More stories

  • in

    Chess players face a tough foe: air pollution

    Here’s something else chess players need to keep in check: air pollution.

    That’s the bottom line of a newly published study co-authored by an MIT researcher, showing that chess players perform objectively worse and make more suboptimal moves, as measured by a computerized analysis of their games, when there is more fine particulate matter in the air.

    More specifically, given a modest increase in fine particulate matter, the probability that chess players will make an error increases by 2.1 percentage points, and the magnitude of those errors increases by 10.8 percent. In this setting, at least, cleaner air leads to clearer heads and sharper thinking.

    “We find that when individuals are exposed to higher levels of air pollution, they make more more mistakes, and they make larger mistakes,” says Juan Palacios, an economist in MIT’s Sustainable Urbanization Lab, and co-author of a newly published paper detailing the study’s findings.

    The paper, “Indoor Air Quality and Strategic Decision-Making,” appears today in advance online form in the journal Management Science. The authors are Steffen Künn, an associate professor in the School of Business and Economics at Maastricht University, the Netherlands; Palacios, who is head of research in the Sustainable Urbanization Lab, in MIT’s Department of Urban Studies and Planning (DUSP); and Nico Pestel, an associate professor in the School of Business and Economics at Maastricht University.

    The toughest foe yet?

    Fine particulate matter refers to tiny particles 2.5 microns or less in diameter, notated as PM2.5. They are often associated with burning matter — whether through internal combustion engines in autos, coal-fired power plants, forest fires, indoor cooking through open fires, and more. The World Health Organization estimates that air pollution leads to over 4 million premature deaths worldwide every year, due to cancer, cardiovascular problems, and other illnesses.

    Scholars have produced many studies exploring the effects of air pollution on cognition. The current study adds to that literature by analyzing the subject in a particularly controlled setting. The researchers studied the performance of 121 chess players in three seven-round tournaments in Germany in 2017, 2018, and 2019, comprising more than 30,000 chess moves. The scholars used three web-connected sensors inside the tournament venue to measure carbon dioxide, PM2.5 concentrations, and temperature, all of which can be affected by external conditions, even in an indoor setting. Because each tournament lasted eight weeks, it was possible to examine how air-quality changes related to changes in player performance.

    In a replication exercise, the authors found the same impacts of air pollution on some of the strongest players in the history of chess using data from 20 years of games from the first division of the German chess league. 

    To evaluate the matter of performance of players, meanwhile, the scholars used software programs that assess each move made in each chess match, identify optimal decisions, and flag significant errors.

    During the tournaments, PM2.5 concentrations ranged from 14 to 70 micrograms per cubic meter of air, levels of exposure commonly found in cities in the U.S. and elsewhere. The researchers examined and ruled out alternate potential explanations for the dip in player performance, such as increased noise. They also found that carbon dioxide and temperature changes did not correspond to performance changes. Using the standardized ratings chess players earn, the scholars also accounted for the quality of opponents each player faced. Ultimately, the analysis using the plausibly random variation in pollution driven by changes in wind direction confirms that the findings are driven by the direct exposure to air particles.

    “It’s pure random exposure to air pollution that is driving these people’s performance,” Palacios says. “Against comparable opponents in the same tournament round, being exposed to different levels of air quality makes a difference for move quality and decision quality.”

    The researchers also found that when air pollution was worse, the chess players performed even more poorly when under time constraints. The tournament rules mandated that 40 moves had to be made within 110 minutes; for moves 31-40 in all the matches, an air pollution increase of 10 micrograms per cubic meter led to an increased probability of error of 3.2 percent, with the magnitude of those errors increasing by 17.3 percent.

    “We find it interesting that those mistakes especially occur in the phase of the game where players are facing time pressure,” Palacios says. “When these players do not have the ability to compensate [for] lower cognitive performance with greater deliberation, [that] is where we are observing the largest impacts.”

    “You can live miles away and be affected”

    Palacios emphasizes that, as the study indicates, air pollution may affect people in settings where they might not think it makes a difference.

    “It’s not like you have to live next to a power plant,” Palacios says. “You can live miles away and be affected.”

    And while the focus of this particular study is tightly focused on chess players, the authors write in the paper that the findings have “strong implications for high-skilled office workers,” who might also be faced with tricky cognitive tasks in conditions of variable air pollution. In this sense, Palacios says, “The idea is to provide accurate estimates to policymakers who are making difficult decisions about cleaning up the environment.”

    Indeed, Palacios observes, the fact that even chess players — who spend untold hours preparing themselves for all kinds of scenarios they may face in matches — can perform worse when air pollution rises suggests that a similar problem could affect people cognitively in many other settings.

    “There are more and more papers showing that there is a cost with air pollution, and there is a cost for more and more people,” Palacios says. “And this is just one example showing that even for these very [excellent] chess players, who think they can beat everything — well, it seems that with air pollution, they have an enemy who harms them.”

    Support for the study was provided, in part, by the Graduate School of Business and Economics at Maastricht, and the Institute for Labor Economics in Bonn, Germany. More

  • in

    Sensing with purpose

    Fadel Adib never expected that science would get him into the White House, but in August 2015 the MIT graduate student found himself demonstrating his research to the president of the United States.

    Adib, fellow grad student Zachary Kabelac, and their advisor, Dina Katabi, showcased a wireless device that uses Wi-Fi signals to track an individual’s movements.

    As President Barack Obama looked on, Adib walked back and forth across the floor of the Oval Office, collapsed onto the carpet to demonstrate the device’s ability to monitor falls, and then sat still so Katabi could explain to the president how the device was measuring his breathing and heart rate.

