More stories

  • in

    Study suggests energy-efficient route to capturing and converting CO2

    In the race to draw down greenhouse gas emissions around the world, scientists at MIT are looking to carbon-capture technologies to decarbonize the most stubborn industrial emitters.

    Steel, cement, and chemical manufacturing are especially difficult industries to decarbonize, as carbon and fossil fuels are inherent ingredients in their production. Technologies that can capture carbon emissions and convert them into forms that feed back into the production process could help to reduce the overall emissions from these “hard-to-abate” sectors.

    But thus far, experimental technologies that capture and convert carbon dioxide do so as two separate processes, that themselves require a huge amount of energy to run. The MIT team is looking to combine the two processes into one integrated and far more energy-efficient system that could potentially run on renewable energy to both capture and convert carbon dioxide from concentrated, industrial sources.

    In a study appearing today in ACS Catalysis, the researchers reveal the hidden functioning of how carbon dioxide can be both captured and converted through a single electrochemical process. The process involves using an electrode to attract carbon dioxide released from a sorbent, and to convert it into a reduced, reusable form.

    Others have reported similar demonstrations, but the mechanisms driving the electrochemical reaction have remained unclear. The MIT team carried out extensive experiments to determine that driver, and found that, in the end, it came down to the partial pressure of carbon dioxide. In other words, the more pure carbon dioxide that makes contact with the electrode, the more efficiently the electrode can capture and convert the molecule.

    Knowledge of this main driver, or “active species,” can help scientists tune and optimize similar electrochemical systems to efficiently capture and convert carbon dioxide in an integrated process.

    The study’s results imply that, while these electrochemical systems would probably not work for very dilute environments (for instance, to capture and convert carbon emissions directly from the air), they would be well-suited to the highly concentrated emissions generated by industrial processes, particularly those that have no obvious renewable alternative.

    “We can and should switch to renewables for electricity production. But deeply decarbonizing industries like cement or steel production is challenging and will take a longer time,” says study author Betar Gallant, the Class of 1922 Career Development Associate Professor at MIT. “Even if we get rid of all our power plants, we need some solutions to deal with the emissions from other industries in the shorter term, before we can fully decarbonize them. That’s where we see a sweet spot, where something like this system could fit.”

    The study’s MIT co-authors are lead author and postdoc Graham Leverick and graduate student Elizabeth Bernhardt, along with Aisyah Illyani Ismail, Jun Hui Law, Arif Arifutzzaman, and Mohamed Kheireddine Aroua of Sunway University in Malaysia.

    Breaking bonds

    Carbon-capture technologies are designed to capture emissions, or “flue gas,” from the smokestacks of power plants and manufacturing facilities. This is done primarily using large retrofits to funnel emissions into chambers filled with a “capture” solution — a mix of amines, or ammonia-based compounds, that chemically bind with carbon dioxide, producing a stable form that can be separated out from the rest of the flue gas.

    High temperatures are then applied, typically in the form of fossil-fuel-generated steam, to release the captured carbon dioxide from its amine bond. In its pure form, the gas can then be pumped into storage tanks or underground, mineralized, or further converted into chemicals or fuels.

    “Carbon capture is a mature technology, in that the chemistry has been known for about 100 years, but it requires really large installations, and is quite expensive and energy-intensive to run,” Gallant notes. “What we want are technologies that are more modular and flexible and can be adapted to more diverse sources of carbon dioxide. Electrochemical systems can help to address that.”

    Her group at MIT is developing an electrochemical system that both recovers the captured carbon dioxide and converts it into a reduced, usable product. Such an integrated system, rather than a decoupled one, she says, could be entirely powered with renewable electricity rather than fossil-fuel-derived steam.

    Their concept centers on an electrode that would fit into existing chambers of carbon-capture solutions. When a voltage is applied to the electrode, electrons flow onto the reactive form of carbon dioxide and convert it to a product using protons supplied from water. This makes the sorbent available to bind more carbon dioxide, rather than using steam to do the same.

    Gallant previously demonstrated this electrochemical process could work to capture and convert carbon dioxide into a solid carbonate form.

    “We showed that this electrochemical process was feasible in very early concepts,” she says. “Since then, there have been other studies focused on using this process to attempt to produce useful chemicals and fuels. But there’s been inconsistent explanations of how these reactions work, under the hood.”

    Solo CO2

    In the new study, the MIT team took a magnifying glass under the hood to tease out the specific reactions driving the electrochemical process. In the lab, they generated amine solutions that resemble the industrial capture solutions used to extract carbon dioxide from flue gas. They methodically altered various properties of each solution, such as the pH, concentration, and type of amine, then ran each solution past an electrode made from silver — a metal that is widely used in electrolysis studies and known to efficiently convert carbon dioxide to carbon monoxide. They then measured the concentration of carbon monoxide that was converted at the end of the reaction, and compared this number against that of every other solution they tested, to see which parameter had the most influence on how much carbon monoxide was produced.

    In the end, they found that what mattered most was not the type of amine used to initially capture carbon dioxide, as many have suspected. Instead, it was the concentration of solo, free-floating carbon dioxide molecules, which avoided bonding with amines but were nevertheless present in the solution. This “solo-CO2” determined the concentration of carbon monoxide that was ultimately produced.

    “We found that it’s easier to react this ‘solo’ CO2, as compared to CO2 that has been captured by the amine,” Leverick offers. “This tells future researchers that this process could be feasible for industrial streams, where high concentrations of carbon dioxide could efficiently be captured and converted into useful chemicals and fuels.”

