More stories

  • in

    MIT design would harness 40 percent of the sun’s heat to produce clean hydrogen fuel

    MIT engineers aim to produce totally green, carbon-free hydrogen fuel with a new, train-like system of reactors that is driven solely by the sun.

    In a study appearing today in Solar Energy Journal, the engineers lay out the conceptual design for a system that can efficiently produce “solar thermochemical hydrogen.” The system harnesses the sun’s heat to directly split water and generate hydrogen — a clean fuel that can power long-distance trucks, ships, and planes, while in the process emitting no greenhouse gas emissions.

    Today, hydrogen is largely produced through processes that involve natural gas and other fossil fuels, making the otherwise green fuel more of a “grey” energy source when considered from the start of its production to its end use. In contrast, solar thermochemical hydrogen, or STCH, offers a totally emissions-free alternative, as it relies entirely on renewable solar energy to drive hydrogen production. But so far, existing STCH designs have limited efficiency: Only about 7 percent of incoming sunlight is used to make hydrogen. The results so far have been low-yield and high-cost.

    In a big step toward realizing solar-made fuels, the MIT team estimates its new design could harness up to 40 percent of the sun’s heat to generate that much more hydrogen. The increase in efficiency could drive down the system’s overall cost, making STCH a potentially scalable, affordable option to help decarbonize the transportation industry.

    “We’re thinking of hydrogen as the fuel of the future, and there’s a need to generate it cheaply and at scale,” says the study’s lead author, Ahmed Ghoniem, the Ronald C. Crane Professor of Mechanical Engineering at MIT. “We’re trying to achieve the Department of Energy’s goal, which is to make green hydrogen by 2030, at $1 per kilogram. To improve the economics, we have to improve the efficiency and make sure most of the solar energy we collect is used in the production of hydrogen.”

    Ghoniem’s study co-authors are Aniket Patankar, first author and MIT postdoc; Harry Tuller, MIT professor of materials science and engineering; Xiao-Yu Wu of the University of Waterloo; and Wonjae Choi at Ewha Womans University in South Korea.

    Solar stations

    Similar to other proposed designs, the MIT system would be paired with an existing source of solar heat, such as a concentrated solar plant (CSP) — a circular array of hundreds of mirrors that collect and reflect sunlight to a central receiving tower. An STCH system then absorbs the receiver’s heat and directs it to split water and produce hydrogen. This process is very different from electrolysis, which uses electricity instead of heat to split water.

    At the heart of a conceptual STCH system is a two-step thermochemical reaction. In the first step, water in the form of steam is exposed to a metal. This causes the metal to grab oxygen from steam, leaving hydrogen behind. This metal “oxidation” is similar to the rusting of iron in the presence of water, but it occurs much faster. Once hydrogen is separated, the oxidized (or rusted) metal is reheated in a vacuum, which acts to reverse the rusting process and regenerate the metal. With the oxygen removed, the metal can be cooled and exposed to steam again to produce more hydrogen. This process can be repeated hundreds of times.

    The MIT system is designed to optimize this process. The system as a whole resembles a train of box-shaped reactors running on a circular track. In practice, this track would be set around a solar thermal source, such as a CSP tower. Each reactor in the train would house the metal that undergoes the redox, or reversible rusting, process.

    Each reactor would first pass through a hot station, where it would be exposed to the sun’s heat at temperatures of up to 1,500 degrees Celsius. This extreme heat would effectively pull oxygen out of a reactor’s metal. That metal would then be in a “reduced” state — ready to grab oxygen from steam. For this to happen, the reactor would move to a cooler station at temperatures around 1,000 C, where it would be exposed to steam to produce hydrogen.

    Rust and rails

    Other similar STCH concepts have run up against a common obstacle: what to do with the heat released by the reduced reactor as it is cooled. Without recovering and reusing this heat, the system’s efficiency is too low to be practical.

    A second challenge has to do with creating an energy-efficient vacuum where metal can de-rust. Some prototypes generate a vacuum using mechanical pumps, though the pumps are too energy-intensive and costly for large-scale hydrogen production.

    To address these challenges, the MIT design incorporates several energy-saving workarounds. To recover most of the heat that would otherwise escape from the system, reactors on opposite sides of the circular track are allowed to exchange heat through thermal radiation; hot reactors get cooled while cool reactors get heated. This keeps the heat within the system. The researchers also added a second set of reactors that would circle around the first train, moving in the opposite direction. This outer train of reactors would operate at generally cooler temperatures and would be used to evacuate oxygen from the hotter inner train, without the need for energy-consuming mechanical pumps.

    These outer reactors would carry a second type of metal that can also easily oxidize. As they circle around, the outer reactors would absorb oxygen from the inner reactors, effectively de-rusting the original metal, without having to use energy-intensive vacuum pumps. Both reactor trains would  run continuously and would enerate separate streams of pure hydrogen and oxygen.

    The researchers carried out detailed simulations of the conceptual design, and found that it would significantly boost the efficiency of solar thermochemical hydrogen production, from 7 percent, as previous designs have demonstrated, to 40 percent.

    “We have to think of every bit of energy in the system, and how to use it, to minimize the cost,” Ghoniem says. “And with this design, we found that everything can be powered by heat coming from the sun. It is able to use 40 percent of the sun’s heat to produce hydrogen.”