    “Zach started laughing because he could see that my heart rate was 110 as I was demoing the device to the president. I was stressed about it, but it was so exciting. I had poured a lot of blood, sweat, and tears into that project,” Adib recalls.

    For Adib, the White House demo was an unexpected — and unforgettable — culmination of a research project he had launched four years earlier when he began his graduate training at MIT. Now, as a newly tenured associate professor in the Department of Electrical Engineering and Computer Science and the Media Lab, he keeps building off that work. Adib, the Doherty Chair of Ocean Utilization, seeks to develop wireless technology that can sense the physical world in ways that were not possible before.

    In his Signal Kinetics group, Adib and his students apply knowledge and creativity to global problems like climate change and access to health care. They are using wireless devices for contactless physiological sensing, such as measuring someone’s stress level using Wi-Fi signals. The team is also developing battery-free underwater cameras that could explore uncharted regions of the oceans, tracking pollution and the effects of climate change. And they are combining computer vision and radio frequency identification (RFID) technology to build robots that find hidden items, to streamline factory and warehouse operations and, ultimately, alleviate supply chain bottlenecks.

    While these areas may seem quite different, each time they launch a new project, the researchers uncover common threads that tie the disciplines together, Adib says.

    “When we operate in a new field, we get to learn. Every time you are at a new boundary, in a sense you are also like a kid, trying to understand these different languages, bring them together, and invent something,” he says.

    A science-minded child

    A love of learning has driven Adib since he was a young child growing up in Tripoli on the coast of Lebanon. He had been interested in math and science for as long as he could remember, and had boundless energy and insatiable curiosity as a child.

    “When my mother wanted me to slow down, she would give me a puzzle to solve,” he recalls.

    By the time Adib started college at the American University of Beirut, he knew he wanted to study computer engineering and had his sights set on MIT for graduate school.

    Seeking to kick-start his future studies, Adib reached out to several MIT faculty members to ask about summer internships. He received a response from the first person he contacted. Katabi, the Thuan and Nicole Pham Professor in the Department of Electrical Engineering and Computer Science (EECS), and a principal investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Jameel Clinic, interviewed him and accepted him for a position. He immersed himself in the lab work and, as the end of summer approached, Katabi encouraged him to apply for grad school at MIT and join her lab.

    “To me, that was a shock because I felt this imposter syndrome. I thought I was moving like a turtle with my research, but I did not realize that with research itself, because you are at the boundary of human knowledge, you are expected to progress iteratively and slowly,” he says.

    As an MIT grad student, he began contributing to a number of projects. But his passion for invention pushed him to embark into unexplored territory. Adib had an idea: Could he use Wi-Fi to see through walls?

    “It was a crazy idea at the time, but my advisor let me work on it, even though it was not something the group had been working on at all before. We both thought it was an exciting idea,” he says.

    As Wi-Fi signals travel in space, a small part of the signal passes through walls — the same way light passes through windows — and is then reflected by whatever is on the other side. Adib wanted to use these signals to “see” what people on the other side of a wall were doing.

    Discovering new applications

    There were a lot of ups and downs (“I’d say many more downs than ups at the beginning”), but Adib made progress. First, he and his teammates were able to detect people on the other side of a wall, then they could determine their exact location. Almost by accident, he discovered that the device could be used to monitor someone’s breathing.

    “I remember we were nearing a deadline and my friend Zach and I were working on the device, using it to track people on the other side of the wall. I asked him to hold still, and then I started to see him appearing and disappearing over and over again. I thought, could this be his breathing?” Adib says.

    Eventually, they enabled their Wi-Fi device to monitor heart rate and other vital signs. The technology was spun out into a startup, which presented Adib with a conundrum once he finished his PhD — whether to join the startup or pursue a career in academia.

    He decided to become a professor because he wanted to dig deeper into the realm of invention. But after living through the winter of 2014-2015, when nearly 109 inches of snow fell on Boston (a record), Adib was ready for a change of scenery and a warmer climate. He applied to universities all over the United States, and while he had some tempting offers, Adib ultimately realized he didn’t want to leave MIT. He joined the MIT faculty as an assistant professor in 2016 and was named associate professor in 2020.

    “When I first came here as an intern, even though I was thousands of miles from Lebanon, I felt at home. And the reason for that was the people. This geekiness — this embrace of intellect — that is something I find to be beautiful about MIT,” he says.

    He’s thrilled to work with brilliant people who are also passionate about problem-solving. The members of his research group are diverse, and they each bring unique perspectives to the table, which Adib says is vital to encourage the intellectual back-and-forth that drives their work.

    Diving into a new project

    For Adib, research is exploration. Take his work on oceans, for instance. He wanted to make an impact on climate change, and after exploring the problem, he and his students decided to build a battery-free underwater camera.

    Adib learned that the ocean, which covers 70 percent of the planet, plays the single largest role in the Earth’s climate system. Yet more than 95 percent of it remains unexplored. That seemed like a problem the Signal Kinetics group could help solve, he says.

    But diving into this research area was no easy task. Adib studies Wi-Fi systems, but Wi-Fi does not work underwater. And it is difficult to recharge a battery once it is deployed in the ocean, making it hard to build an autonomous underwater robot that can do large-scale sensing.

    So, the team borrowed from other disciplines, building an underwater camera that uses acoustics to power its equipment and capture and transmit images.

    “We had to use piezoelectric materials, which come from materials science, to develop transducers, which come from oceanography, and then on top of that we had to marry these things with technology from RF known as backscatter,” he says. “The biggest challenge becomes getting these things to gel together. How do you decode these languages across fields?”

