabilities, often due to the lack of emphasis on cybersecurity by the senior leadership in these small to medium-sized enterprises (SMEs).Keri Pearlson, executive director of Cybersecurity at MIT Sloan (CAMS); Jillian Kwong, a research scientist at CAMS; and Christian Doerr, a professor of cybersecurity and enterprise security at HPI, are co-principal investigators (PIs) on the research project, “Culture and the Supply Chain: Transmitting Shared Values, Attitudes and Beliefs across Cybersecurity Supply Chains.”Their project was selected in the 2023 inaugural round of grants from the HPI-MIT Designing for Sustainability program, a multiyear partnership funded by HPI and administered by the MIT Morningside Academy for Design (MAD). The program awards about 10 grants annually of up to $200,000 each to multidisciplinary teams with divergent backgrounds in computer science, artificial intelligence, machine learning, engineering, design, architecture, the natural sciences, humanities, and business and management. The 2024 Call for Applications is open through June 3.Designing for Sustainability grants support scientific research that promotes the United Nations’ Sustainable Development Goals (SDGs) on topics involving sustainable design, innovation, and digital technologies, with teams made up of PIs from both institutions. The PIs on these projects, who have common interests but different strengths, create more powerful teams by working together.Transmitting shared values, attitudes, and beliefs to improve cybersecurity across supply chainsThe MIT and HPI cybersecurity researchers say that most ransomware attacks aren’t reported. Smaller companies hit with ransomware attacks just shut down, because they can’t afford the payment to retrieve their data. This makes it difficult to know just how many attacks and data breaches occur. “As more data and processes move online and into the cloud, it becomes even more important to focus on securing supply chains,” Kwong says. “Investing in cybersecurity allows information to be exchanged freely while keeping data safe. Without it, any progress towards sustainability is stalled.”One of the first large data breaches in the United States to be widely publicized provides a clear example of how an SME cybersecurity can leave a multinational corporation vulnerable to attack. In 2013, hackers entered the Target Corporation’s own network by obtaining the credentials of a small vendor in its supply chain: a Pennsylvania HVAC company. Through that breach, thieves were able to install malware that stole the financial and personal information of 110 million Target customers, which they sold to card shops on the black market.To prevent such attacks, SME vendors in a large corporation’s supply chain are required to agree to follow certain security measures, but the SMEs usually don’t have the expertise or training to make good on these cybersecurity promises, leaving their own systems, and therefore any connected to them, vulnerable to attack.“Right now, organizations are connected economically, but not aligned in terms of organizational culture, values, beliefs, and practices around cybersecurity,” explains Kwong. “Basically, the big companies are realizing the smaller ones are not able to implement all the cybersecurity requirements. We have seen some larger companies address this by reducing requirements or making the process shorter. However, this doesn’t mean companies are more secure; it just lowers the bar for the smaller suppliers to clear it.”Pearlson emphasizes the importance of board members and senior management taking responsibility for cybersecurity in order to change the culture at SMEs, rather than pushing that down to a single department, IT office, or in some cases, one IT employee.The research team is using case studies based on interviews, field studies, focus groups, and direct observation of people in their natural work environments to learn how companies engage with vendors, and the specific ways cybersecurity is implemented, or not, in everyday operations. The goal is to create a shared culture around cybersecurity that can be adopted correctly by all vendors in a supply chain.This approach is in line with the goals of the Charter of Trust Initiative, a partnership of large, multinational corporations formed to establish a better means of implementing cybersecurity in the supply chain network. The HPI-MIT team worked with companies from the Charter of Trust and others last year to understand the impacts of cybersecurity regulation on SME participation in supply chains and develop a conceptual framework to implement changes for stabilizing supply chains.Cybersecurity is a prerequisite needed to achieve any of the United Nations’ SDGs, explains Kwong. Without secure supply chains, access to key resources and institutions can be abruptly cut off. This could include food, clean water and sanitation, renewable energy, financial systems, health care, education, and resilient infrastructure. Securing supply chains helps enable progress on all SDGs, and the HPI-MIT project specifically supports SMEs, which are a pillar of the U.S. and European economies.Personalizing product designs while minimizing material wasteIn a vastly different Designing for Sustainability joint research project that employs AI with engineering, “Personalizing Product Designs While Minimizing Material Waste” will use AI design software to lay out multiple parts of a pattern on a sheet of plywood, acrylic, or other material, so that they can be laser cut to create new products in real time without wasting material.Stefanie Mueller, the TIBCO Career Development Associate Professor in the MIT Department of Electrical Engineering and Computer Science and a member of the Computer Science and Artificial Intelligence Laboratory, and Patrick Baudisch, a professor of computer science and chair of the Human Computer Interaction Lab at HPI, are co-PIs on the project. The two have worked together for years; Baudisch was Mueller’s PhD research advisor at HPI.Baudisch’s lab developed an online design teaching system called Kyub that lets students design 3D objects in pieces that are laser cut from sheets of wood and assembled to become chairs, speaker boxes, radio-controlled aircraft, or even functional musical instruments. For instance, each leg of a chair would consist of four identical vertical pieces attached at the edges to create a hollow-centered column, four of which will provide stability to the chair, even though the material is very lightweight.