    “This is not a removal technology, and it’s important to state that,” Gallant stresses. “The value that it does bring is that it allows us to recycle carbon dioxide some number of times while sustaining existing industrial processes, for fewer associated emissions. Ultimately, my dream is that electrochemical systems can be used to facilitate mineralization, and permanent storage of CO2 — a true removal technology. That’s a longer-term vision. And a lot of the science we’re starting to understand is a first step toward designing those processes.”

    This research is supported by Sunway University in Malaysia. More

  • in

    Devices offers long-distance, low-power underwater communication

    MIT researchers have demonstrated the first system for ultra-low-power underwater networking and communication, which can transmit signals across kilometer-scale distances.

    This technique, which the researchers began developing several years ago, uses about one-millionth the power that existing underwater communication methods use. By expanding their battery-free system’s communication range, the researchers have made the technology more feasible for applications such as aquaculture, coastal hurricane prediction, and climate change modeling.

    “What started as a very exciting intellectual idea a few years ago — underwater communication with a million times lower power — is now practical and realistic. There are still a few interesting technical challenges to address, but there is a clear path from where we are now to deployment,” says Fadel Adib, associate professor in the Department of Electrical Engineering and Computer Science and director of the Signal Kinetics group in the MIT Media Lab.

    Underwater backscatter enables low-power communication by encoding data in sound waves that it reflects, or scatters, back toward a receiver. These innovations enable reflected signals to be more precisely directed at their source.

    Due to this “retrodirectivity,” less signal scatters in the wrong directions, allowing for more efficient and longer-range communication.

    When tested in a river and an ocean, the retrodirective device exhibited a communication range that was more than 15 times farther than previous devices. However, the experiments were limited by the length of the docks available to the researchers.

    To better understand the limits of underwater backscatter, the team also developed an analytical model to predict the technology’s maximum range. The model, which they validated using experimental data, showed that their retrodirective system could communicate across kilometer-scale distances.

    The researchers shared these findings in two papers which will be presented at this year’s ACM SIGCOMM and MobiCom conferences. Adib, senior author on both papers, is joined on the SIGCOMM paper by co-lead authors Aline Eid, a former postdoc who is now an assistant professor at the University of Michigan, and Jack Rademacher, a research assistant; as well as research assistants Waleed Akbar and Purui Wang, and postdoc Ahmed Allam. The MobiCom paper is also written by co-lead authors Akbar and Allam.

    Communicating with sound waves

    Underwater backscatter communication devices utilize an array of nodes made from “piezoelectric” materials to receive and reflect sound waves. These materials produce an electric signal when mechanical force is applied to them.

    When sound waves strike the nodes, they vibrate and convert the mechanical energy to an electric charge. The nodes use that charge to scatter some of the acoustic energy back to the source, transmitting data that a receiver decodes based on the sequence of reflections.

    But because the backscattered signal travels in all directions, only a small fraction reaches the source, reducing the signal strength and limiting the communication range.

    To overcome this challenge, the researchers leveraged a 70-year-old radio device called a Van Atta array, in which symmetric pairs of antennas are connected in such a way that the array reflects energy back in the direction it came from.

    But connecting piezoelectric nodes to make a Van Atta array reduces their efficiency. The researchers avoided this problem by placing a transformer between pairs of connected nodes. The transformer, which transfers electric energy from one circuit to another, allows the nodes to reflect the maximum amount of energy back to the source.

    “Both nodes are receiving and both nodes are reflecting, so it is a very interesting system. As you increase the number of elements in that system, you build an array that allows you to achieve much longer communication ranges,” Eid explains.

    In addition, they used a technique called cross-polarity switching to encode binary data in the reflected signal. Each node has a positive and a negative terminal (like a car battery), so when the positive terminals of two nodes are connected and the negative terminals of two nodes are connected, that reflected signal is a “bit one.”

    But if the researchers switch the polarity, and the negative and positive terminals are connected to each other instead, then the reflection is a “bit zero.”

    “Just connecting the piezoelectric nodes together is not enough. By alternating the polarities between the two nodes, we are able to transmit data back to the remote receiver,” Rademacher explains.

    When building the Van Atta array, the researchers found that if the connected nodes were too close, they would block each other’s signals. They devised a new design with staggered nodes that enables signals to reach the array from any direction. With this scalable design, the more nodes an array has, the greater its communication range.

    They tested the array in more than 1,500 experimental trials in the Charles River in Cambridge, Massachusetts, and in the Atlantic Ocean, off the coast of Falmouth, Massachusetts, in collaboration with the Woods Hole Oceanographic Institution. The device achieved communication ranges of 300 meters, more than 15 times longer than they previously demonstrated.

    However, they had to cut the experiments short because they ran out of space on the dock.

    Modeling the maximum

    That inspired the researchers to build an analytical model to determine the theoretical and practical communication limits of this new underwater backscatter technology.

    Building off their group’s work on RFIDs, the team carefully crafted a model that captured the impact of system parameters, like the size of the piezoelectric nodes and the input power of the signal, on the underwater operation range of the device.

    “It is not a traditional communication technology, so you need to understand how you can quantify the reflection. What are the roles of the different components in that process?” Akbar says.

    For instance, the researchers needed to derive a function that captures the amount of signal reflected out of an underwater piezoelectric node with a specific size, which was among the biggest challenges of developing the model, he adds.

    They used these insights to create a plug-and-play model into a which a user could enter information like input power and piezoelectric node dimensions and receive an output that shows the expected range of the system.

    They evaluated the model on data from their experimental trials and found that it could accurately predict the range of retrodirected acoustic signals with an average error of less than one decibel.

    Using this model, they showed that an underwater backscatter array can potentially achieve kilometer-long communication ranges.

    “We are creating a new ocean technology and propelling it into the realm of the things we have been doing for 6G cellular networks. For us, it is very rewarding because we are starting to see this now very close to reality,” Adib says.