    “If this can be realized, it could drastically change our energy future — namely, enabling hydrogen production, 24/7,” says Christopher Muhich, an assistant professor of chemical engineering at Arizona State University, who was not involved in the research. “The ability to make hydrogen is the linchpin to producing liquid fuels from sunlight.”

    In the next year, the team will be building a prototype of the system that they plan to test in concentrated solar power facilities at laboratories of the Department of Energy, which is currently funding the project.

    “When fully implemented, this system would be housed in a little building in the middle of a solar field,” Patankar explains. “Inside the building, there could be one or more trains each having about 50 reactors. And we think this could be a modular system, where you can add reactors to a conveyor belt, to scale up hydrogen production.”

    This work was supported by the Centers for Mechanical Engineering Research and Education at MIT and SUSTech. More

  • in

    Printing a new approach to fusion power plant materials

    When Alexander O’Brien sent in his application for graduate school at MIT’s Department of Nuclear Science and Engineering, he had a germ of a research idea already brewing. So when he received a phone call from Professor Mingda Li, he shared it: The student from Arkansas wanted to explore the design of materials that could hold nuclear reactors together.

    Li listened to him patiently and then said, “I think you’d be a really good fit for Professor Ju Li,” O’Brien remembers. Ju Li, the Battelle Energy Alliance Professor in Nuclear Engineering, had wanted to explore 3D printing for nuclear reactors and O’Brien seemed like the right candidate. “At that moment I decided to go to MIT if they accepted me,” O’Brien remembers.

    And they did.

    Under the advisement of Ju Li, the fourth-year doctoral student now explores 3D printing of ceramic-metal composites, materials that can be used to construct fusion power plants.

    An early interest in the sciences

    Growing up in Springdale, Arkansas as a self-described “band nerd,” O’Brien was particularly interested in chemistry and physics. It was one thing to mix baking soda and vinegar to make a “volcano” and quite another to understand why that was happening. “I just enjoyed understanding things on a deeper level and being able to figure out how the world works,” he says.

    At the same time, it was difficult to ignore the economics of energy playing out in his own backyard. When Arkansas, a place that had hardly ever seen earthquakes, started registering them in the wake of fracking in neighboring Oklahoma, it was “like a lightbulb moment” for O’Brien. “I knew this was going to create problems down the line, I knew there’s got to be a better way to do [energy],” he says.

    With the idea of energy alternatives simmering on the back burner, O’Brien enrolled for undergraduate studies at the University of Arkansas. He participated in the school’s marching band — “you show up a week before everyone else and there’s 400 people who automatically become your friends” — and enjoyed the social environment that a large state school could offer.

    O’Brien double-majored in chemical engineering and physics and appreciated “the ability to get your hands dirty on machinery to make things work.” Deciding to begin exploring his interest in energy alternatives, O’Brien researched transition metal dichalcogenides, coatings of which could catalyze the hydrogen evolution reaction and more easily create hydrogen gas, a green energy alternative.

    It was shortly after his sophomore year, however, that O’Brien really found his way in the field of energy alternatives — in nuclear engineering. The American Chemical Society was soliciting student applications for summer study of nuclear chemistry in San Jose, California. O’Brien applied and got accepted. “After years of knowing I wanted to work in green energy but not knowing what that looked like, I very quickly fell in love with [nuclear engineering],” he says. That summer also cemented O’Brien’s decision to attend graduate school. “I came away with this idea of ‘I need to go to grad school because I need to know more about this,’” he says.

    O’Brien especially appreciated an independent project, assigned as part of the summer program: He chose to research nuclear-powered spacecraft. In digging deeper, O’Brien discovered the challenges of powering spacecraft — nuclear was the most viable alternative, but it had to work around extraneous radiation sources in space. Getting to explore national laboratories near San Jose sealed the deal. “I got to visit the National Ignition Facility, which is the big fusion center up there, and just seeing that massive facility entirely designed around this one idea of fusion was kind of mind-blowing to me,” O’Brien says.

    A fresh blueprint for fusion power plants

    O’Brien’s current research at MIT’s Department of Nuclear Science and Engineering (NSE) is equally mind-blowing.

    As the design of new fusion devices kicks into gear, it’s becoming increasingly apparent that the materials we have been using just don’t hold up to the higher temperatures and radiation levels in operating environments, O’Brien says. Additive manufacturing, another term for 3D printing, “opens up a whole new realm of possibilities for what you can do with metals, which is exactly what you’re going to need [to build the next generation of fusion power plants],” he says.

    Metals and ceramics by themselves might not do the job of withstanding high temperatures (750 degrees Celsius is the target) and stresses and radiation, but together they might get there. Although such metal matrix composites have been around for decades, they have been impractical for use in reactors because they’re “difficult to make with any kind of uniformity and really limited in size scale,” O’Brien says. That’s because when you try to place ceramic nanoparticles into a pool of molten metal, they’re going to fall out in whichever direction they want. “3D printing quickly changes that story entirely, to the point where if you want to add these nanoparticles in very specific regions, you have the capability to do that,” O’Brien says.

    O’Brien’s work, which forms the basis of his doctoral thesis and a research paper in the journal Additive Manufacturing, involves implanting metals with ceramic nanoparticles. The net result is a metal matrix composite that is an ideal candidate for fusion devices, especially for the vacuum vessel component, which must be able to withstand high temperatures, extremely corrosive molten salts, and internal helium gas from nuclear transmutation.