    It’s a challenge that continues to motivate Adib as he and his students tackle problems that are too big for one discipline.

    He’s excited by the possibility of using his undersea wireless imaging technology to explore distant planets. These same tools could also enhance aquaculture, which could help eradicate food insecurity, or support other emerging industries.

    To Adib, the possibilities seem endless.

    “With each project, we discover something new, and that opens up a whole new world to explore. The biggest driver of our work in the future will be what we think is impossible, but that we could make possible,” he says. More

  • in

    Preparing to be prepared

    The Kobe earthquake of 1995 devastated one of Japan’s major cities, leaving over 6,000 people dead while destroying or making unusable hundreds of thousands of structures. It toppled elevated freeway segments, wrecked mass transit systems, and damaged the city’s port capacity.

    “It was a shock to a highly engineered, urban city to have undergone that much destruction,” says Miho Mazereeuw, an associate professor at MIT who specializes in disaster resilience.

    Even in a country like Japan, with advanced engineering, and policies in place to update safety codes, natural forces can overwhelm the built environment.

    “There’s nothing that’s ever guaranteed safe,” says Mazereeuw, an associate professor of architecture and urbanism in MIT’s Department of Architecture and director of the Urban Risk Lab. “We [think that] through technology and engineering we can solve things and fight nature. Whereas it’s really that we’re living with nature. We’re part of this natural ecosystem.”

    That’s why Mazereeuw’s work on disaster resilience focuses on plans, people, and policies, well as technology and design to prepare for the future. In the Urban Risk Lab, which Mazereeuw founded, several projects are based on the design of physical objects, spaces, and software platforms, but many others involve community-level efforts, so that local governments have workable procedures in case of emergency.

    “What we can do for ourselves and each other is have plans in place so that if something does happen, the level of chaos and fear can be reduced and we can all be there to help each other through,” Mazereeuw says. When it comes to disaster preparedness, she adds, “Definitely a lot of it is on the built environment side of things, but a lot of it is also social, making sure that in our communities, we know who would need help, and we have those kinds of relationships beforehand.”

    The Kobe earthquake was a highly influential event for Mazereeuw. She has researched the response to it and has a book coming out about natural disasters, policies, and design in Japan. Beyond that, the Kobe event helped reinforce her sense that when it comes to disaster preparedness, progress can be made many ways. For her research, teaching, and innovative work at the Urban Risk Lab, Mazereeuw was granted tenure at MIT last year.

    Two cultures grappling with nature

    Mazereeuw has one Dutch parent and one Japanese parent, and both cultures helped produce her interest in managing natural forces. On her Dutch side, many family friends were involved with local government and water management — practically an existential issue in a country that sits largely below sea level.

    Mazereeuw’s parents, however, were living in Japan in 1995. And while they happened to be away while the Kobe earthquake hit, her Japanese links helped spur her interest in studying the event and its aftermath.

    “I think that was a wake-up call for me, too, about how we need to plan and design cities to reduce the impact of chaos at the time of disasters,” Mazereeuw says.

    Mazereeuw earned her undergraduate degree from Wesleyan University, majoring in earth and environmental sciences and in studio art. After working in an architectural office in Tokyo, she decided to attend graduate school, receiving her dual masters from Harvard University’s Graduate School of Design, with a thesis about Kobe and disaster readiness. She then worked in architecture offices, including the Office of Metropolitan Architecture in Rotterdam, but returned to academia to work on climate change and disaster resilience.   

    Mazereeuw’s book, “Design Before Disaster,” explores this subject in depth, from urban planning to coastal-safety strategies to community-based design frameworks, and is forthcoming from the University of Virginia Press.

    Since joining the MIT faculty, Mazereeuw has also devoted significant time to the launch and growth of the Urban Risk Lab, an interdisciplinary group working on an array of disaster-preparedness efforts. One such project has seen lab members work with local officials from many places — including Massachusetts, California, Georgia, and Puerto Rico — to add to their own disaster-preparedness planning.

    A plan developed by local officials with community input, Mazereeuw suggests, will likely function better than one produced by, say, consultants from outside a community, as she has seen happen many times: “A report on a dusty shelf isn’t actionable,” she says. “This way it’s a decision-making process by the people involved.”

    In a project based on physical design, the Urban Risk Lab has also been working with the U.S. Federal Emergency Management Agency on an effort to produce temporary postdisaster housing for the OCONUS region (Alaska, Hawaii, and other U.S. overseas territories). The lab’s design, called SEED (Shelter for Emergency Expansion Design), features a house that is compact enough to be shipped anywhere and unfolds on-site, while being sturdy enough to withstand follow-up events such as hurricanes, and durable enough to be incorporated into longer-term housing designs.

    “We felt it had to be really, really good quality, so it would be a resource, rather than something temporary that disintegrates after five years,” Mazereeuw says. “It’s built to be a small safety shelter but also could be part of a permanent house.”

    A grand challenge, and a plethora of projects

    Mazereeuw is also a co-lead of one of the five multiyear projects selected in 2022 to move forward as part of MIT’s Climate Grand Challenges competition. Along with Kerry Emanuel and Paul O’Gorman, of MIT’s Department of Earth, Atmospheric and Planetary Sciences, Mazereeuw will help direct a project advancing climate modeling by quantifying the risk of extreme weather events for specific locations. The idea is to help vulnerable urban centers and other communities prepare for such events.

