More stories

  • in

    Four researchers with MIT ties earn 2023 Schmidt Science Fellowships

    Four researchers with ties to MIT have been named Schmidt Science Fellows this year. Lillian Chin ’17, SM ’19; Neil Dalvie PD ’22, PhD ’22; Suong Nguyen, and Yirui Zhang SM ’19, PhD ’23 are among the 32 exceptional early-career scientists worldwide chosen to receive the prestigious fellowships.

    “History provides powerful examples of what happens when scientists are given the freedom to ask big questions which can achieve real breakthroughs across disciplines,” says Wendy Schmidt, co-founder of Schmidt Futures and president of the Schmidt Family Foundation. “Schmidt Science Fellows are tackling climate destruction, discovering new drugs against disease, developing novel materials, using machine learning to understand the drivers of human health, and much more. This new cohort will add to this legacy in applying scientific discovery to improve human health and opportunity, and preserve and restore essential planetary systems.”

    Schmidt Futures is a philanthropic initiative that brings talented people together in networks to prove out their ideas and solve hard problems in science and society. Schmidt Science Fellows receive a stipend of $100,000 a year for up to two years of postdoctoral research in a discipline different from their PhD at a world-leading lab anywhere across the globe.

    Lillian Chin ’17, SM ’19 is currently pursuing her PhD in the Department of Electrical Engineering and Computer Science. Her research focuses on creating new materials for robots. By designing the geometry of a material, Chin creates new “meta-materials” that have different properties from the original. Using this technique, she has created robot balls that dramatically expand in volume and soft grippers that can work in dangerous environments. All of these robots are built out of a single material, letting the researchers 3D print them with extra internal features like channels. These channels help to measure the deformation of metamaterials, enabling Chin and her collaborators to create robots that are strong, can move, and sense their own shape, like muscles do.

    “I feel very honored to have been chosen for this fellowship,” says Chin. “I feel like I proposed a very risky pivot, since my background is only in engineering, with very limited exposure to neuroscience. I’m very excited to be given the opportunity to learn best practices for interacting with patients and be able to translate my knowledge from robotics to biology.”

    With the Schmidt Fellowship, Chin plans to pursue new frontiers for custom materials with internal sensors, which can measure force and deformation and can be placed anywhere within the material. “I want to use these materials to make tools for clinicians and neuroscientists to better understand how humans touch and grasp objects around them,” says Chin. “I’m especially interested in seeing how my materials could help in diagnosis motor-related diseases or improve rehab outcomes by providing the patient with feedback. This will help me create robots that have a better sense of touch and learn how to move objects around like humans do.”

    Neil Dalvie PD ’22, PhD ’22 is a graduate of the Department of Chemical Engineering, where he worked with Professor J. Christopher Love on manufacturing of therapeutic proteins. Dalvie developed molecular biology techniques for manufacturing high-quality proteins in yeast, which enables rapid testing of new products and low-cost manufacturing and large scales. During the pandemic, he led a team that applied these learnings to develop a Covid-19 vaccine that was deployed in multiple low-income countries. After graduating, Dalvie wanted to apply the precision biological engineering that is routinely deployed in medicinal manufacturing to other large-scale bioprocesses.

    “It’s rare for scientists to cross large technical gaps after so many years of specific training to get a PhD — you get comfy being an expert in your field,” says Dalvie. “I was definitely intimidated by the giant leap from vaccine manufacturing to the natural rock cycle. The fellowship has allowed me to dive into the new field by removing immediate pressure to publish or find my next job. I am excited for what commonalities we will find between biomanufacturing and biogeochemistry.”

    As a Schmidt Science Fellow, Dalvie will work with Professor Pamela Silver at Harvard Medical School on engineering microorganisms for enhanced rock weathering and carbon sequestration to combat climate change. They are applying modern molecular biology to enhance natural biogeochemical processes at gigaton scales.

    Suong (Su) Nguyen, a postdoctoral researcher in Professor Jeremiah Johnson’s lab in the Department of Chemistry, earned her PhD from Princeton University, where she developed light-driven, catalytic methodologies for organic synthesis, biomass valorization, plastic waste recycling, and functionalization of quantum sensing materials.

    As a Schmidt Science fellow, Nguyen will pivot from organic chemistry to nanomaterials. Biological systems are able to synthesize macromolecules with precise structure essential for their biological function. Scientists have long dreamed of achieving similar control over synthetic materials, but existing methods are inefficient and limited in scope. Nguyen hopes to develop new strategies to achieve such high level of control over the structure and properties of nanomaterials and explore their potential for use in therapeutic applications.