    The researchers plan to continue studying underwater backscatter Van Atta arrays, perhaps using boats so they could evaluate longer communication ranges. Along the way, they intend to release tools and datasets so other researchers can build on their work. At the same time, they are beginning to move toward commercialization of this technology.

    “Limited range has been an open problem in underwater backscatter networks, preventing them from being used in real-world applications. This paper takes a significant step forward in the future of underwater communication, by enabling them to operate on minimum energy while achieving long range,” says Omid Abari, assistant professor of computer science at the University of California at Los Angeles, who was not involved with this work. “The paper is the first to bring Van Atta Reflector array technique into underwater backscatter settings and demonstrate its benefits in improving the communication range by orders of magnitude. This can take battery-free underwater communication one step closer to reality, enabling applications such as underwater climate change monitoring and coastal monitoring.”

    This research was funded, in part, by the Office of Naval Research, the Sloan Research Fellowship, the National Science Foundation, the MIT Media Lab, and the Doherty Chair in Ocean Utilization. More

  • in

    Uncovering how biomes respond to climate change

    Before Leila Mirzagholi arrived at MIT’s Department of Civil and Environmental Engineering (CEE) to begin her postdoc appointment, she had spent most of her time in academia building cosmological models to detect properties of gravitational waves in the cosmos.

    But as a member of Assistant Professor César Terrer’s lab in CEE, Mirzagholi uses her physics and mathematical background to improve our understanding of the different factors that influence how much carbon land ecosystems can store under climate change.

    “What was always important to me was thinking about how to solve a problem and putting all the pieces together and building something from scratch,” Mirzagholi says, adding this was one of the reasons that it was possible for her to switch fields — and what drives her today as a climate scientist.

    Growing up in Iran, Mirzagholi knew she wanted to be a scientist from an early age. As a kid, she became captivated by physics, spending most of her free time in a local cultural center that hosted science events. “I remember in that center there was an observatory that held observational tours and it drew me into science,” says Mirzgholi. She also remembers a time when she was a kid watching the science fiction film “Contact” that introduces a female scientist character who finds evidence of extraterrestrial life and builds a spaceship to make first contact: “After that movie my mind was set on pursuing astrophysics.”

    With the encouragement of her parents to develop a strong mathematical background before pursuing physics, she earned a bachelor’s degree in mathematics from Tehran University. Then she completed a one-year master class in mathematics at Utrecht University before completing her PhD in theoretical physics at Max Planck Institute for Astrophysics in Munich. There, Mirzgholi’s thesis focused on developing cosmological models with a focus on phenomenological aspects like propagation of gravitational waves on the cosmic microwave background.

    Midway through her PhD, Mirzgholi became discouraged with building models to explain the dynamics of the early universe because there is little new data. “It starts to get personal and becomes a game of: ‘Is it my model or your model?’” she explains. She grew frustrated not knowing when the models she’d built would ever be tested.

    It was at this time that Mirzgholi started reading more about the topics of climate change and climate science. “I was really motivated by the problems and the nature of the problems, especially to make global terrestrial ecology more quantitative,” she says. She also liked the idea of contributing to a global problem that we are all facing. She started to think, “maybe I can do my part, I can work on research beneficial for society and the planet.”

    She made the switch following her PhD and started as a postdoc in the Crowther Lab at ETH Zurich, working on understanding the effects of environmental changes on global vegetation activity. After a stint at ETH, where her colleagues collaborated on projects with the Terrer Lab, she relocated to Cambridge, Massachusetts, to join the lab and CEE.

    Her latest article in Science, which was published in July and co-authored by researchers from ETH, shows how global warming affects the timing of autumn leaf senescence. “It’s important to understand the length of the growing season, and how much the forest or other biomes will have the capacity to take in carbon from the atmosphere.” Using remote sensing data, she was able to understand when the growing season will end under a warming climate. “We distinguish two dates — when autumn is onsetting and the leaves are starting to turn yellow, versus when the leaves are 50 percent yellow — to represent the progression of leaf senescence,” she says.

    In the context of rising temperature, when the warming is happening plays a crucial role. If warming temperatures happen before the summer solstice, it triggers trees to begin their seasonal cycles faster, leading to reduced photosynthesis, ending in an earlier autumn. On the other hand, if the warming happens after the summer solstice, it delays the discoloration process, making autumn last longer. “For every degree Celsius of pre-solstice warming, the onset of leaf senescence advances by 1.9 days, while each degree Celsius of post-solstice warming delays the senescence process by 2.6 days,” she explains. Understanding the timing of autumn leaf senescence is essential in efforts to predict carbon storage capacity when modeling global carbon cycles.

    Another problem she’s working on in the Terrer Lab is discovering how deforestation is changing our local climate. How much is it cooling or warming the temperature, and how is the hydrological cycle changing because of deforestation? Investigating these questions will give insight into how much we can depend on natural solutions for carbon uptake to help mitigate climate change. “Quantitatively, we want to put a number to the amount of carbon uptake from various natural solutions, as opposed to other solutions,” she says.

    With year-and-a-half left in her postdoc appointment, Mirzagholi has begun considering her next career steps. She likes the idea of applying to climate scientist jobs in industry or national labs, as well as tenure track faculty positions. Whether she pursues a career in academia or industry, Mirzagholi aims to continue conducting fundamental climate science research. Her multidisciplinary background in physics, mathematics, and climate science has given her a multifaceted perspective, which she applies to every research problem.