    O’Brien’s work focuses on nickel superalloys like Inconel 718, which are especially robust candidates because they can withstand higher operating temperatures while retaining strength. Helium embrittlement, where bubbles of helium caused by fusion neutrons lead to weakness and failure, is a problem with Inconel 718, but composites exhibit potential to overcome this challenge.

    To create the composites, first a mechanical milling process coats the ceramic onto the metal particles. The ceramic nanoparticles act as reinforcing strength agents, especially at high temperatures, and make materials last longer. The nanoparticles also absorb helium and radiation defects when uniformly dispersed, which prevent these damage agents from all getting to the grain boundaries.

    The composite then goes through a 3D printing process called powder bed fusion (non-nuclear fusion), where a laser passes over a bed of this powder melting it into desired shapes. “By coating these particles with the ceramic and then only melting very specific regions, we keep the ceramics in the areas that we want, and then you can build up and have a uniform structure,” O’Brien says.

    Printing an exciting future

    The 3D printing of nuclear materials exhibits such promise that O’Brien is looking at pursuing the prospect after his doctoral studies. “The concept of these metal matrix composites and how they can enhance material property is really interesting,” he says. Scaling it up commercially through a startup company is on his radar.

    For now, O’Brien is enjoying research and catching an occasional Broadway show with his wife. While the band nerd doesn’t pick up his saxophone much anymore, he does enjoy driving up to New Hampshire and going backpacking. “That’s my newfound hobby,” O’Brien says, “since I started grad school.” More

  • in

    Desalination system could produce freshwater that is cheaper than tap water

    Engineers at MIT and in China are aiming to turn seawater into drinking water with a completely passive device that is inspired by the ocean, and powered by the sun.

    In a paper appearing today in the journal Joule, the team outlines the design for a new solar desalination system that takes in saltwater and heats it with natural sunlight.

    The configuration of the device allows water to circulate in swirling eddies, in a manner similar to the much larger “thermohaline” circulation of the ocean. This circulation, combined with the sun’s heat, drives water to evaporate, leaving salt behind. The resulting water vapor can then be condensed and collected as pure, drinkable water. In the meantime, the leftover salt continues to circulate through and out of the device, rather than accumulating and clogging the system.

    The new system has a higher water-production rate and a higher salt-rejection rate than all other passive solar desalination concepts currently being tested.

    The researchers estimate that if the system is scaled up to the size of a small suitcase, it could produce about 4 to 6 liters of drinking water per hour and last several years before requiring replacement parts. At this scale and performance, the system could produce drinking water at a rate and price that is cheaper than tap water.

    “For the first time, it is possible for water, produced by sunlight, to be even cheaper than tap water,” says Lenan Zhang, a research scientist in MIT’s Device Research Laboratory.

    The team envisions a scaled-up device could passively produce enough drinking water to meet the daily requirements of a small family. The system could also supply off-grid, coastal communities where seawater is easily accessible.

    Zhang’s study co-authors include MIT graduate student Yang Zhong and Evelyn Wang, the Ford Professor of Engineering, along with Jintong Gao, Jinfang You, Zhanyu Ye, Ruzhu Wang, and Zhenyuan Xu of Shanghai Jiao Tong University in China.

    A powerful convection

    The team’s new system improves on their previous design — a similar concept of multiple layers, called stages. Each stage contained an evaporator and a condenser that used heat from the sun to passively separate salt from incoming water. That design, which the team tested on the roof of an MIT building, efficiently converted the sun’s energy to evaporate water, which was then condensed into drinkable water. But the salt that was left over quickly accumulated as crystals that clogged the system after a few days. In a real-world setting, a user would have to place stages on a frequent basis, which would significantly increase the system’s overall cost.

    In a follow-up effort, they devised a solution with a similar layered configuration, this time with an added feature that helped to circulate the incoming water as well as any leftover salt. While this design prevented salt from settling and accumulating on the device, it desalinated water at a relatively low rate.

    In the latest iteration, the team believes it has landed on a design that achieves both a high water-production rate, and high salt rejection, meaning that the system can quickly and reliably produce drinking water for an extended period. The key to their new design is a combination of their two previous concepts: a multistage system of evaporators and condensers, that is also configured to boost the circulation of water — and salt — within each stage.

    “We introduce now an even more powerful convection, that is similar to what we typically see in the ocean, at kilometer-long scales,” Xu says.

    The small circulations generated in the team’s new system is similar to the “thermohaline” convection in the ocean — a phenomenon that drives the movement of water around the world, based on differences in sea temperature (“thermo”) and salinity (“haline”).

    “When seawater is exposed to air, sunlight drives water to evaporate. Once water leaves the surface, salt remains. And the higher the salt concentration, the denser the liquid, and this heavier water wants to flow downward,” Zhang explains. “By mimicking this kilometer-wide phenomena in small box, we can take advantage of this feature to reject salt.”

    Tapping out

    The heart of the team’s new design is a single stage that resembles a thin box, topped with a dark material that efficiently absorbs the heat of the sun. Inside, the box is separated into a top and bottom section. Water can flow through the top half, where the ceiling is lined with an evaporator layer that uses the sun’s heat to warm up and evaporate any water in direct contact. The water vapor is then funneled to the bottom half of the box, where a condensing layer air-cools the vapor into salt-free, drinkable liquid. The researchers set the entire box at a tilt within a larger, empty vessel, then attached a tube from the top half of the box down through the bottom of the vessel, and floated the vessel in saltwater.