    “I feel extremely honored and grateful to receive the Schmidt Science Fellowship,” says Nguyen. “The fellowship will provide me with a unique opportunity to engage with scientists from a very wide range of research backgrounds. I believe this will significantly shape the research objectives for my future career.”

    Yirui Zhang SM ’19, PhD ’22 is a graduate of the Department of Mechanical Engineering. Zhang’s research focuses on electrochemical energy storage and conversion, including lithium-ion batteries and electrocatalysis. She has developed in situ spectroscopy and electrochemical methods to probe the electrode-electrolyte interface, understand the interfacial molecular structures, and unravel the fundamental thermodynamics and kinetics of (electro)chemical reactions in energy storage. Further, she has leveraged the physical chemistry of liquids and tuned the molecular structures at the interface to improve the stability and kinetics of electrochemical reactions. 

    “I am honored and thrilled to have been named a Schmidt Science Fellow,” says Zhang. “The fellowship will not only provide me with the unique opportunity to broaden my scientific perspectives and pursue pivoting research, but also create a lifelong network for us to collaborate across diverse fields and become scientific and societal thought leaders. I look forward to pushing the boundaries of my research and advancing technologies to tackle global challenges in energy storage and health care with interdisciplinary efforts!”

    As a Schmidt Science Fellow, Zhang will work across disciplines and pivot to biosensing. She plans to combine spectroscopy, electrokinetics, and machine learning to develop a fast and cost-effective technique for monitoring and understanding infectious disease. The innovations will benefit next-generation point-of-care medical devices and wastewater-based epidemiology to provide timely diagnosis and help protect humans against deadly infections and antimicrobial resistance. More

  • in

    Inaugural J-WAFS Grand Challenge aims to develop enhanced crop variants and move them from lab to land

    According to MIT’s charter, established in 1861, part of the Institute’s mission is to advance the “development and practical application of science in connection with arts, agriculture, manufactures, and commerce.” Today, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) is one of the driving forces behind water and food-related research on campus, much of which relates to agriculture. In 2022, J-WAFS established the Water and Food Grand Challenge Grant to inspire MIT researchers to work toward a water-secure and food-secure future for our changing planet. Not unlike MIT’s Climate Grand Challenges, the J-WAFS Grand Challenge seeks to leverage multiple areas of expertise, programs, and Institute resources. The initial call for statements of interests returned 23 letters from MIT researchers spanning 18 departments, labs, and centers. J-WAFS hosted workshops for the proposers to present and discuss their initial ideas. These were winnowed down to a smaller set of invited concept papers, followed by the final proposal stage. 

    Today, J-WAFS is delighted to report that the inaugural J-WAFS Grand Challenge Grant has been awarded to a team of researchers led by Professor Matt Shoulders and research scientist Robert Wilson of the Department of Chemistry. A panel of expert, external reviewers highly endorsed their proposal, which tackles a longstanding problem in crop biology — how to make photosynthesis more efficient. The team will receive $1.5 million over three years to facilitate a multistage research project that combines cutting-edge innovations in synthetic and computational biology. If successful, this project could create major benefits for agriculture and food systems worldwide.

    “Food systems are a major source of global greenhouse gas emissions, and they are also increasingly vulnerable to the impacts of climate change. That’s why when we talk about climate change, we have to talk about food systems, and vice versa,” says Maria T. Zuber, MIT’s vice president for research. “J-WAFS is central to MIT’s efforts to address the interlocking challenges of climate, water, and food. This new grant program aims to catalyze innovative projects that will have real and meaningful impacts on water and food. I congratulate Professor Shoulders and the rest of the research team on being the inaugural recipients of this grant.”

    Shoulders will work with Bryan Bryson, associate professor of biological engineering, as well as Bin Zhang, associate professor of chemistry, and Mary Gehring, a professor in the Department of Biology and the Whitehead Institute for Biomedical Research. Robert Wilson from the Shoulders lab will be coordinating the research effort. The team at MIT will work with outside collaborators Spencer Whitney, a professor from the Australian National University, and Ahmed Badran, an assistant professor at the Scripps Research Institute. A milestone-based collaboration will also take place with Stephen Long, a professor from the University of Illinois at Urbana-Champaign. The group consists of experts in continuous directed evolution, machine learning, molecular dynamics simulations, translational plant biochemistry, and field trials.

    “This project seeks to fundamentally improve the RuBisCO enzyme that plants use to convert carbon dioxide into the energy-rich molecules that constitute our food,” says J-WAFS Director John H. Lienhard V. “This difficult problem is a true grand challenge, calling for extensive resources. With J-WAFS’ support, this long-sought goal may finally be achieved through MIT’s leading-edge research,” he adds.