    The Urban Risk Lab has many other kinds of projects in its portfolio, following Mazereeuw’s own interest in conceptualizing disaster preparedness broadly. In collaboration with officials in Japan, and with support from Google, lab members worked on interactive, real-time flood-mapping software, in which residents can help officials know where local flooding has reached emergency levels. The researchers also created an AI module to prioritize the information.

    “Residents really have the most localized information, which you can’t get from a satellite,” Mazereeuw says. “They’re also the ones who learn about it first, so they have a lot of information that emergency managers can use for their response. The program is really meant to be a conduit between the efforts of emergency managers and residents, so that information flow can go in both directions.”

    Lab members in the past have also mapped the porosity of the MIT campus, another effort that used firsthand knowledge. Additionally, lab members are currently engaging with a university in Chile to design tsunami response strategies; developing a community mapping toolkit for resilience planning in Thailand and Vietnam; and working with Mass Audubon to design interactive furniture for children to learn about ecology.  

    “Everything is tied together with this interest in raising awareness and engaging people,” Mazereeuw says.

    That also describes Mazereeuw’s attitude about participation in the Urban Risk Lab, a highly cross-disciplinary place with members who have gravitated to it from around MIT.

    “Our lab is extremely interdisciplinary,” Mazereeuw says. “We have students coming in from all over, from different parts of campus. We have computer science and engineering students coming into the lab and staying to get their graduate degrees alongside many architecture and planning students.” The lab also has five full-time researchers — Aditya Barve, Larisa Ovalles, Mayank Ojha, Eakapob Huangthananpan, and Saeko Baird — who lead their own projects and research groups.

    What those lab members have in common is a willingness to think proactively about reducing disaster impacts. Being prepared for those events itself requires preparation.

    Even in the design world, Mazereeuw says, “People are reactive. Because something has happened, that’s when they go in to help. But I think we can have a larger impact by anticipating and designing for these issues beforehand.” More

  • in

    Study: Extreme heat is changing habits of daily life

    Extreme temperatures make people less likely to pursue outdoor activities they would otherwise make part of their daily routine, a new study led by MIT researchers has confirmed.

    The data-rich study, set in China, shows that when hourly temperatures reach 30 degrees Celsius (86 degrees Fahrenheit), people are 5 percent less likely to go to public parks, and when hourly temperatures hit 35 C (95 F), people are 13 percent less likely to go to those parks.

    “We did observe adaptation,” says Siqi Zheng, an MIT professor and co-author of a new paper detailing the study’s findings. She adds: “Environmental hazards hurt the daily quality of life. Yes, people protect themselves [by limiting activity], but they lose the benefit of going out to enjoy themselves in nature, or meeting friends in parks.”

    The research adds to our knowledge about the effects of a warming climate by quantifying the effects of hot temperatures on the activity of people within a given day — how they shift their activities from hotter to cooler time periods — and not just across longer periods of time.

    “We found that if we take into account this within-day adaptation, extreme temperatures actually have a much larger effect on human activity than the previous daily or monthly estimations [indicate],” says Yichun Fan, an MIT doctoral candidate and another of the paper’s co-authors.

    The paper, “Intraday Adaptation to Extreme Temperatures in Outdoor Activity,” is published this week in Nature Scientific Reports. The authors are Fan, a doctoral student in MIT’s Department of Urban Studies and Planning (DUSP); Jianghao Wang, a professor at the Chinese Academy of Sciences; Nick Obradovich, chief scientist at Project Regeneration; and Zheng, who is the STL Champion Professor of Urban and Real Estate Sustainability at MIT’s Center for Real Estate and DUSP, and faculty director of the MIT Center for Real Estate.

    To conduct the study, the researchers used anonymized data for 900 million cellphone users in China in 2017, studying a total of 60 billion separate cellphone location queries per day available through the technology firm Tencent. With this data, the scholars also examined activity in 10,499 parks across the country, comparing useage totals across a range of conditions. And they obtained temperature data from about 2,000 weather stations in China.

    Ultimately, as the scholars write in the paper, they were able to “document large and significant activity-depressing and activity-delaying effects” on park visits as a result of ultrahot temperatures.

    “People have intraday adaptation patterns that hadn’t been documented in the previous literature,” Fan says. “These have important implications about people’s heat exposure and how future climate change will affect people’s activity and health.”

    As Zheng points out, altered use of public spaces affects daily routines not only in terms of individual activity and exercise, but also in terms of social and community life.

    “Extreme climates will reduce people’s opportunities to socialize in cities, or just watch kids playing basketball or soccer, which is not good,” she says. “We want people to have a wide-ranging urban life. There is a social cost to this adaptation.”

    As the research indicates, people clearly adapt to temperature spikes. The data also show that evening use of parks increases on extremely hot days, but only after conditions have cooled down. While that seems like a beneficial adaptation to very hot weather, the scholars citing existing research suggest people may sleep less as a result of making this kind of change to their daily routines.

    “Adaptation also has its own cost,” Fan says. “People significantly increased their nighttime outdoor activity, which means they delayed their nighttime, which will have a significant health implication, when you consider the potential sleep disruption.”

    All told, the study provides data, and a method, for better characterizing the effects on climate change on human activity in detail.

    “If we have more and more granular data about future climate scenarios, they support better predictions about these scenarios, reflecting people’s dynamic behaviors, and the health implications,” says Fan, whose doctoral research incorporates this work and other related studies on climate and urban activity.

    The researchers also note that the research methods used in this study could be applied to additional future studies of many other aspects of urban life, including street-level retail activities, and other things with implications for economic activity, real estate, and urban planning.