    “Looking back, I’m grateful for all my educational experiences from spending time in the cultural center as a kid, my background in physics, the support from colleagues at the Crowther lab at ETH who facilitated my transition from physics to ecology, and now working at MIT alongside Professor Terrer, because it’s shaped my career path and the researcher I am today.” More

  • in

    Elsa Olivetti appointed associate dean of engineering

    Elsa Olivetti, the Jerry McAfee (1940) Professor in Engineering in the Department of Materials Science and Engineering, has been appointed as associate dean of engineering, effective Sept. 1.

    As associate dean, Olivetti will oversee a number of strategically important programs and initiatives across MIT’s School of Engineering. She will help lead and shape school-wide efforts related to climate and sustainability. In close collaboration with Nandi Bynoe, the assistant dean for diversity, equity, and inclusion; the school’s DEI faculty lead; and various program faculty leads, Olivetti will oversee the school’s DEI activities and programs. She will also assist with the faculty promotion process and will support both faculty and students across the school with regards fellowships, awards, and honors.

    “Professor Olivetti has demonstrated tremendous leadership abilities, particularly as co-director of the MIT Climate and Sustainability Consortium. Her contributions as a researcher, educator, and leader at MIT have been substantial,” says Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am thrilled to welcome her to the School of Engineering leadership team and look forward to closely with her in this new role.”

    Olivetti first joined MIT as a graduate student after receiving her bachelor’s degree in engineering science from the University of Virginia. As a PhD student in the Department of Materials Science and Engineering (DMSE), her research focused on electrochemistry in inorganic materials for use in lithium-ion batteries. Through postdoctoral research and a staff scientist position with the MIT Materials System Laboratory beginning in 2009, Olivetti developed methods for streamlined carbon footprinting of electronics, a method that is still used widely by the electronics industry.

    In 2014, Olivetti joined the DMSE faculty, where her team works in sustainable and scalable design, processing, and manufacturing of materials use across industries. The Olivetti Group develops experimental and analytical methods for efficient use of industrial waste and recycled materials in concrete, metals, and plastic guiding decisions on a plant floor to policy makers.

    Olivetti’s team has also developed methods to automatically learn from texts within materials ranging from inorganic materials synthesis, zeolites, solid state batteries, and cement. Her work uses an interdisciplinary approach combining industrial ecology with materials science and engineering to inform and then mitigate the environmental and economic impact of materials.

    Olivetti has lead climate and sustainability efforts across the Institute. She serves as the co-director of the MIT Climate and Sustainability Consortium (MCSC). Launched in 2021, the MCSC fosters collaboration between academia and industry in an effort to accelerate real-world solutions for the climate crisis at scale. Under Olivetti’s leadership alongside co-director Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, and executive director Jeremy Gregory, the consortium has grown to 18 member companies and has provided 20 research projects with seed funding. It has also launched programs such as the MCSC Climate and Sustainability Scholars Program for undergraduate students and the MCSC Impact Fellows Program for postdocs.

    In addition to her leadership at the MCSC, Olivetti is a member of the MIT Climate Nucleus, a faculty committee responsible for the implementation of “Fast Forward: MIT’s Climate Action Plan for the Decade.”

    A dedicated educator, Olivetti has made significant contributions to MIT’s material science and engineering education. She was instrumental in the development of a refined DMSE undergraduate curriculum. She also launched a new class 3.081 (Industrial Ecology of Materials) and served as a founding thread lead for MIT New Engineering Education Transformation’s Advanced Materials Machines program. Olivetti launched “Course 3 Industry Seminars,” which provide undergraduate students an opportunity to learn from industry leaders in fields like manufacturing and environmental consulting.

    Throughout her career, Olivetti has received numerous awards and honors for both her commitment to students and her research contributions. She is the recipient of the 2017 Earll M. Murman Award for Excellence in Undergraduate Advising, a 2020 Paul Gray Award for Public Service, the 2021 Bose Teaching Award, 2021 MacVicar Faculty Fellowship, and the 2023 Capers (1976) and Marion McDonald Award for Excellence in Mentoring and Advising. She also received an Early Career Faculty Fellowship from the Minerals, Metals and Materials Society as well as a National Science Foundation Early Career Development Award.

    Olivetti joins Dean Chandrakasan and Deputy Dean Maria Yang, the Gail E. Kendall (1978) Professor, on the School of Engineering faculty leadership team. More

  • in

    Fast-tracking fusion energy’s arrival with AI and accessibility

    As the impacts of climate change continue to grow, so does interest in fusion’s potential as a clean energy source. While fusion reactions have been studied in laboratories since the 1930s, there are still many critical questions scientists must answer to make fusion power a reality, and time is of the essence. As part of their strategy to accelerate fusion energy’s arrival and reach carbon neutrality by 2050, the U.S. Department of Energy (DoE) has announced new funding for a project led by researchers at MIT’s Plasma Science and Fusion Center (PSFC) and four collaborating institutions.

    Cristina Rea, a research scientist and group leader at the PSFC, will serve as the primary investigator for the newly funded three-year collaboration to pilot the integration of fusion data into a system that can be read by AI-powered tools. The PSFC, together with scientists from the College of William and Mary, the University of Wisconsin at Madison, Auburn University, and the nonprofit HDF Group, plan to create a holistic fusion data platform, the elements of which could offer unprecedented access for researchers, especially underrepresented students. The project aims to encourage diverse participation in fusion and data science, both in academia and the workforce, through outreach programs led by the group’s co-investigators, of whom four out of five are women. 

    The DoE’s award, part of a $29 million funding package for seven projects across 19 institutions, will support the group’s efforts to distribute data produced by fusion devices like the PSFC’s Alcator C-Mod, a donut-shaped “tokamak” that utilized powerful magnets to control and confine fusion reactions. Alcator C-Mod operated from 1991 to 2016 and its data are still being studied, thanks in part to the PSFC’s commitment to the free exchange of knowledge.