    RuBisCO: No, it’s not a new breakfast cereal; it just might be the key to an agricultural revolution

    A growing global population, the effects of climate change, and social and political conflicts like the war in Ukraine are all threatening food supplies, particularly grain crops. Current projections estimate that crop production must increase by at least 50 percent over the next 30 years to meet food demands. One key barrier to increased crop yields is a photosynthetic enzyme called Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO). During photosynthesis, crops use energy gathered from light to draw carbon dioxide (CO2) from the atmosphere and transform it into sugars and cellulose for growth, a process known as carbon fixation. RuBisCO is essential for capturing the CO2 from the air to initiate conversion of CO2 into energy-rich molecules like glucose. This reaction occurs during the second stage of photosynthesis, also known as the Calvin cycle. Without RuBisCO, the chemical reactions that account for virtually all carbon acquisition in life could not occur.

    Unfortunately, RuBisCO has biochemical shortcomings. Notably, the enzyme acts slowly. Many other enzymes can process a thousand molecules per second, but RuBisCO in chloroplasts fixes less than six carbon dioxide molecules per second, often limiting the rate of plant photosynthesis. Another problem is that oxygen (O2) molecules and carbon dioxide molecules are relatively similar in shape and chemical properties, and RuBisCO is unable to fully discriminate between the two. The inadvertent fixation of oxygen by RuBisCO leads to energy and carbon loss. What’s more, at higher temperatures RuBisCO reacts even more frequently with oxygen, which will contribute to decreased photosynthetic efficiency in many staple crops as our climate warms.

    The scientific consensus is that genetic engineering and synthetic biology approaches could revolutionize photosynthesis and offer protection against crop losses. To date, crop RuBisCO engineering has been impaired by technological obstacles that have limited any success in significantly enhancing crop production. Excitingly, genetic engineering and synthetic biology tools are now at a point where they can be applied and tested with the aim of creating crops with new or improved biological pathways for producing more food for the growing population.

    An epic plan for fighting food insecurity

    The 2023 J-WAFS Grand Challenge project will use state-of-the-art, transformative protein engineering techniques drawn from biomedicine to improve the biochemistry of photosynthesis, specifically focusing on RuBisCO. Shoulders and his team are planning to build what they call the Enhanced Photosynthesis in Crops (EPiC) platform. The project will evolve and design better crop RuBisCO in the laboratory, followed by validation of the improved enzymes in plants, ultimately resulting in the deployment of enhanced RuBisCO in field trials to evaluate the impact on crop yield. 

    Several recent developments make high-throughput engineering of crop RuBisCO possible. RuBisCO requires a complex chaperone network for proper assembly and function in plants. Chaperones are like helpers that guide proteins during their maturation process, shielding them from aggregation while coordinating their correct assembly. Wilson and his collaborators previously unlocked the ability to recombinantly produce plant RuBisCO outside of plant chloroplasts by reconstructing this chaperone network in Escherichia coli (E. coli). Whitney has now established that the RuBisCO enzymes from a range of agriculturally relevant crops, including potato, carrot, strawberry, and tobacco, can also be expressed using this technology. Whitney and Wilson have further developed a range of RuBisCO-dependent E. coli screens that can identify improved RuBisCO from complex gene libraries. Moreover, Shoulders and his lab have developed sophisticated in vivo mutagenesis technologies that enable efficient continuous directed evolution campaigns. Continuous directed evolution refers to a protein engineering process that can accelerate the steps of natural evolution simultaneously in an uninterrupted cycle in the lab, allowing for rapid testing of protein sequences. While Shoulders and Badran both have prior experience with cutting-edge directed evolution platforms, this will be the first time directed evolution is applied to RuBisCO from plants.

    Artificial intelligence is changing the way enzyme engineering is undertaken by researchers. Principal investigators Zhang and Bryson will leverage modern computational methods to simulate the dynamics of RuBisCO structure and explore its evolutionary landscape. Specifically, Zhang will use molecular dynamics simulations to simulate and monitor the conformational dynamics of the atoms in a protein and its programmed environment over time. This approach will help the team evaluate the effect of mutations and new chemical functionalities on the properties of RuBisCO. Bryson will employ artificial intelligence and machine learning to search the RuBisCO activity landscape for optimal sequences. The computational and biological arms of the EPiC platform will work together to both validate and inform each other’s approaches to accelerate the overall engineering effort.