    “This relates to many other issues,” Zheng says.

    Jianghao Wang received funding from the National Key Research and Development Program of China, the National Natural Science Foundation of China, and the Youth Innovation Promotion Association of the Chinese Academy of Sciences. More

  • in

    MIT community in 2022: A year in review

    In 2022, MIT returned to a bit of normalcy after the challenge of Covid-19 began to subside. The Institute prepared to bid farewell to its president and later announced his successor; announced five flagship projects in a new competition aimed at tackling climate’s greatest challenges; made new commitments toward ensuring support for diverse voices; and celebrated the reopening of a reimagined MIT Museum — as well as a Hollywood blockbuster featuring scenes from campus. Here are some of the top stories in the MIT community this year.

    Presidential transition

    In February, MIT President L. Rafael Reif announced that he planned to step down at the end of 2022. In more than 10 years as president, Reif guided MIT through a period of dynamic growth, greatly enhancing its global stature and magnetism. At the conclusion of his term at the end of this month, Reif will take a sabbatical, then return to the faculty of the Department of Electrical Engineering and Computer Science. In September, Reif expressed his gratitude to the MIT community at an Institute-wide dance celebration, and he was honored with a special MIT Dome lighting earlier this month.

    After an extensive presidential search, Sally Kornbluth, a cell biologist and the current provost of Duke University, was announced in October as MIT’s 18th president. Following an introduction to MIT that included a press conference, welcoming event, and community celebration, Kornbluth will assume the MIT presidency on Jan. 1, 2023.

    In other administrative transitions: Cynthia Barnhart was appointed provost after Martin Schmidt stepped down to become president of Rensselaer Polytechnic Institute; Sanjay Sarma stepped down as vice president for open learning after nine years in the role; professors Brent Ryan and Anne White were named associate provosts, while White was also named associate vice president for research administration; and Agustín Rayo was named dean of the School of Humanities, Arts, and Social Sciences.

    Climate Grand Challenges

    MIT announced five flagship projects in its first-ever Climate Grand Challenges competition. These multiyear projects focus on unraveling some of the toughest unsolved climate problems and bringing high-impact, science-based solutions to the world on an accelerated basis. Representing the most promising concepts to emerge from the two-year competition that yielded 27 finalist projects, the five flagship projects will receive additional funding and resources from MIT and others to develop their ideas and swiftly transform them into practical solutions at scale.

    CHIPS and Science Act

    President Reif and Vice President for Research Maria Zuber were among several MIT representatives to witness President Biden’s signing of the $52 billion “CHIPS and Science” bill into law in August. Reif helped shape aspects of the bill and was a vocal advocate for it among university and government officials, while Zuber served on two government science advisory boards during the bill’s gestation and consideration. Earlier in the year, MIT.nano hosted U.S. Secretary of Commerce Gina Raimondo, while MIT researchers released a key report on U.S. microelectronics research and manufacturing.

    MIT Morningside Academy for Design

    Supported by a $100 million founding gift, the MIT Morningside Academy for Design launched as a major interdisciplinary center that aims to build on the Institute’s leadership in design-focused education. Housed in the School of Architecture and Planning, the academy provides a hub that will encourage design work at MIT to grow and cross disciplines among engineering, science, management, computing, architecture, urban planning, and the arts.

    Reports of the Institute

    A number of key Institute reports and announcements were released in 2022. They include: an announcement of the future of gift acceptance for MIT: an announcement of priority MIT investments; a new MIT Values Statement; a renewed commitment to Indigenous scholarship and community; the Strategic Action Plan for Belonging, Achievement, and Composition; a report on MIT’s engagement with China; a report of the Working Group on Reimagining Public Safety at MIT; a report of the Indigenous Working Group; and a report of the Ad Hoc Committee on Arts, Culture, and DEI.

    Nobel Prizes

    MIT affiliates were well-represented among new and recent Nobel laureates who took part in the first in-person Nobel Prize ceremony since the start of the Covid-19 pandemic. MIT-affiliated winners for 2022 included Ben Bernanke PhD ’79, K. Barry Sharpless, and Carolyn Bertozzi. Winners in attendance from 2020 and 2021 included Professor Joshua Angrist, David Julius ’77, and Andrea Ghez ’87.

    New MIT Museum

    A reimagined MIT Museum opened this fall in a new 56,000-square-foot space in the heart of Cambridge’s Kendall Square. The museum invites visitors to explore the Institute’s innovations in science, technology, engineering, arts, and math — and to take part in that work with hands-on learning labs and maker spaces, interactive exhibits, and venues to discuss the impact of science and technology on society.

    “Wakanda Forever”

    In November, the Institute Office of Communications and the Division of Student Life hosted a special screening of Marvel Studios’ “Black Panther: Wakanda Forever.” The MIT campus had been used as a filming location in summer 2021, as one of the film’s characters, Riri Williams (also known as Ironheart), is portrayed as a student at the Institute.

    In-person Commencement returns

    After two years of online celebrations due to Covid-19, MIT Commencement returned to Killian Court at the end of May. World Trade Organization Director-General Ngozi Okonjo-Iweala MCP ’78, PhD ’81 delivered the Commencement address, while poet Kealoha Wong ’99 spoke at a special ceremony for the classes of 2020 and 2021.

    Students win distinguished fellowships

    As in previous years, MIT students continued to shine. This year, exceptional undergraduates were awarded Fulbright, Marshall, Mitchell, Rhodes, and Schwarzman scholarships.