    Currently, there are nearly 50 public experimental magnetic confinement-type fusion devices; however, both historical and current data from these devices can be difficult to access. Some fusion databases require signing user agreements, and not all data are catalogued and organized the same way. Moreover, it can be difficult to leverage machine learning, a class of AI tools, for data analysis and to enable scientific discovery without time-consuming data reorganization. The result is fewer scientists working on fusion, greater barriers to discovery, and a bottleneck in harnessing AI to accelerate progress.

    The project’s proposed data platform addresses technical barriers by being FAIR — Findable, Interoperable, Accessible, Reusable — and by adhering to UNESCO’s Open Science (OS) recommendations to improve the transparency and inclusivity of science; all of the researchers’ deliverables will adhere to FAIR and OS principles, as required by the DoE. The platform’s databases will be built using MDSplusML, an upgraded version of the MDSplus open-source software developed by PSFC researchers in the 1980s to catalogue the results of Alcator C-Mod’s experiments. Today, nearly 40 fusion research institutes use MDSplus to store and provide external access to their fusion data. The release of MDSplusML aims to continue that legacy of open collaboration.

    The researchers intend to address barriers to participation for women and disadvantaged groups not only by improving general access to fusion data, but also through a subsidized summer school that will focus on topics at the intersection of fusion and machine learning, which will be held at William and Mary for the next three years.

    Of the importance of their research, Rea says, “This project is about responding to the fusion community’s needs and setting ourselves up for success. Scientific advancements in fusion are enabled via multidisciplinary collaboration and cross-pollination, so accessibility is absolutely essential. I think we all understand now that diverse communities have more diverse ideas, and they allow faster problem-solving.”

    The collaboration’s work also aligns with vital areas of research identified in the International Atomic Energy Agency’s “AI for Fusion” Coordinated Research Project (CRP). Rea was selected as the technical coordinator for the IAEA’s CRP emphasizing community engagement and knowledge access to accelerate fusion research and development. In a letter of support written for the group’s proposed project, the IAEA stated that, “the work [the researchers] will carry out […] will be beneficial not only to our CRP but also to the international fusion community in large.”

    PSFC Director and Hitachi America Professor of Engineering Dennis Whyte adds, “I am thrilled to see PSFC and our collaborators be at the forefront of applying new AI tools while simultaneously encouraging and enabling extraction of critical data from our experiments.”

    “Having the opportunity to lead such an important project is extremely meaningful, and I feel a responsibility to show that women are leaders in STEM,” says Rea. “We have an incredible team, strongly motivated to improve our fusion ecosystem and to contribute to making fusion energy a reality.” More

  • in

    Putting public service into practice

    Salomé Otero ’23 doesn’t mince words about the social impact internship she had in 2022. “It was transformational for me,” she says.

    Otero, who majored in management with a concentration in education, always felt that education would play some role in her career path after MIT, but she wasn’t sure how. That all changed her junior year, when she got an email from the Priscilla King Gray Public Service Center (PKG Center) about an internship at The Last Mile, a San Francisco-based nonprofit that provides education and technology training for justice-impacted individuals.

    Otero applied and was selected as a web curriculum and re-entry intern at The Last Mile the summer between her junior and senior year — an eye-opening experience that cemented her post-graduation plans. “You hear some amazing stories, like this person was incarcerated before the iPhone had come out. Now he’s a software developer,” she explains. “And for me, the idea of using computer science education for good appealed to me on many fronts. But even if I hadn’t gotten the opportunity to work at The Last Mile, the fact that I saw a job description for this role and learned that companies have the resources to make a difference … I didn’t know that there were people and organizations dedicating their time and energy into this.”

    She was so inspired that, when she returned for her senior year, Otero found work at two education labs at MIT, completed another social impact internship over Independent Activities Period (IAP) at G{Code}, an education nonprofit that provides computer science education to women and nonbinary people of color, and decided to apply to graduate school. “I can tell you with 100 percent certainty that I would not be pursuing a PhD in education policy right now if it weren’t for the PKG Center,” she says. She will begin her doctorate this fall.

    Otero’s experience doesn’t surprise Jill Bassett, associate dean and director of the PKG Center. “MIT students are deeply concerned about the world’s most challenging problems,” she says. “And social impact internships are an incredible way for them to leverage their unique talents and skills to help create meaningful change while broadening their perspectives and discovering potential career paths.”

    “There’s a lot more out there”

    Founded 35 years ago, the PKG Center offers a robust portfolio of experiential learning programs broadly focused on four themes: climate change, health equity, racial justice, and tech for social good. The Center’s Social Impact Internship Program provides funded internships to students interested in working with government agencies, nonprofits, and social ventures. Students reap rich rewards from these experiences, including learning ways to make social change, informing their academic journey and career path, and gaining valuable professional skills.

    “It was a really good learning opportunity,” says Juliet Liao ’23, a graduate of MIT’s Naval ROTC program who commissioned as a submarine officer in June. She completed a social impact internship with the World Wildlife Fund, where she researched greenhouse gas emissions related to the salmon industry. “I haven’t had much exposure to what work outside of the Navy looks like and what I’m interested in working on. And I really liked the science-based approach to mitigating greenhouse gas emissions.”

    Amina Abdalla, a rising junior in biological engineering, arrived at MIT with a strong interest in health care and determined to go to medical school. But her internship at MassHealth, the Medicaid and Children’s Health Insurance Program provider for the state of Massachusetts, broadened her understanding of the complexity of the health care system and introduced her to many career options that she didn’t know existed.