    Shoulders and the group will deploy their designed enzymes in tobacco plants to evaluate their effects on growth and yield relative to natural RuBisCO. Gehring, a plant biologist, will assist with screening improved RuBisCO variants using the tobacco variety Nicotiana benthamianaI, where transient expression can be deployed. Transient expression is a speedy approach to test whether novel engineered RuBisCO variants can be correctly synthesized in leaf chloroplasts. Variants that pass this quality-control checkpoint at MIT will be passed to the Whitney Lab at the Australian National University for stable transformation into Nicotiana tabacum (tobacco), enabling robust measurements of photosynthetic improvement. In a final step, Professor Long at the University of Illinois at Urbana-Champaign will perform field trials of the most promising variants.

    Even small improvements could have a big impact

    A common criticism of efforts to improve RuBisCO is that natural evolution has not already identified a better enzyme, possibly implying that none will be found. Traditional views have speculated a catalytic trade-off between RuBisCO’s specificity factor for CO2 / O2 versus its CO2 fixation efficiency, leading to the belief that specificity factor improvements might be offset by even slower carbon fixation or vice versa. This trade-off has been suggested to explain why natural evolution has been slow to achieve a better RuBisCO. But Shoulders and the team are convinced that the EPiC platform can unlock significant overall improvements to plant RuBisCO. This view is supported by the fact that Wilson and Whitney have previously used directed evolution to improve CO2 fixation efficiency by 50 percent in RuBisCO from cyanobacteria (the ancient progenitors of plant chloroplasts) while simultaneously increasing the specificity factor. 

    The EPiC researchers anticipate that their initial variants could yield 20 percent increases in RuBisCO’s specificity factor without impairing other aspects of catalysis. More sophisticated variants could lift RuBisCO out of its evolutionary trap and display attributes not currently observed in nature. “If we achieve anywhere close to such an improvement and it translates to crops, the results could help transform agriculture,” Shoulders says. “If our accomplishments are more modest, it will still recruit massive new investments to this essential field.”

    Successful engineering of RuBisCO would be a scientific feat of its own and ignite renewed enthusiasm for improving plant CO2 fixation. Combined with other advances in photosynthetic engineering, such as improved light usage, a new green revolution in agriculture could be achieved. Long-term impacts of the technology’s success will be measured in improvements to crop yield and grain availability, as well as resilience against yield losses under higher field temperatures. Moreover, improved land productivity together with policy initiatives would assist in reducing the environmental footprint of agriculture. With more “crop per drop,” reductions in water consumption from agriculture would be a major boost to sustainable farming practices.

    “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists and field trial experts, yielding a robust feedback loop for enzyme engineering,” Shoulders adds. “Together, this team will be able to make a concerted effort using the most modern, state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.” More

  • in

    The answer may be blowing in the wind

    Capturing energy from the winds gusting off the coasts of the United States could more than double the nation’s electricity generation. It’s no wonder the Biden administration views this immense, clean-energy resource as central to its ambitious climate goals of 100 percent carbon-emissions-free electricity by 2035 and a net-zero emissions economy by 2050. The White House is aiming for 30 gigawatts of offshore wind by 2030 — enough to power 10 million homes.

    At the MIT Energy Initiative’s Spring Symposium, academic experts, energy analysts, wind developers, government officials, and utility representatives explored the immense opportunities and formidable challenges of tapping this titanic resource, both in the United States and elsewhere in the world.

    “There’s a lot of work to do to figure out how to use this resource economically — and sooner rather than later,” said Robert C. Armstrong, MITEI director and the Chevron Professor of Chemical Engineering, in his introduction to the event. 

    In sessions devoted to technology, deployment and integration, policy, and regulation, participants framed the issues critical to the development of offshore wind, described threats to its rapid rollout, and offered potential paths for breaking through gridlock.

    R&D advances

    Moderating a panel on MIT research that is moving the industry forward, Robert Stoner, MITEI’s deputy director for science and technology, provided context for the audience about the industry.

    “We have a high degree of geographic coincidence between where that wind capacity is and where most of us are, and it’s complementary to solar,” he said. Turbines sited in deeper, offshore waters gain the advantage of higher-velocity winds. “You can make these machines huge, creating substantial economies of scale,” said Stoner. An onshore turbine generates approximately 3 megawatts; offshore structures can each produce 15 to 17 megawatts, with blades the length of a football field and heights greater than the Washington Monument.

    To harness the power of wind farms spread over hundreds of nautical miles in deep water, Stoner said, researchers must first address some serious issues, including building and maintaining these massive rigs in harsh environments, laying out wind farms to optimize generation, and creating reliable and socially acceptable connections to the onshore grid. MIT scientists described how they are tackling a number of these problems.