    Remembering those we’ve lost

    Among MIT community members who died this year were Robert Balluffi, Louis Braida, Ashton Carter, Tom Eagar, Dick Eckaus, Octavian-Eugen Ganea, Peter Griffith, Patrick Hale, Frank Sidney Jones, Nonabah Lane, Leo Marx, Bruce Montgomery, Joel Moses, Brian Sousa Jr., Mohamed Magdi Taha, John Tirman, Richard Wurtman, and Markus Zahn.

    In case you missed it:

    Additional top community stories of 2022 included MIT students dominating the 82nd Putnam Mathematical Competition, an update on MIT’s reinstating the SAT/ACT requirement for admissions, a new mathematics program for Ukrainian students and refugees, a roundup of new books from MIT authors, the renaming of the MIT.nano building, an announcement of winners of this year’s MIT $100K Entrepreneurship Competition, the new MIT Wright Brothers Wind Tunnel, and MIT students winning the 45th International Collegiate Programming Contest for the first time in 44 years. More

  • in

    Using game engines and “twins” to co-create stories of climate futures

    Imagine entering a 3D virtual story world that’s a digital twin of an existing physical space but also doubles as a vessel to dream up speculative climate stories and collective designs. Then, those imagined worlds are translated back into concrete plans for our physical spaces.

    Five multidisciplinary teams recently convened at MIT — virtually — for the inaugural WORLDING workshop. In a weeklong series of research and development gatherings, the teams met with MIT scientists, staff, fellows, students and graduates as well as other leading figures in the field. The theme of the gathering was “story, space, climate, and game engines.”

    “WORLDING illustrates the emergence of an entirely new field that fuses urban planning, climate science, real-time 3D engines, nonfiction storytelling, and speculative fiction,” says Katerina Cizek, lead designer of the workshop at Co-Creation Studio, MIT Open Documentary Lab. “And co-creation is at the core of this field that allows for collective, democratic, scientific and artistic processes.” The research workshop was organized by the studio in partnership with Unity Software.

    The WORLDING teams met with MIT scholars to discuss diverse domains, from the decolonization of board games, to urban planning as acts of democracy, to behind the scenes of a flagship MIT Climate Challenge project.

    “Climate is really a whole-world initiative,” said Noelle Selin, an MIT atmospheric chemistry professor, in a talk at WORLDING. Selin co-leads an MIT initiative that is digitally twinning the Earth to harness enormous volumes of data for improved climate projections and put these models into the hands of diverse communities and stakeholders.

    “Digital twinning” is a growth market for the game engine industry, in verticals such as manufacturing, architecture, finance, and medicine. “Digital twinning gives teams the power to ideate,” said Elizabeth Baron, a senior manager of enterprise solutions at Unity in her talk at WORLDING. “You can look at many things that maybe aren’t even possible to produce. But you’re the resource. Impact is very low, but the creativity aspect is very high.”

    That’s where the story and media experts come in. “Now, more than ever, we need to forge shared narratives about the world that we live in today and the world that we want to build for the future. Technology can help us visualize and communicate those worlds,” says Marina Psaros MCP ’06, head of sustainability at Unity, lead on WORLDING at Unity, and a graduate of the MIT Department of Urban Studies and Planning.

    In his talk on the short history of WORLDING, media scholar William Uricchio, MIT professor of comparative media studies and founder of the Open Documentary Lab, suggested that story and space come together in these projects that create new ways of knowing. “Story is always a representation,” he says. “It’s got a fixity and coherence to it, and play is — and, I would argue, worlds are —  all about simulation. Simulation in the case of digital twinning is capable of generating countless stories. It’s play as a story-generator, but in the service of envisioning a pluralistic and malleable future.”

    Fixed dominant narratives and game mechanics that underpin board games have been historically violent and unjust, says MIT Game Lab scholar Mikael Jakkobson, who shared findings for his upcoming book on the subject with the cohort. He argues that board games are built on underlying ideas of  “exploration, expansion, exploitation, and extermination. And, as it happens, those are also good ways of thinking about the mechanics of Western colonialism.”

    To counter these hegemonic mechanics and come up with new systems, community is vital, and urban planning is a discipline that plays a huge role in the translation of space, story, and democracy. Ceasar MacDowell, an MIT professor of the practice of civic design, told the WORLDING cohort that urban planning needs to expand its notion of authorship. He is working on systems (from his current position at the Media Lab) that not only engage the community in conversations but also prompt “the people who have been in conversations to actually make sense of them, do the meaning-making themselves, not to have external people interpret them.” These become dynamic layers of both representation and simulation that are not, as Uricchio suggests, fixed. 

    USAID Chief Climate Officer Gillian Calwell visited the group with both sharp warnings and warm enthusiasm: “When it comes to climate, this world isn’t working so well for us; we better start envisioning the new ones, and fast … We don’t have time to convince people that this is happening anymore. Nor do we need to. I think most of the world is having the hands-on, up-close-and-personal experience with the fact that these impacts are coming faster and more furiously than even the scientists had predicted. But one thing we do need help with on a more hopeful note is visualizing how the world could be different.”

    The WORLDING workshop is designed and inspired by the ideas and practices charted in the Co-Creation Studio’s new MIT Press book, “Collective Wisdom: Co-Creation Media for Equity and Justice,” which insists that “No one person, organization, or discipline can determine all the answers alone.”

    The five multidisciplinary teams in this first WORLDING cohort were diverse in approach, technology, and geography. For example, one is an Indigenous-led, land-based, site-specific digital installation that seeks to envision a future in which, once again, the great herds of buffalo walk freely. Another team is creating 3D-modeled biome kits of the water systems in the drought-stricken American West, animated by interviews and data from the communities living there. Yet another team is digitally twinning and then re-imagining a sustainable future in the year 2180 for a multi-player virtual reality game in a Yawanawà Shukuvena Village in the rainforests of Brazil.