    In this configuration, water can naturally push up through the tube and into the box, where the tilt of the box, combined with the thermal energy from the sun, induces the water to swirl as it flows through. The small eddies help to bring water in contact with the upper evaporating layer while keeping salt circulating, rather than settling and clogging.

    The team built several prototypes, with one, three, and 10 stages, and tested their performance in water of varying salinity, including natural seawater and water that was seven times saltier.

    From these tests, the researchers calculated that if each stage were scaled up to a square meter, it would produce up to 5 liters of drinking water per hour, and that the system could desalinate water without accumulating salt for several years. Given this extended lifetime, and the fact that the system is entirely passive, requiring no electricity to run, the team estimates that the overall cost of running the system would be cheaper than what it costs to produce tap water in the United States.

    “We show that this device is capable of achieving a long lifetime,” Zhong says. “That means that, for the first time, it is possible for drinking water produced by sunlight to be cheaper than tap water. This opens up the possibility for solar desalination to address real-world problems.”

    “This is a very innovative approach that effectively mitigates key challenges in the field of desalination,” says Guihua Yu, who develops sustainable water and energy storage systems at the University of Texas at Austin, and was not involved in the research. “The design is particularly beneficial for regions struggling with high-salinity water. Its modular design makes it highly suitable for household water production, allowing for scalability and adaptability to meet individual needs.”

    Funding for the research at Shanghai Jiao Tong University was supported by the Natural Science Foundation of China. More

  • in

    Desirée Plata appointed co-director of the MIT Climate and Sustainability Consortium

    Desirée Plata, associate professor of civil and environmental engineering at MIT, has been named co-director of the MIT Climate and Sustainability Consortium (MCSC), effective Sept. 1. Plata will serve on the MCSC’s leadership team alongside Anantha P. Chandrakasan, dean of the MIT School of Engineering, the Vannevar Bush Professor of Electrical Engineering and Computer Science, and MCSC chair; Elsa Olivetti, the Jerry McAfee Professor in Engineering, a professor of materials science and engineering, and associate dean of engineering, and MCSC co-director; and Jeremy Gregory, MCSC executive director.Plata succeeds Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, who has served as co-director since the MCSC’s launch in January 2021. Grossman, who played a central role in the ideation and launch of the MCSC, will continue his work with the MCSC as strategic advisor.“Professor Plata is a valued member of the MIT community. She brings a deep understanding of and commitment to climate and sustainability initiatives at MIT, as well as extensive experience working with industry, to her new role within the MCSC,” says Chandrakasan. The MIT Climate and Sustainability Consortium is an academia-industry collaboration working to accelerate implementation of large-scale solutions across sectors of the global economy. It aims to lay the groundwork for one critical aspect of MIT’s continued and intensified commitment to climate: helping large companies usher in, adapt to, and prosper in a decarbonized world.“We are thrilled to bring Professor Plata’s knowledge, vision, and passion to our leadership team,” says Olivetti. “Her experience developing sustainable technologies that have the potential to improve the environment and reduce the impacts of climate change will help move our work forward in meaningful ways. We have valued Professor Plata’s contributions to the consortium and look forward to continuing our work with her.”Plata played a pivotal role in the creation and launch of the MCSC’s Climate and Sustainability Scholars Program and its yearlong course for MIT rising juniors and seniors — an effort that she and Olivetti were recently recognized for with the Class of 1960 Innovation in Education Fellowship. She has also been a member of the MCSC’s Faculty Steering Committee since the consortium’s launch, helping to shape and guide its vision and work.Plata is a dedicated researcher, educator, and mentor. A member of MIT’s faculty since 2018, Plata and her team at the Plata Lab are helping to guide industry to more environmentally sustainable practices and develop new ways to protect the health of the planet — using chemistry to understand the impact that industrial materials and processes have on the environment. By coupling devices that simulate industrial systems with computation, she helps industry develop more environmentally friendly practices.To celebrate her work in the lab, classroom, and community, Plata has received many awards and honors. In 2020, she won MIT’s prestigious Harold E. Edgerton Faculty Achievement Award, recognizing her innovative approach to environmentally sustainable industrial practices, her inspirational teaching and mentoring, and her service to MIT and the community. She is a two-time National Academy of Sciences Kavli Frontiers of Science Fellow, a two-time National Academy of Engineers Frontiers of Engineering Fellow, and a Caltech Young Investigator Sustainability Fellow. She has also won the ACS C. Ellen Gonter Environmental Chemistry Award, an NSF CAREER award, and the 2016 Odebrecht Award for Sustainable Development.Beyond her work in the academic space, Plata is co-founder of two climate- and energy-related startups: Nth Cycle and Moxair, illustrating her commitment to translating academic innovations for real-world implementation — a core value of the MCSC.Plata received her bachelor’s degree from Union College and her PhD from the MIT and Woods Hole Oceanographic Institution (MIT-WHOI) joint program in oceanography/applied ocean science and engineering. After receiving her doctorate, Plata held positions at Mount Holyoke College, Duke University, and Yale University.  More

  • in

    Pixel-by-pixel analysis yields insights into lithium-ion batteries

    By mining data from X-ray images, researchers at MIT, Stanford University, SLAC National Accelerator, and the Toyota Research Institute have made significant new discoveries about the reactivity of lithium iron phosphate, a material used in batteries for electric cars and in other rechargeable batteries.