    “When you design a floating structure, you have to prepare for the worst possible conditions,” said Paul Sclavounos, a professor of mechanical engineering and naval architecture who is developing turbines that can withstand severe storms that batter turbine blades and towers with thousands of tons of wind force. Sclavounos described systems used in the oil industry for tethering giant, buoyant rigs to the ocean floor that could be adapted for wind platforms. Relatively inexpensive components such as polyester mooring lines and composite materials “can mitigate the impact of high waves and big, big wind loads.”

    To extract the maximum power from individual turbines, developers must take into account the aerodynamics among turbines in a single wind farm and between adjacent wind farms, according to Michael Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering. Howland’s work modeling turbulence in the atmosphere and wind speeds has demonstrated that angling turbines by just a small amount relative to each other can increase power production significantly for offshore installations, dramatically improving their efficiencies. Howland hopes his research will promote “changing the design of wind farms from the beginning of the process.”

    There’s a staggering complexity to integrating electricity from offshore wind into regional grids such as the one operated by ISO New England, whether converting voltages or monitoring utility load. Steven B. Leeb, a professor of electrical engineering and computer science and of mechanical engineering, is developing sensors that can indicate electronic failures in a micro grid connected to a wind farm. And Marija Ilić, a joint adjunct professor in the Department of Electrical Engineering and Computer Science and a senior research scientist at the Laboratory for Information and Decision Systems, is developing software that would enable real-time scheduling of controllable equipment to compensate for the variable power generated by wind and other variable renewable resources. She is also working on adaptive distributed automation of this equipment to ensure a stable electric power grid.

    “How do we get from here to there?”

    Symposium speakers provided snapshots of the emerging offshore industry, sharing their sense of urgency as well as some frustrations.

    Climate poses “an existential crisis” that calls for “a massive war-footing undertaking,” said Melissa Hoffer, who occupies the newly created cabinet position of climate chief for the Commonwealth of Massachusetts. She views wind power “as the backbone of electric sector decarbonization.” With the Vineyard Wind project, the state will be one of the first in the nation to add offshore wind to the grid. “We are actually going to see the first 400 megawatts … likely interconnected and coming online by the end of this year, which is a fantastic milestone for us,” said Hoffer.

    The journey to completing Vineyard Wind involved a plethora of painstaking environmental reviews, lawsuits over lease siting, negotiations over the price of the electricity it will produce, buy-in from towns where its underground cable comes ashore, and travels to an Eversource substation. It’s a familiar story to Alla Weinstein, founder and CEO of Trident Winds, Inc. On the West Coast, where deep waters (greater than 60 meters) begin closer to shore, Weinstein is trying to launch floating offshore wind projects. “I’ve been in marine renewables for 20 years, and when people ask why I do what I do, I tell them it’s because it matters,” she said. “Because if we don’t do it, we may not have a planet that’s suitable for humans.”

    Weinstein’s “picture of reality” describes a multiyear process during which Trident Winds must address the concerns of such stakeholders as tribal communities and the fishing industry and ensure compliance with, among other regulations, the Marine Mammal Protection Act and the Migratory Bird Species Act. Construction of these massive floating platforms, when it finally happens, will require as-yet unbuilt specialized port infrastructure and boats, and a large skilled labor force for assembly and transmission. “This is a once-in-a-lifetime opportunity to create a new industry,” she said, but “how do we get from here to there?”

    Danielle Jensen, technical manager for Shell’s Offshore Wind Americas, is working on a project off of Rhode Island. The blueprint calls for high-voltage, direct-current cable snaking to landfall in Massachusetts, where direct-current lines switch to alternating current to connect to the grid. “None of this exists, so we have to find a space, the lands, and the right types of cables, tie into the interconnection point, and work with interconnection operators to do that safely and reliably,” she said.

    Utilities are partnering with developers to begin clearing some of these obstacles. Julia Bovey, director of offshore wind for Eversource, described her firm’s redevelopment or improvement of five ports, and new transport vessels for offshore assembly of wind farm components in Atlantic waters. The utility is also digging under roads to lay cables for new power lines. Bovey notes that snags in supply chains and inflation have been driving up costs. This makes determining future electricity rates more complex, especially since utility contracts and markets work differently in each state.

    Just seven up

    Other nations hold a commanding lead in offshore wind: To date, the United States claims just seven operating turbines, while Denmark boasts 6,200 and the U.K. 2,600. Europe’s combined offshore power capacity stands at 30 gigawatts — which, as MITEI Research Scientist Tim Schittekatte notes, is the U.S. goal for 2030.