    “While our workshop design was focused on developing and researching these incredible, interdisciplinary projects, we also hope that WORLDING can set an example for similar initiatives across global sectors where distances and varied expertise are not limitations but opportunities to learn from one another,” says Srushti Kamat, WORLDING producer and MIT creative media studies/writing grad.

    Most of the talks and presentations from the WORLDING workshop are available as archived videos at cocreationstudio.mit.edu/worlding-videos. More

  • in

    “Drawing Together” is awarded Norman B. Leventhal City Prize

    “Drawing Together,” a social and ecological resilience project in New York City, has been awarded the 2022 Norman B. Leventhal City Prize. 

    The project is a collaboration between MIT faculty, researchers, and students, and Green City Force (GCF), a nonprofit organization in New York City that trains young people for careers with a sustainability focus while they serve local public housing communities.

    The winning proposal was submitted by a team led by MIT’s Miho Mazereeuw, associate professor and director of the Urban Risk Lab; Nicholas de Monchaux, professor and head of the Department of Architecture; Carlos Sandoval Olascoaga PhD ’21, a postdoc in the Department of Architecture and the MIT Schwarzman College of Computing; and Tonya Gayle, executive director of Green City Force.

    Through their Service Corps (affiliated with the national AmeriCorps service and training program), GCF trains young residents of New York City Housing Authority public housing to participate in large-scale environmental and health initiatives in public housing and other local communities.

    The Drawing Together team will collaborate with GCF on its “Eco-Hubs,” an urban farms initiative. In a co-design effort, Drawing Together will create a new digital platform to support community-led planning and design processes for the siting, design, and operation of these spaces. This platform will also facilitate the scaling-up of community engagement with Eco-Hubs.

    The $100,000 triennial prize was established in 2019 by MIT’s Norman B. Leventhal Center for Advanced Urbanism (LCAU) to catalyze innovative interdisciplinary urban design and planning approaches worldwide to improve the environment as well as the quality of life for residents. The first awardee was “Malden River Works for Waterfront Equity and Resilience,” a project for a civic waterfront space in Malden, Massachusetts.

    The 2022 Leventhal City Prize call for submissions sought proposals that focused on digital urbanism — investigating how life in cities can be improved using digital tools that are equitable and responsive to social and environmental conditions. The jury reviewed proposals for projects that offered new urban design and planning solutions using evolving data sources and computational techniques that transform the quality of life in metropolitan environments.

    “Digital urbanism is the intersection between cities, design, and technology and how we can identify new ways to include technology and design in our cities,” says LCAU Director Sarah Williams. “Drawing Together perfectly exemplifies how digital urbanism can assist in the co-development of design solution and improve the quality of life for the public.”

    The team will expand the workforce training currently offered by GCF to incorporate digital skills, with the goal of developing and integrating a sustainability-focused data science curriculum that supports sustainable urban farming within the Eco-Hubs.

    “What is most inspiring about this project is that young people are the writers, rather than passive subjects of urban transformation,” says juror Garrett Dash Nelson, president and head curator of the Norman B. Leventhal Map and Education Center at the Boston Public Library. “By taking the information and design architectures and making them central to youth-driven decisions about environmental planning, this project has the potential to activate a new participatory paradigm that will resonate far beyond New York City.”

    “In addition to community-based digital methods for urban environmental design, this project has the potential to strengthen computational skills in green job opportunities for youth that the Green City Force Eco-Hubs serve,” says juror James Wescoat, MIT Aga Khan Professor Emeritus of Landscape Architecture and Geography. 

    In addition to Nelson and Wescoat, the jury for this year’s competition included Lilian Coral, director of National Strategy and Technology Innovation at the Knight Foundation; Jose Castillo, principal at a|911 and professor of urbanism at CENTRO University; and Nigel Jacob, senior fellow at the Burnes Center for Global Impact at Northeastern University.

    The prize jury identified two finalists. Co-HATY Accelerator Team is a multidisciplinary project that helps provide housing and social support to Ukraine’s displaced residents. The team of urban planners, information technologists, architects, and sociologists are using digital technology to better connect residents across the country with housing opportunities. Team members include Brent D. Ryan, associate professor of urban design and public policy at MIT, and Anastasiya Ponomaryova, urban designer and co-founder of co-HATY.

    “The Ukraine’s team proposal makes a point of the relevance of architecture and planning in the context of humanitarian crises,” says Castillo. “It forces us to deploy techniques, methods, and knowledge to resolve issues ‘on demand.’ Different from a view of architecture and planning as ’slow practices,’ where design processes, research, pedagogies, and buildings take a long time to be deployed and finalized, this research shows an agile but thorough approach to the immediate and the contingent.”

    The second finalist is “Ozymandias: Using Artificial Intelligence to Map Urban Power Structures and Produce Fairer Results for All,” a project led by the Portland, Maine, Society for Architecture. The team behind this project seeks to encourage broader civic participation and positive change in municipal governments. By using emerging AI computation tools to illuminate patterns in power structures and decision-making, the team hopes to highlight correctable yet previously unrecognizable inequities. Principal investigator for the project is Jeff Levine, a lecturer in MIT’s Department of Urban Studies and Planning and a past director of planning and urban development for Portland.