    The new technique has revealed several phenomena that were previously impossible to see, including variations in the rate of lithium intercalation reactions in different regions of a lithium iron phosphate nanoparticle.

    The paper’s most significant practical finding — that these variations in reaction rate are correlated with differences in the thickness of the carbon coating on the surface of the particles — could lead to improvements in the efficiency of charging and discharging such batteries.

    “What we learned from this study is that it’s the interfaces that really control the dynamics of the battery, especially in today’s modern batteries made from nanoparticles of the active material. That means that our focus should really be on engineering that interface,” says Martin Bazant, the E.G. Roos Professor of Chemical Engineering and a professor of mathematics at MIT, who is the senior author of the study.

    This approach to discovering the physics behind complex patterns in images could also be used to gain insights into many other materials, not only other types of batteries but also biological systems, such as dividing cells in a developing embryo.

    “What I find most exciting about this work is the ability to take images of a system that’s undergoing the formation of some pattern, and learning the principles that govern that,” Bazant says.

    Hongbo Zhao PhD ’21, a former MIT graduate student who is now a postdoc at Princeton University, is the lead author of the new study, which appears today in Nature. Other authors include Richard Bratz, the Edwin R. Gilliland Professor of Chemical Engineering at MIT; William Chueh, an associate professor of materials science and engineering at Stanford and director of the SLAC-Stanford Battery Center; and Brian Storey, senior director of Energy and Materials at the Toyota Research Institute.

    “Until now, we could make these beautiful X-ray movies of battery nanoparticles at work, but it was challenging to measure and understand subtle details of how they function because the movies were so information-rich,” Chueh says. “By applying image learning to these nanoscale movies, we can extract insights that were not previously possible.”

    Modeling reaction rates

    Lithium iron phosphate battery electrodes are made of many tiny particles of lithium iron phosphate, surrounded by an electrolyte solution. A typical particle is about 1 micron in diameter and about 100 nanometers thick. When the battery discharges, lithium ions flow from the electrolyte solution into the material by an electrochemical reaction known as ion intercalation. When the battery charges, the intercalation reaction is reversed, and ions flow in the opposite direction.

    “Lithium iron phosphate (LFP) is an important battery material due to low cost, a good safety record, and its use of abundant elements,” Storey says. “We are seeing an increased use of LFP in the EV market, so the timing of this study could not be better.”

    Before the current study, Bazant had done a great deal of theoretical modeling of patterns formed by lithium-ion intercalation. Lithium iron phosphate prefers to exist in one of two stable phases: either full of lithium ions or empty. Since 2005, Bazant has been working on mathematical models of this phenomenon, known as phase separation, which generates distinctive patterns of lithium-ion flow driven by intercalation reactions. In 2015, while on sabbatical at Stanford, he began working with Chueh to try to interpret images of lithium iron phosphate particles from scanning tunneling X-ray microscopy.

    Using this type of microscopy, the researchers can obtain images that reveal the concentration of lithium ions, pixel-by-pixel, at every point in the particle. They can scan the particles several times as the particles charge or discharge, allowing them to create movies of how lithium ions flow in and out of the particles.

    In 2017, Bazant and his colleagues at SLAC received funding from the Toyota Research Institute to pursue further studies using this approach, along with other battery-related research projects.

    By analyzing X-ray images of 63 lithium iron phosphate particles as they charged and discharged, the researchers found that the movement of lithium ions within the material could be nearly identical to the computer simulations that Bazant had created earlier. Using all 180,000 pixels as measurements, the researchers trained the computational model to produce equations that accurately describe the nonequilibrium thermodynamics and reaction kinetics of the battery material.
    By analyzing X-ray images of lithium iron phosphate particles as they charged and discharged, researchers have shown that the movement of lithium ions within the material was nearly identical to computer simulations they had created earlier.  In each pair, the actual particles are on the left and the simulations are on the right.Courtesy of the researchers

    “Every little pixel in there is jumping from full to empty, full to empty. And we’re mapping that whole process, using our equations to understand how that’s happening,” Bazant says.

    The researchers also found that the patterns of lithium-ion flow that they observed could reveal spatial variations in the rate at which lithium ions are absorbed at each location on the particle surface.

    “It was a real surprise to us that we could learn the heterogeneities in the system — in this case, the variations in surface reaction rate — simply by looking at the images,” Bazant says. “There are regions that seem to be fast and others that seem to be slow.”

    Furthermore, the researchers showed that these differences in reaction rate were correlated with the thickness of the carbon coating on the surface of the lithium iron phosphate particles. That carbon coating is applied to lithium iron phosphate to help it conduct electricity — otherwise the material would conduct too slowly to be useful as a battery.

    “We discovered at the nano scale that variation of the carbon coating thickness directly controls the rate, which is something you could never figure out if you didn’t have all of this modeling and image analysis,” Bazant says.