    The European Union wants 400 gigawatts of offshore wind by 2050, a target made all the more urgent by threats to Europe’s energy security from the war in Ukraine. “The idea is to connect all those windmills, creating a mesh offshore grid,” Schittekatte said, aided by E.U. regulations that establish “a harmonized process to build cross-border infrastructure.”

    Morten Pindstrup, the international chief engineer at Energinet, Denmark’s state-owned energy enterprise, described one component of this pan-European plan: a hybrid Danish-German offshore wind network. Energinet is also constructing energy islands in the North Sea and the Baltic to pool power from offshore wind farms and feed power to different countries.

    The European wind industry benefits from centralized planning, regulation, and markets, said Johannes P. Pfeifenberger, a principal of The Brattle Group. “The grid planning process in the U.S. is not suitable today to find cost-effective solutions to get us to a clean energy grid in time,” he said. Pfeifenberger recommended that the United States immediately pursue a series of moves including a multistate agreement for cooperating on offshore wind and establishment by grid operators of compatible transmission technologies.

    Symposium speakers expressed sharp concerns that complicated and prolonged approvals, as well as partisan politics, could hobble the nation’s nascent offshore industry. “You can develop whatever you want and agree on what you’re doing, and then the people in charge change, and everything falls apart,” said Weinstein. “We can’t slow down, and we actually need to accelerate.”

    Larry Susskind, the Ford Professor of Urban and Environmental Planning, had ideas for breaking through permitting and political gridlock. A negotiations expert, he suggested convening confidential meetings for stakeholders with competing interests for collaborative problem-solving sessions. He announced the creation of a Renewable Energy Facility Siting Clinic at MIT. “We get people to agree that there is a problem, and to accept that without a solution, the system won’t work in the future, and we have to start fixing it now.”

    Other symposium participants were more sanguine about the success of offshore wind. “Trust me, floating wind is not a pie-in-the-sky, exotic technology that is difficult to implement,” said Sclavounos. “There will be companies investing in this technology because it produces huge amounts of energy, and even though the process may not be streamlined, the economics will work itself out.” More

  • in

    US and UAE governments highlight early warning system for climate resilience

    The following is a joint announcement from MIT and Community Jameel.

    An international project to build community resilience to the effects of climate change, launched by Community Jameel and a research team at MIT, has been recognized as an innovation sprint at the 2023 summit of the United States’ and United Arab Emirates’ Agriculture Innovation Mission for Climate (AIM4C).

    The Jameel Observatory Climate Resilience Early Warning System Network (Jameel Observatory-CREWSnet), one of MIT’s five Climate Grand Challenges flagship projects, aims to empower communities worldwide, specifically within the agriculture sector, to adapt to climate shocks by launching cross-sector collaborations and by combining state-of-the-art climate and socioeconomic forecasting techniques with technological solutions to support communities’ resilience.

    AIM4C is a joint initiative of the U.S. and U.A.E. that seeks to enhance climate action by accelerating agriculture and food systems innovation and investment. Innovation sprints are selected by AIM4C to accelerate their impact following a competitive process that considers scientific excellence and financial support.

    “As we launch Jameel Observatory-CREWSnet, the AIM4C summit offers a great opportunity to share our plans and initial work with all those who are interested in enhancing the capacity of agricultural communities in vulnerable countries to deal with challenges of climate change,” says Elfatih Eltahir, HM King Bhumibol Professor of Hydrology and Climate at MIT and project leader of the Jameel Observatory-CREWSnet.

    Jameel Observatory-CREWSnet seeks to bridge the gap between the knowledge about climate change created at research institutions such as MIT and the local farming communities that are adapting to the impacts of climate change. By effectively informing and engaging local communities, the project seeks to enable farmers to sustainably increase their agricultural productivity and income.     

    The Jameel Observatory-CREWSnet will initially pilot in Bangladesh and Sudan, working with local partners BRAC, a leading international nonprofit headquartered in Bangladesh, and the Agricultural Research Corporation-Sudan, the principal agricultural research arm of the Sudanese government, and with MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL), the global research center working to reduce poverty by ensuring that policy is informed by scientific evidence. Beginning in southwestern Bangladesh, the Jameel Observatory-CREWSnet will integrate next-generation climate forecasting, predictive analytics, new technologies, and financial instruments. In East Africa, with a focus on Sudan, the initiative will emphasize adopting modern technology to use a better variety of heat-resistant seeds, increasing the use of targeted fertilizers, strengthening soils through soil fertility mapping combined with data modeling, and emphasizing vertical expansion of agriculture over traditional horizontal expansion. The work in Sudan is extensible to other regions in Africa. Jameel Observatory-CREWSnet’s activities and timeline will be reevaluated as the team monitors the ongoing situation in Sudan.