    “They did coffee chats between interns and various people who work in MassHealth, such as doctors, lawyers, policy advocates, and consultants. There’s a lot more out there that one can do with the degree that they get and the knowledge they gain. It just depends on your interests, and I came away from that really excited,” she says. The experience inspired her to take a class in health policy before she graduates. “I know I want to be a doctor and I have a lot of interest in science in general, but if I could do some kind of public sector impact with that knowledge, I would definitely be interested in doing that.”

    Social impact internships also provide an opportunity for students to hone their analytical, technical, and people skills. Selma Sharaf ’22 worked on developing a first-ever climate action plan for Bennett College in Greensboro, North Carolina, one of two all-women’s historically Black colleges and universities in the United States. She conducted research and stakeholder interviews with nonprofits; sustainability directors at similar colleges; local utility companies; and faculty, staff, and students at Bennett.

    “Our external outreach efforts with certain organizations allowed me to practice having conversations about energy justice and climate issues with people who aren’t already in this space. I learned how useful it can be to not only discuss the overall issues of climate change and carbon emissions, but to also zoom in on more relatable personal-level impacts,” she says. Sharaf is currently working in clean energy consulting and plans to pursue a master’s degree at Stanford University’s Atmosphere/Energy Program this fall.

    Working with “all stars”

    Organizations that partner with the PKG Center are often constrained by limited technical and financial resources. Since the program is funded by the PKG Center, these internships help expand their organizational capacity and broaden their impact; MIT students can take on projects that might not otherwise get done, and they also bring fresh skills and ideas to the organization — and the zeal to pursue those ideas.

    Emily Moberg ’11, PhD ’16 got involved with the social impact internship programs in 2020. Moberg, who is the director of Scope 3 Carbon Measurement and Mitigation at the World Wildlife Fund, has worked with 20 MIT students since then, including Liao. The body of work that Liao and several other interns completed has been published in the form of 10 briefs onmitigating greenhouse gas emissions from key commodities, such as soy, beef, coffee, and palm oil.

    “Social impact interns bring technical skills, deep curiosity, and tenacity,” Moberg says. “I’ve worked with students across many majors, including computer and materials science; all of them bring a new, fresh perspective to our problems and often sophisticated quantitative ability. Their presence often helps us to investigate new ideas or expand a project. In some cases, interns have proposed new projects and ideas themselves. The support from the PKG Center for us to host these interns has been critical, especially for these new explorations.”

    Anne Carrington Hayes, associate professor and executive director of the Global Leadership and Interdisciplinary Studies program at Bennett College, calls the MIT interns she’s worked with since 2021 “all stars.” The work Sharaf and three other students performed has culminated in a draft climate action plan that will inform campus renovations and other measures that will be implemented at the college in the coming years.

    “They have been foundational in helping me to research, frame, collect data, and engage with our students and the community around issues of environmental justice and sustainability, particularly from the lens of what would be impactful and meaningful for women of color at Bennett College,” she says.

    Balancing supply and demand

    Bassett says that the social impact internship program has grown exponentially in the past few years. Before the pandemic, the program served five students from summer 2019 to spring 2020; it now serves about 125 students per year. Over that time, funding has become a significant limiting factor; demand for internships was three times the number of available internships in summer 2022, and five times the supply during IAP 2023.

    “MIT students have no shortage of opportunities available to them in the private sector, yet students are seeking social impact internships because they want to apply their skills to issues that they care about,” says Julie Uva, the PKG Center’s program administrator for social impact internships and employment. “We want to ensure every student who wants a social impact internship can access that experience.”

    MIT has taken note of this financial shortfall: the Task Force 2021 report recommended fundraising to alleviate the under-supply of social impact experiential learning opportunities (ELOs), and MIT’s Fast Forward Climate Action Plan called on the Institute to make a climate or clean-energy ELOs available to every undergraduate who wants one. As a result, the Office of Experiential Learning is working with Resource Development to raise new funding to support many more opportunities, which would be available to students not only through the PKG Center but also other offices and programs, such as MIT D-Lab, Undergraduate Research Opportunity Programs, MISTI, and the Environmental Solutions Initiative, among others.

    That’s welcome news to Salomé Otero. She’s familiar with the Institute’s fundraising efforts, having worked as one of the Alumni Association’s Tech Callers. Now, as an alumna herself and a former social impact intern, she has an appreciation for the power of philanthropy.

    “MIT is ahead of the game compared to so many universities, in so many ways,” she says. “But if they want to continue to do that in the most impactful way possible, I think investing in ideas and missions like the PKG Center is the way to go. So when that call comes, I’ll tell whoever is working that night shift, ‘Yeah, I’ll donate to the PKG Center.’” More

  • in

    Ms. Nuclear Energy is winning over nuclear skeptics

    First-year MIT nuclear science and engineering (NSE) doctoral student Kaylee Cunningham is not the first person to notice that nuclear energy has a public relations problem. But her commitment to dispel myths about the alternative power source has earned her the moniker “Ms. Nuclear Energy” on TikTok and a devoted fan base on the social media platform.

    Cunningham’s activism kicked into place shortly after a week-long trip to Iceland to study geothermal energy. During a discussion about how the country was going to achieve its net zero energy goals, a representative from the University of Reykjavik balked at Cunnigham’s suggestion of including a nuclear option in the alternative energy mix. “The response I got was that we’re a peace-loving nation, we don’t do that,” Cunningham remembers. “I was appalled by the reaction, I mean we’re talking energy not weapons here, right?” she asks. Incredulous, Cunningham made a TikTok that targeted misinformation. Overnight she garnered 10,000 followers and “Ms. Nuclear Energy” was off to the races. Ms. Nuclear Energy is now Cunningham’s TikTok handle.