“By designing and constructing such furniture, students learn not only design, but also structural engineering,” Baudisch says. “Similarly, by designing and constructing musical instruments, they learn about structural engineering, as well as resonance, types of musical tuning, etc.”Mueller was at HPI when Baudisch developed the Kyub software, allowing her to observe “how they were developing and making all the design decisions,” she says. “They built a really neat piece for people to quickly design these types of 3D objects.” However, using Kyub for material-efficient design is not fast; in order to fabricate a model, the software has to break the 3D models down into 2D parts and lay these out on sheets of material. This takes time, and makes it difficult to see the impact of design decisions on material use in real-time.Mueller’s lab at MIT developed software based on a layout algorithm that uses AI to lay out pieces on sheets of material in real time. This allows AI to explore multiple potential layouts while the user is still editing, and thus provide ongoing feedback. “As the user develops their design, Fabricaide decides good placements of parts onto the user’s available materials, provides warnings if the user does not have enough material for a design, and makes suggestions for how the user can resolve insufficient material cases,” according to the project website.The joint MIT-HPI project integrates Mueller’s AI software with Baudisch’s Kyub software and adds machine learning to train the AI to offer better design suggestions that save material while adhering to the user’s design intent.“The project is all about minimizing the waste on these materials sheets,” Mueller says. She already envisions the next step in this AI design process: determining how to integrate the laws of physics into the AI’s knowledge base to ensure the structural integrity and stability of objects it designs.AI-powered startup design for the Anthropocene: Providing guidance for novel enterprisesThrough her work with the teams of MITdesignX and its international programs, Svafa Grönfeldt, faculty director of MITdesignX and professor of the practice in MIT MAD, has helped scores of people in startup companies use the tools and methods of design to ensure that the solution a startup proposes actually fits the problem it seeks to solve. This is often called the problem-solution fit.Grönfeldt and MIT postdoc Norhan Bayomi are now extending this work to incorporate AI into the process, in collaboration with MIT Professor John Fernández and graduate student Tyler Kim. The HPI team includes Professor Gerard de Melo; HPI School of Entrepreneurship Director Frank Pawlitschek; and doctoral student Michael Mansfeld.“The startup ecosystem is characterized by uncertainty and volatility compounded by growing uncertainties in climate and planetary systems,” Grönfeldt says. “Therefore, there is an urgent need for a robust model that can objectively predict startup success and guide design for the Anthropocene.”While startup-success forecasting is gaining popularity, it currently focuses on aiding venture capitalists in selecting companies to fund, rather than guiding the startups in the design of their products, services and business plans.“The coupling of climate and environmental priorities with startup agendas requires deeper analytics for effective enterprise design,” Grönfeldt says. The project aims to explore whether AI-augmented decision-support systems can enhance startup-success forecasting.“We’re trying to develop a machine learning approach that will give a forecasting of probability of success based on a number of parameters, including the type of business model proposed, how the team came together, the team members’ backgrounds and skill sets, the market and industry sector they’re working in and the problem-solution fit,” says Bayomi, who works with Fernández in the MIT Environmental Solutions Initiative. The two are co-founders of the startup Lamarr.AI, which employs robotics and AI to help reduce the carbon dioxide impact of the built environment.The team is studying “how company founders make decisions across four key areas, starting from the opportunity recognition, how they are selecting the team members, how they are selecting the business model, identifying the most automatic strategy, all the way through the product market fit to gain an understanding of the key governing parameters in each of these areas,” explains Bayomi.The team is “also developing a large language model that will guide the selection of the business model by using large datasets from different companies in Germany and the U.S. We train the model based on the specific industry sector, such as a technology solution or a data solution, to find what would be the most suitable business model that would increase the success probability of a company,” she says.The project falls under several of the United Nations’ Sustainable Development Goals, including economic growth, innovation and infrastructure, sustainable cities and communities, and climate action.Furthering the goals of the HPI-MIT Joint Research ProgramThese three diverse projects all advance the mission of the HPI-MIT collaboration. MIT MAD aims to use design to transform learning, catalyze innovation, and empower society by inspiring people from all disciplines to interweave design into problem-solving. HPI uses digital engineering concentrated on the development and research of user-oriented innovations for all areas of life.Interdisciplinary teams with members from both institutions are encouraged to develop and submit proposals for ambitious, sustainable projects that use design strategically to generate measurable, impactful solutions to the world’s problems. More