    Using local climate insights, communities will be empowered to adapt proactively to climate change by optimally planning their agricultural activities, targeting emergent economic opportunities, and proactively managing risks from climate change.

    George Richards, director of Community Jameel, says: “Community Jameel is proud to be collaborating with MIT, BRAC, and the Agricultural Research Corporation-Sudan to empower agricultural communities to adapt to the ever-growing challenges arising from climate change — challenges which, as we are seeing acutely in Sudan, are compounded by other crises. We welcome the support of the U.S. and U.A.E. governments in selecting the Jameel Observatory-CREWSnet as an AIM4C innovation sprint.”

    Md Liakath Ali, director of climate change, urban development, and disaster risk management at BRAC, says: “Over our five decades working alongside climate-vulnerable communities in Bangladesh, BRAC has seen firsthand how locally led climate adaptation helps protect lives and livelihoods. BRAC is proud to work with Community Jameel and MIT to empower vulnerable communities to proactively adapt to the impacts of climate change.”

    The Jameel Observatory-CREWSnet was launched at COP27 in Sharm El Sheikh as part of the Jameel Observatory, an international collaboration launched in 2021 that focuses on convening researchers and practitioners who use data and technology to help communities adapt to the impacts of climate change and short-term climate shocks.

    The Jameel Observatory focuses on using data and evidence to prepare for and act on environmental shocks as well as those impacts of climate change and variability which threaten human and environmental well-being. With a special focus on low- and middle-income countries, the Jameel Observatory works at the interface of climate, natural disasters, agricultural and food systems, and health. It emphasizes the need to incorporate local as well as scientific knowledge to prepare and act in anticipation of environmental shocks.

    Launched in 2020, MIT’s Climate Grand Challenges initiative is designed to mobilize the Institute’s research community around tackling the most difficult unsolved climate problems in emissions reduction, climate adaptation and resilience, risk forecasting, carbon removal, and understanding the human impacts of climate change. MIT selected 27 teams as finalists from a field of nearly 100 initial proposals. In 2022, five teams with the most promising concepts were announced as multi-year flagship projects. More

  • in

    Asegun Henry wins National Science Foundation’s Alan T. Waterman Award

    The National Science Foundation (NSF) today named Asegun Henry, an associate professor in MIT’s Department of Mechanical Engineering, as a 2023 recipient of its Alan T. Waterman Award. This award is the NSF’s highest honor for early-career researchers and provides funding for research in any science or engineering field. 

    This is the second year NSF has chosen to honor three researchers with the award. Henry is the sixth faculty member from MIT to receive this honor in its 47-year history, and is only the second mechanical engineer to ever win the award. In addition to a medal, Henry and his fellow awardees, Natalie S. King of Georgia State University and William Anderegg from the University of Utah, will each receive $1 million over five years for research in their chosen field of science.

    “I am thrilled to congratulate this year’s Waterman awardees, three outstanding scientists who are courageously tackling some of the most challenging societal problems through their ingenuity and innovative mindset,” says NSF Director Sethuraman Panchanathan. “Their pioneering accomplishments are precisely what the Waterman Award was created to recognize, and I look forward to their tremendous contributions in the future.”

    NSF recognizes Henry as an international thermal science and engineering leader. Henry has made breakthrough advances in nanoscale heat transfer and high-temperature energy systems. He directs the Atomistic Simulation and Energy (ASE) Research Group at MIT, focusing on heat transfer at the atomic level. He also works on developing technologies that can help mitigate climate change, addressing many problems from the atomic to the gigawatt scale.

    Henry and colleagues have led the development of several technological breakthroughs, setting a world record for the highest-temperature pump, using an all-ceramic mechanical pump to move liquid metal above 1,400 degrees Celsius, as well as the world record for thermophotovoltaic efficiency.

    “It has been challenging to push the field towards acceptance of new ideas, and it has been a path fraught with resistance and questioning of the validity of our results,” says Henry. “Receiving this award is vindicating and will impact my career greatly as it helps validate that the advances we’ve pioneered really do register as major contributions, and I pride myself on the impact of my work.”

    The Waterman Award will be presented to Henry at a ceremony held in Washington on May 9 during the National Science Board meeting.  More

  • in

    Robert Armstrong: A lifetime at the forefront of chemical engineering research and education

    Robert C. Armstrong, the Chevron Professor of Chemical Engineering who has been the director of the MIT Energy Initiative (MITEI) since 2013 and part of MITEI’s leadership team since its inception in 2007, has announced that he will retire effective June 30. At that time he will have completed 50 years on the MIT faculty.  