    Kaylee Cunningham: Dispelling myths and winning over skeptics

    A theater and science nerd

    TikTok is a fitting platform for a theater nerd like Cunningham. Born in Melrose, Massachusetts, Cunningham’s childhood was punctuated by moves to places where her roofer father’s work took the family. She moved to North Carolina shortly after fifth grade and fell in love with theater. “I was doing theater classes, the spring musical, it was my entire world,” Cunningham remembers. When she moved again, this time to Florida halfway through her first year of high school, she found the spring musical had already been cast. But she could help behind the scenes. Through that work, Cunningham gained her first real exposure to hands-on tech. She was hooked.

    Soon Cunningham was part of a team that represented her high school at the student Astronaut Challenge, an aerospace competition run by Florida State University. Statewide winners got to fly a space shuttle simulator at the Kennedy Space Center and participate in additional engineering challenges. Cunningham’s team was involved in creating a proposal to help NASA’s Asteroid Redirect Mission, designed to help the agency gather a large boulder from a near-earth asteroid. The task was Cunningham’s induction into an understanding of radiation and “anything nuclear.” Her high school engineering teacher, Nirmala Arunachalam, encouraged Cunningham’s interest in the subject.

    The Astronaut Challenge might just have been the end of Cunningham’s path in nuclear engineering had it not been for her mother. In high school, Cunningham had also enrolled in computer science classes and her love of the subject earned her a scholarship at Norwich University in Vermont where she had pursued a camp in cybersecurity. Cunningham had already laid down the college deposit for Norwich.

    But Cunningham’s mother persuaded her daughter to pay another visit to the University of Florida, where she had expressed interest in pursuing nuclear engineering. To her pleasant surprise, the department chair, Professor James Baciak, pulled out all the stops, bringing mother and daughter on a tour of the on-campus nuclear reactor and promising Cunningham a paid research position. Cunningham was sold and Backiak has been a mentor throughout her research career.

    Merging nuclear engineering and computer science

    Undergraduate research internships, including one at Oak Ridge National Laboratory, where she could combine her two loves, nuclear engineering and computer science, convinced Cunningham she wanted to pursue a similar path in graduate school.

    Cunningham’s undergraduate application to MIT had been rejected but that didn’t deter her from applying to NSE for graduate school. Having spent her early years in an elementary school barely 20 minutes from campus, she had grown up hearing that “the smartest people in the world go to MIT.” Cunningham figured that if she got into MIT, it would be “like going back home to Massachusetts” and that she could fit right in.

    Under the advisement of Professor Michael Short, Cunningham is looking to pursue her passions in both computer science and nuclear engineering in her doctoral studies.

    The activism continues

    Simultaneously, Cunningham is determined to keep her activism going.

    Her ability to digest “complex topics into something understandable to people who have no connection to academia” has helped Cunningham on TikTok. “It’s been something I’ve been doing all my life with my parents and siblings and extended family,” she says.

    Punctuating her video snippets with humor — a Simpsons reference is par for the course — helps Cunningham break through to her audience who love her goofy and tongue-in-cheek approach to the subject matter without compromising accuracy. “Sometimes I do stupid dances and make a total fool of myself, but I’ve really found my niche by being willing to engage and entertain people and educate them at the same time.”

    Such education needs to be an important part of an industry that’s received its share of misunderstandings, Cunningham says. “Technical people trying to communicate in a way that the general people don’t understand is such a concerning thing,” she adds. Case in point: the response in the wake of the Three Mile Island accident, which prevented massive contamination leaks. It was a perfect example of how well our safety regulations actually work, Cunningham says, “but you’d never guess from the PR fallout from it all.”

    As Ms. Nuclear Energy, Cunningham receives her share of skepticism. One viewer questioned the safety of nuclear reactors if “tons of pollution” was spewing out from them. Cunningham produced a TikTok that addressed this misconception. Pointing to the “pollution” in a photo, Cunningham clarifies that it’s just water vapor. The TikTok has garnered over a million views. “It really goes to show how starving for accurate information the public really is,” Cunningham says, “ in this age of having all the information we could ever want at our fingertips, it’s hard to sift through and decide what’s real and accurate and what isn’t.”

    Another reason for her advocacy: doing her part to encourage young people toward a nuclear science or engineering career. “If we’re going to start putting up tons of small modular reactors around the country, we need people to build them, people to run them, and we need regulatory bodies to inspect and keep them safe,” Cunningham points out. “ And we don’t have enough people entering the workforce in comparison to those that are retiring from the workforce,” she adds. “I’m able to engage those younger audiences and put nuclear engineering on their radar,” Cunningham says. The advocacy has been paying off: Cunningham regularly receives — and responds to — inquiries from high school junior girls looking for advice on pursuing nuclear engineering.

    All the activism is in service toward a clear end goal. “At the end of the day, the fight is to save the planet,” Cunningham says, “I honestly believe that nuclear power is the best chance we’ve got to fight climate change and keep our planet alive.” More

  • in

    Explained: The 1.5 C climate benchmark

    The summer of 2023 has been a season of weather extremes.

    In June, uncontrolled wildfires ripped through parts of Canada, sending smoke into the U.S. and setting off air quality alerts in dozens of downwind states. In July, the world set the hottest global temperature on record, which it held for three days in a row, then broke again on day four.

    From July into August, unrelenting heat blanketed large parts of Europe, Asia, and the U.S., while India faced a torrential monsoon season, and heavy rains flooded regions in the northeastern U.S. And most recently, whipped up by high winds and dry vegetation, a historic wildfire tore through Maui, devastating an entire town.

    These extreme weather events are mainly a consequence of climate change driven by humans’ continued burning of coal, oil, and natural gas. Climate scientists agree that extreme weather such as what people experienced this summer will likely grow more frequent and intense in the coming years unless something is done, on a persistent and planet-wide scale, to rein in global temperatures.