    The findings also offer quantitative support for a hypothesis Bazant formulated several years ago: that the performance of lithium iron phosphate electrodes is limited primarily by the rate of coupled ion-electron transfer at the interface between the solid particle and the carbon coating, rather than the rate of lithium-ion diffusion in the solid.

    Optimized materials

    The results from this study suggest that optimizing the thickness of the carbon layer on the electrode surface could help researchers to design batteries that would work more efficiently, the researchers say.

    “This is the first study that’s been able to directly attribute a property of the battery material with a physical property of the coating,” Bazant says. “The focus for optimizing and designing batteries should be on controlling reaction kinetics at the interface of the electrolyte and electrode.”

    “This publication is the culmination of six years of dedication and collaboration,” Storey says. “This technique allows us to unlock the inner workings of the battery in a way not previously possible. Our next goal is to improve battery design by applying this new understanding.”  

    In addition to using this type of analysis on other battery materials, Bazant anticipates that it could be useful for studying pattern formation in other chemical and biological systems.

    This work was supported by the Toyota Research Institute through the Accelerated Materials Design and Discovery program. More

  • in

    Jackson Jewett wants to design buildings that use less concrete

    After three years leading biking tours through U.S. National Parks, Jackson Jewett decided it was time for a change.

    “It was a lot of fun, but I realized I missed buildings,” says Jewett. “I really wanted to be a part of that industry, learn more about it, and reconnect with my roots in the built environment.”

    Jewett grew up in California in what he describes as a “very creative household.”

    “I remember making very elaborate Halloween costumes with my parents, making fun dioramas for school projects, and building forts in the backyard, that kind of thing,” Jewett explains.

    Both of his parents have backgrounds in design; his mother studied art in college and his father is a practicing architect. From a young age, Jewett was interested in following in his father’s footsteps. But when he arrived at the University of California at Berkeley in the midst of the 2009 housing crash, it didn’t seem like the right time. Jewett graduated with a degree in cognitive science and a minor in history of architecture. And even as he led tours through Yellowstone, the Grand Canyon, and other parks, buildings were in the back of his mind.

    It wasn’t just the built environment that Jewett was missing. He also longed for the rigor and structure of an academic environment.

    Jewett arrived at MIT in 2017, initially only planning on completing the master’s program in civil and environmental engineering. It was then that he first met Josephine Carstensen, a newly hired lecturer in the department. Jewett was interested in Carstensen’s work on “topology optimization,” which uses algorithms to design structures that can achieve their performance requirements while using only a limited amount of material. He was particularly interested in applying this approach to concrete design, and he collaborated with Carstensen to help demonstrate its viability.

    After earning his master’s, Jewett spent a year and a half as a structural engineer in New York City. But when Carstensen was hired as a professor, she reached out to Jewett about joining her lab as a PhD student. He was ready for another change.

    Now in the third year of his PhD program, Jewett’s dissertation work builds upon his master’s thesis to further refine algorithms that can design building-scale concrete structures that use less material, which would help lower carbon emissions from the construction industry. It is estimated that the concrete industry alone is responsible for 8 percent of global carbon emissions, so any efforts to reduce that number could help in the fight against climate change.

    Implementing new ideas

    Topology optimization is a small field, with the bulk of the prior work being computational without any experimental verification. The work Jewett completed for his master’s thesis was just the start of a long learning process.

    “I do feel like I’m just getting to the part where I can start implementing my own ideas without as much support as I’ve needed in the past,” says Jewett. “In the last couple of months, I’ve been working on a reinforced concrete optimization algorithm that I hope will be the cornerstone of my thesis.”

    The process of fine-tuning a generative algorithm is slow going, particularly when tackling a multifaceted problem.

    “It can take days or usually weeks to take a step toward making it work as an entire integrated system,” says Jewett. “The days when that breakthrough happens and I can see the algorithm converging on a solution that makes sense — those are really exciting moments.”

    By harnessing computational power, Jewett is searching for materially efficient components that can be used to make up structures such as bridges or buildings. These are other constraints to consider as well, particularly ensuring that the cost of manufacturing isn’t too high. Having worked in the industry before starting the PhD program, Jewett has an eye toward doing work that can be feasibly implemented.

    Inspiring others

    When Jewett first visited MIT campus, he was drawn in by the collaborative environment of the institute and the students’ drive to learn. Now, he’s a part of that process as a teaching assistant and a supervisor in the Undergraduate Research Opportunities Program.  

    Working as a teaching assistant isn’t a requirement for Jewett’s program, but it’s been one of his favorite parts of his time at MIT.

    “The MIT undergrads are so gifted and just constantly impress me,” says Jewett. “Being able to teach, especially in the context of what MIT values is a lot of fun. And I learn, too. My coding practices have gotten so much better since working with undergrads here.”

    Jewett’s experiences have inspired him to pursue a career in academia after the completion of his program, which he expects to complete in the spring of 2025. But he’s making sure to take care of himself along the way. He still finds time to plan cycling trips with his friends and has gotten into running ever since moving to Boston. So far, he’s completed two marathons.

    “It’s so inspiring to be in a place where so many good ideas are just bouncing back and forth all over campus,” says Jewett. “And on most days, I remember that and it inspires me. But it’s also the case that academics is hard, PhD programs are hard, and MIT — there’s pressure being here, and sometimes that pressure can feel like it’s working against you.”