    “The Ozymandias project recognizes an important truth about urban decision-making — that it is neither a bottom-up nor a top-down structure, but a tangled and often obscure network of formal and informal power systems,” says Nelson. “By bringing analytical methods to bear on a perennial question for civic action — who really governs in a democratic system? — the project offers a provocative methodology for examining why nominally participatory urban processes so often fail at producing inclusive and equitable outcomes.” More

  • in

    3 Questions: Janelle Knox-Hayes on producing renewable energy that communities want

    Wind power accounted for 8 percent of U.S. electricity consumption in 2020, and is growing rapidly in the country’s energy portfolio. But some projects, like the now-defunct Cape Wind proposal for offshore power in Massachusetts, have run aground due to local opposition. Are there ways to avoid this in the future?

    MIT professors Janelle Knox-Hayes and Donald Sadoway think so. In a perspective piece published today in the journal Joule, they and eight other professors call for a new approach to wind-power deployment, one that engages communities in a process of “co-design” and adapts solutions to local needs. That process, they say, could spur additional creativity in renewable energy engineering, while making communities more amenable to existing technologies. In addition to Knox-Hayes and Sadoway, the paper’s co-authors are Michael J. Aziz of Harvard University; Dennice F. Gayme of Johns Hopkins University; Kathryn Johnson of the Colorado School of Mines; Perry Li of the University of Minnesota; Eric Loth of the University of Virginia; Lucy Y. Pao of the University of Colorado; Jessica Smith of the Colorado School of Mines; and Sonya Smith of Howard University.

    Knox-Hayes is the Lister Brothers Associate Professor of Economic Geography and Planning in MIT’s Department of Urban Studies and Planning, and an expert on the social and political context of renewable energy adoption; Sadoway is the John F. Elliott Professor of Materials Chemistry in MIT’s Department of Materials Science and Engineering, and a leading global expert on developing new forms of energy storage. MIT News spoke with Knox-Hayes about the topic.

    Q: What is the core problem you are addressing in this article?

    A: It is problematic to act as if technology can only be engineered in a silo and then delivered to society. To solve problems like climate change, we need to see technology as a socio-technical system, which is integrated from its inception into society. From a design standpoint, that begins with conversations, values assessments, and understanding what communities need.  If we can do that, we will have a much easier time delivering the technology in the end.

    What we have seen in the Northeast, in trying to meet our climate objectives and energy efficiency targets, is that we need a lot of offshore wind, and a lot of projects have stalled because a community was saying “no.” And part of the reason communities refuse projects is because they that they’ve never been properly consulted. What form does the technology take, and how would it operate within a community? That conversation can push the boundaries of engineering.

    Q: The new paper makes the case for a new practice of “co-design” in the field of renewable energy. You call this the “STEP” process, standing for all the socio-technical-political-economic issues that an engineering project might encounter. How would you describe the STEP idea? And to what extent would industry be open to new attempts to design an established technology?

    A: The idea is to bring together all these elements in an interdisciplinary process, and engage stakeholders. The process could start with a series of community forums where we bring everyone together, and do a needs assessment, which is a common practice in planning. We might see that offshore wind energy needs to be considered in tandem with the local fishing industry, or servicing the installations, or providing local workforce training. The STEP process allows us to take a step back, and start with planners, policymakers, and community members on the ground.

    It is also about changing the nature of research and practice and teaching, so that students are not just in classrooms, they are also learning to work with communities. I think formalizing that piece is important. We are starting now to really feel the impacts of climate change, so we have to confront the reality of breaking through political boundaries, even in the United States. That is the only way to make this successful, and that comes back to how can technology be co-designed.

    At MIT, innovation is the spirit of the endeavor, and that is why MIT has so many industry partners engaged in initiatives like MITEI [the MIT Energy Initiative] and the Climate Consortium. The value of the partnership is that MIT pushes the boundaries of what is possible. It is the idea that we can advance and we can do something incredible, we can innovate the future. What we are suggesting with this work is that innovation isn’t something that happens exclusively in a laboratory, but something that is very much built in partnership with communities and other stakeholders.

    Q: How much does this approach also apply to solar power, as the other leading type of renewable energy? It seems like communities also wrestle with where to locate solar arrays, or how to compensate homeowners, communities, and other solar hosts for the power they generate.

    A: I would not say solar has the same set of challenges, but rather that renewable technologies face similar challenges. With solar, there are also questions of access and siting. Another big challenge is to create financing models that provide value and opportunity at different scales. For example, is solar viable for tenants in multi-family units who want to engage with clean energy? This is a similar question for micro-wind opportunities for buildings. With offshore wind, a restriction is that if it is within sightlines, it might be problematic. But there are exciting technologies that have enabled deep wind, or the establishment of floating turbines up to 50 kilometers offshore. Storage solutions such as hydro-pneumatic energy storage, gravity energy storage or buoyancy storage can help maintain the transmission rate while reducing the number of transmission lines needed.

    In a lot of communities, the reality of renewables is that if you can generate your own energy, you can establish a level of security and resilience that feeds other benefits. 

    Nevertheless, as demonstrated in the Cape Wind case, technology [may be rejected] unless a community is involved from the beginning. Community involvement also creates other opportunities. Suppose, for example, that high school students are working as interns on renewable energy projects with engineers at great universities from the region. This provides a point of access for families and allows them to take pride in the systems they create.  It gives a further sense of purpose to the technology system, and vests the community in the system’s success. It is the difference between, “It was delivered to me,” and “I built it.” For researchers the article is a reminder that engineering and design are more successful if they are inclusive. Engineering and design processes are also meant to be accessible and fun. More