    Just how much reining-in are they talking about? The number that is internationally agreed upon is 1.5 degrees Celsius. To prevent worsening and potentially irreversible effects of climate change, the world’s average temperature should not exceed that of preindustrial times by more than 1.5 degrees Celsius (2.7 degrees Fahrenheit).

    As more regions around the world face extreme weather, it’s worth taking stock of the 1.5-degree bar, where the planet stands in relation to this threshold, and what can be done at the global, regional, and personal level, to “keep 1.5 alive.”

    Why 1.5 C?

    In 2015, in response to the growing urgency of climate impacts, nearly every country in the world signed onto the Paris Agreement, a landmark international treaty under which 195 nations pledged to hold the Earth’s temperature to “well below 2 degrees Celsius above pre-industrial levels,” and going further, aim to “limit the temperature increase to 1.5 degrees Celsius above pre-industrial levels.”

    The treaty did not define a particular preindustrial period, though scientists generally consider the years from 1850 to 1900 to be a reliable reference; this time predates humans’ use of fossil fuels and is also the earliest period when global observations of land and sea temperatures are available. During this period, the average global temperature, while swinging up and down in certain years, generally hovered around 13.5 degrees Celsius, or 56.3 degrees Fahrenheit.

    The treaty was informed by a fact-finding report which concluded that, even global warming of 1.5 degrees Celsius above the preindustrial average, over an extended, decades-long period, would lead to high risks for “some regions and vulnerable ecosystems.” The recommendation then, was to set the 1.5 degrees Celsius limit as a “defense line” — if the world can keep below this line, it potentially could avoid the more extreme and irreversible climate effects that would occur with a 2 degrees Celsius increase, and for some places, an even smaller increase than that.

    But, as many regions are experiencing today, keeping below the 1.5 line is no guarantee of avoiding extreme, global warming effects.

    “There is nothing magical about the 1.5 number, other than that is an agreed aspirational target. Keeping at 1.4 is better than 1.5, and 1.3 is better than 1.4, and so on,” says Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change. “The science does not tell us that if, for example, the temperature increase is 1.51 degrees Celsius, then it would definitely be the end of the world. Similarly, if the temperature would stay at 1.49 degrees increase, it does not mean that we will eliminate all impacts of climate change. What is known: The lower the target for an increase in temperature, the lower the risks of climate impacts.”

    How close are we to 1.5 C?

    In 2022, the average global temperature was about 1.15 degrees Celsius above preindustrial levels. According to the World Meteorological Organization (WMO), the cyclical weather phenomenon La Niña recently contributed to temporarily cooling and dampening the effects of human-induced climate change. La Niña lasted for three years and ended around March of 2023.

    In May, the WMO issued a report that projected a significant likelihood (66 percent) that the world would exceed the 1.5 degrees Celsius threshold in the next four years. This breach would likely be driven by human-induced climate change, combined with a warming El Niño — a cyclical weather phenomenon that temporarily heats up ocean regions and pushes global temperatures higher.

    This summer, an El Niño is currently underway, and the event typically raises global temperatures in the year after it sets in, which in this case would be in 2024. The WMO predicts that, for each of the next four years, the global average temperature is likely to swing between 1.1 and 1.8 degrees Celsius above preindustrial levels.

    Though there is a good chance the world will get hotter than the 1.5-degree limit as the result of El Niño, the breach would be temporary, and for now, would not have failed the Paris Agreement, which aims to keep global temperatures below the 1.5-degree limit over the long term (averaged over several decades rather than a single year).

    “But we should not forget that this is a global average, and there are variations regionally and seasonally,” says Elfatih Eltahir, the H.M. King Bhumibol Professor and Professor of Civil and Environmental Engineering at MIT. “This year, we had extreme conditions around the world, even though we haven’t reached the 1.5 C threshold. So, even if we control the average at a global magnitude, we are going to see events that are extreme, because of climate change.”

    More than a number

    To hold the planet’s long-term average temperature to below the 1.5-degree threshold, the world will have to reach net zero emissions by the year 2050, according to the Intergovernmental Panel on Climate Change (IPCC). This means that, in terms of the emissions released by the burning of coal, oil, and natural gas, the entire world will have to remove as much as it puts into the atmosphere.

    “In terms of innovations, we need all of them — even those that may seem quite exotic at this point: fusion, direct air capture, and others,” Paltsev says.

    The task of curbing emissions in time is particularly daunting for the United States, which generates the most carbon dioxide emissions of any other country in the world.

    “The U.S.’s burning of fossil fuels and consumption of energy is just way above the rest of the world. That’s a persistent problem,” Eltahir says. “And the national statistics are an aggregate of what a lot of individuals are doing.”

    At an individual level, there are things that can be done to help bring down one’s personal emissions, and potentially chip away at rising global temperatures.

    “We are consumers of products that either embody greenhouse gases, such as meat, clothes, computers, and homes, or we are directly responsible for emitting greenhouse gases, such as when we use cars, airplanes, electricity, and air conditioners,” Paltsev says. “Our everyday choices affect the amount of emissions that are added to the atmosphere.”

    But to compel people to change their emissions, it may be less about a number, and more about a feeling.

    “To get people to act, my hypothesis is, you need to reach them not just by convincing them to be good citizens and saying it’s good for the world to keep below 1.5 degrees, but showing how they individually will be impacted,” says Eltahir, who specializes on the study of regional climates, focusing on how climate change impacts the water cycle and frequency of extreme weather such as heat waves.

    “True climate progress requires a dramatic change in how the human system gets its energy,” Paltsev says. “It is a huge undertaking. Are you ready personally to make sacrifices and to change the way of your life? If one gets an honest answer to that question, it would help to understand why true climate progress is so difficult to achieve.” More