    Jewett is grateful for the mental health resources that MIT provides students. While he says it can be imperfect, it’s been a crucial part of his journey.

    “My PhD thesis will be done in 2025, but the work won’t be done. The time horizon of when these things need to be implemented is relatively short if we want to make an impact before global temperatures have already risen too high. My PhD research will be developing a framework for how that could be done with concrete construction, but I’d like to keep thinking about other materials and construction methods even after this project is finished.” More

  • in

    Harnessing hydrogen’s potential to address long-haul trucking emissions

    The transportation of goods forms the basis of today’s globally distributed supply chains, and long-haul trucking is a central and critical link in this complex system. To meet climate goals around the world, it is necessary to develop decarbonized solutions to replace diesel powertrains, but given trucking’s indispensable and vast role, these solutions must be both economically viable and practical to implement. While hydrogen-based options, as an alternative to diesel, have the potential to become a promising decarbonization strategy, hydrogen has significant limitations when it comes to delivery and refueling.These roadblocks, combined with hydrogen’s compelling decarbonization potential, are what motivated a team of MIT researchers led by William H. Green, the Hoyt Hottel Professor in Chemical Engineering, to explore a cost-effective way to transport and store hydrogen using liquid organic hydrogen carriers (LOHCs). The team is developing a disruptive technology that allows LOHCs to not only deliver the hydrogen to the trucks, but also store the hydrogen onboard.Their findings were recently published in Energy and Fuels, a peer-reviewed journal of the American Chemical Society, in a paper titled “Perspective on Decarbonizing Long-Haul Trucks Using Onboard Dehydrogenation of Liquid Organic Hydrogen Carriers.” The MIT team is led by Green, and includes graduate students Sayandeep Biswas and Kariana Moreno Sader. Their research is supported by the MIT Climate and Sustainability Consortium (MCSC) through its Seed Awards program and MathWorks, and ties into the work within the MCSC’s Tough Transportation Modes focus area.An “onboard” approachCurrently, LOHCs, which work within existing retail fuel distribution infrastructure, are used to deliver hydrogen gas to refueling stations, where it is then compressed and delivered onto trucks equipped with hydrogen fuel cell or combustion engines.“This current approach incurs significant energy loss due to endothermic hydrogen release and compression at the retail station” says Green. “To address this, our work is exploring a more efficient application, with LOHC-powered trucks featuring onboard dehydrogenation.”To implement such a design, the team aims to modify the truck’s powertrain (the system inside a vehicle that produces the energy to propel it forward) to allow onboard hydrogen release from the LOHCs, using waste heat from the engine exhaust to power the “dehydrogenation” process. 

    Proposed process flow diagram for onboard dehydrogenation. Component sizes are not to scale and have been enlarged for illustrative purposes.

    Image courtesy of the Green Group.

    Previous item
    Next item

    The dehydrogenation process happens within a high-temperature reactor, which continually receives hydrogen-rich LOHCs from the fuel storage tank. Hydrogen released from the reactor is fed to the engine, after passing through a separator to remove any lingering LOHC. On its way to the engine, some of the hydrogen gets diverted to a burner to heat the reactor, which helps to augment the reactor heating provided by the engine exhaust gases.Acknowledging and addressing hydrogen’s drawbacksThe team’s paper underscores that current uses of hydrogen, including LOHC systems, to decarbonize the trucking sector have drawbacks. Regardless of technical improvements, these existing options remain prohibitively expensive due to the high cost of retail hydrogen delivery.“We present an alternative option that addresses a lot of the challenges and seems to be a viable way in which hydrogen can be used in this transportation context,” says Biswas, who was recently elected to the MIT Martin Family Society of Fellows for Sustainability for his work in this area. “Hydrogen, when used through LOHCs, has clear benefits for long-hauling, such as scalability and fast refueling time. There is also an enormous potential to improve delivery and refueling to further reduce cost, and our system is working to do that.”“Utilizing hydrogen is an option that is globally accessible, and could be extended to countries like the one where I am from,” says Moreno Sader, who is originally from Colombia. “Since it synergizes with existing infrastructure, large upfront investments are not necessary. The global applicability is huge.”Moreno Sader is a MathWorks Fellow, and, along with the rest of the team, has been using MATLAB tools to develop models and simulations for this work.Different sectors coming togetherDecarbonizing transportation modes, including long-haul trucking, requires expertise and perspectives from different industries — an approach that resonates with the MCSC’s mission.The team’s groundbreaking research into LOHC-powered trucking is among several projects supported by the MCSC within its Tough Transportation Modes focus area, led by postdoc Impact Fellow Danika MacDonell. The MCSC-supported projects were chosen to tackle a complementary set of societally important and industry-relevant challenges to decarbonizing heavy-duty transportation, which span a range of sectors and solution pathways. Other projects focus, for example, on logistics optimization for electrified trucking fleets, or air quality and climate impacts of ammonia-powered shipping.The MCSC works to support and amplify the impact of these projects by engaging the research teams with industry partners from a variety of sectors. In addition, the MCSC pursues a collective multisectoral approach to decarbonizing transportation by facilitating shared learning across the different projects through regular cross-team discussion.The research led by Green celebrates this cross-sector theme by integrating industry-leading computing tools provided by MathWorks with cutting-edge developments in chemical engineering, as well as industry-leading commercial LOHC reactor demonstrations, to build a compelling vision for cost-effective LOHC-powered trucking.The review and research conducted in the Energy and Fuels article lays the groundwork for further investigations into LOHC-powered truck design. The development of such a vehicle — with a power-dense, efficient, and robust onboard hydrogen release system — requires dedicated investigations and further optimization of core components geared specifically toward the trucking application. More

  • in

    Technologies for water conservation and treatment move closer to commercialization

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) provides Solutions Grants to help MIT researchers launch startup companies or products to commercialize breakthrough technologies in water and food systems. The Solutions Grant Program began in 2015 and is supported by Community Jameel. In addition to one-year, renewable grants of up to $150,000, the program also matches grantees with industry mentors and facilitates introductions to potential investors. Since its inception, the J-WAFS Solutions Program has awarded over $3 million in funding to the MIT community. Numerous startups and products, including a portable desalination device and a company commercializing a novel food safety sensor, have spun out of this support.

    The 2023 J-WAFS Solutions Grantees are Professor C. Cem Tasan of the Department of Materials Science and Engineering and Professor Andrew Whittle of the Department of Civil and Environmental Engineering. Tasan’s project involves reducing water use in steel manufacturing and Whittle’s project tackles harmful algal blooms in water. Project work commences this September.

    “This year’s Solutions Grants are being award to professors Tasan and Whittle to help commercialize technologies they have been developing at MIT,” says J-WAFS executive director Renee J. Robins. “With J-WAFS’ support, we hope to see the teams move their technologies from the lab to the market, so they can have a beneficial impact on water use and water quality challenges,” Robins adds.

    Reducing water consumption by solid-state steelmaking

    Water is a major requirement for steel production. The steel industry ranks fourth in industrial freshwater consumption worldwide, since large amounts of water are needed mainly for cooling purposes in the process. Unfortunately, a strong correlation has also been shown to exist between freshwater use in steelmaking and water contamination. As the global demand for steel increases and freshwater availability decreases due to climate change, improved methods for more sustainable steel production are needed.

    A strategy to reduce the water footprint of steelmaking is to explore steel recycling processes that avoid liquid metal processing. With this motivation, Cem Tasan, the Thomas B. King Associate Professor of Metallurgy in the Department of Materials Science and Engineering, and postdoc Onur Guvenc PhD created a new process called Scrap Metal Consolidation (SMC). SMC is based on a well-established metal forming process known as roll bonding. Conventionally, roll bonding requires intensive prior surface treatment of the raw material, specific atmospheric conditions, and high deformation levels. Tasan and Guvenc’s research revealed that SMC can overcome these restrictions by enabling the solid-state bonding of scrap into a sheet metal form, even when the surface quality, atmospheric conditions, and deformation levels are suboptimal. Through lab-scale proof-of-principle investigations, they have already identified SMC process conditions and validated the mechanical formability of resulting steel sheets, focusing on mild steel, the most common sheet metal scrap.

    The J-WAFS Solutions Grant will help the team to build customer product prototypes, design the processing unit, and develop a scale-up strategy and business model. By simultaneously decreasing water usage, energy demand, contamination risk, and carbon dioxide burden, SMC has the potential to decrease the energy need for steel recycling by up to 86 percent, as well as reduce the linked carbon dioxide emissions and safeguard the freshwater resources that would otherwise be directed to industrial consumption. 

    Detecting harmful algal blooms in water before it’s too late

    Harmful algal blooms (HABs) are a growing problem in both freshwater and saltwater environments worldwide, causing an estimated $13 billion in annual damage to drinking water, water for recreational use, commercial fishing areas, and desalination activities. HABs pose a threat to both human health and aquaculture, thereby threatening the food supply. Toxins in HABs are produced by some cyanobacteria, or blue-green algae, whose communities change in composition in response to eutrophication from agricultural runoff, sewer overflows, or other events. Mitigation of risks from HABs are most effective when there is advance warning of these changes in algal communities. 

    Most in situ measurements of algae are based on fluorescence spectroscopy that is conducted with LED-induced fluorescence (LEDIF) devices, or probes that induce fluorescence of specific algal pigments using LED light sources. While LEDIFs provide reasonable estimates of concentrations of individual pigments, they lack resolution to discriminate algal classes within complex mixtures found in natural water bodies. In prior research, Andrew Whittle, the Edmund K. Turner Professor of Civil and Environmental Engineering, worked with colleagues to design REMORA, a low-cost, field-deployable prototype spectrofluorometer for measuring induced fluorescence. This research was part of a collaboration between MIT and the AMS Institute. Whittle and the team successfully trained a machine learning model to discriminate and quantify cell concentrations for mixtures of different algal groups in water samples through an extensive laboratory calibration program using various algae cultures. The group demonstrated these capabilities in a series of field measurements at locations in Boston and Amsterdam. 

    Whittle will work with Fábio Duarte of the Department of Urban Studies and Planning, the Senseable City Lab, and MIT’s Center for Real Estate to refine the design of REMORA. They will develop software for autonomous operation of the sensor that can be deployed remotely on mobile vessels or platforms to enable high-resolution spatiotemporal monitoring for harmful algae. Sensor commercialization will hopefully be able to exploit the unique capabilities of REMORA for long-term monitoring applications by water utilities, environmental regulatory agencies, and water-intensive industries.  More