    Armstrong plans to continue to work at 10 percent capacity, focusing on research projects on which he serves as principal investigator and also advising a number of graduate students.

    “Working at MIT has been a great honor and privilege for me,” says Armstrong. “Nowhere else can I imagine having had the opportunity to work with such exceptional students and colleagues and to have a ‘job’ that makes me want to get up every day to see what I can do to help humanity with its great challenges.”

    Armstrong joined the founding MITEI leadership team with Ernest Moniz, now the Cecil and Ida Green Professor of Physics and Engineering Systems emeritus and special advisor to the MIT president. When Moniz left MIT in 2013 to become U.S. secretary of energy, Armstrong was named MITEI director.

    “MITEI has enabled us to leverage MIT’s great talent base to make significant advances in energy research, education, and outreach,” says Armstrong. “This is an incredibly important and exciting time in energy, and there is much to be done in envisioning and implementing an energy transition that mitigates the worst impacts of climate change, provides energy justly and equitably to those around the world without access or with inadequate access, and improves security of energy supply. I have been honored to do this work with amazing colleagues at MITEI and throughout MIT, and I will be cheering that team on, as it races to reach net-zero greenhouse gas emissions by 2050.”

    MIT Vice President for Research Maria Zuber will form a search committee to select the new MITEI director. Zuber has worked closely with Armstrong since she became vice president for research in 2012.

    “Anyone who knows Bob knows that he is soft-spoken, but a person of deep conviction,” says Zuber. “He is a master of complexity, an admired educator, a respected leader, and a terrific colleague. During his decade as director, Bob has focused the MIT Energy Initiative on the urgent, daunting challenge of transforming the global energy system to respond to the climate crisis. In the last couple of years, Bob led the creation of MITEI’s Future Energy Systems Center, reflecting his keen understanding that an effective climate response requires integrated analysis and a systems approach — there is no one-fix-all solution. I congratulate Bob on a remarkable career, and I thank him for his half-century of dedicated service to MIT.”

    Armstrong joined the MIT faculty in 1973 after earning his doctorate in chemical engineering from the University of Wisconsin at Madison. A native of Louisiana, he earned his undergraduate degree in chemical engineering from Georgia Tech. He served as chair of the MIT Department of Chemical Engineering from 1996 until joining MITEI in 2007. 

    “In his 50 years at MIT, Bob has been a truly dedicated educator, researcher, and leader in our department, the Institute, and the field of chemical engineering,” says Paula T. Hammond, Institute professor and the head of the MIT Department of Chemical Engineering — a successor to Armstrong in that role. “During his time as head, he expertly expanded the breadth and depth of the department’s research and academics while maintaining its high level of excellence. He has served as a thoughtful and proactive mentor to so many of our faculty members, as well as a dedicated teacher and advocate for modernizing chemical engineering curriculum. We are extremely fortunate to have profited from his scholarship and leadership over the past several decades and will continue to benefit thanks to his vision and work toward the future of chemical engineering and energy.”

    In 2008, Armstrong was elected a member of the National Academy of Engineering, based on his research into non-Newtonian fluid mechanics, his leadership in chemical engineering education, and his co-authoring of influential chemical engineering textbooks. He became a fellow of the American Academy of Arts and Sciences in 2020.

    He received the 2006 Bingham Medal from The Society of Rheology, which is devoted to the study of the science of deformation and flow of matter, as well as the Founders Award (2020), the Warren K. Lewis Award (2006), and the Professional Progress Award (1992), all from the American Institute of Chemical Engineers. More

  • in

    Ingestible “electroceutical” capsule stimulates hunger-regulating hormone

    Hormones released by the stomach, such as ghrelin, play a key role in stimulating appetite. These hormones are produced by endocrine cells that are part of the enteric nervous system, which controls hunger, nausea, and feelings of fullness.

    MIT engineers have now shown that they can stimulate these endocrine cells to produce ghrelin, using an ingestible capsule that delivers an electrical current to the cells. This approach could prove useful for treating diseases that involve nausea or loss of appetite, such as cachexia (loss of body mass that can occur in patients with cancer or other chronic diseases).

    In tests in animals, the researchers showed that this “electroceutical” capsule could significantly boost ghrelin production in the stomach. They believe this approach could also be adapted to deliver electrical stimulation to other parts of the GI tract.

    “This study helps establish electrical stimulation by ingestible electroceuticals as a mode of triggering hormone release via the GI tract,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, and the senior author of the study. “We show one example of how we’re able to engage with the stomach mucosa and release hormones, and we anticipate that this could be used in other sites in the GI tract that we haven’t explored here.”

    Khalil Ramadi SM ’16, PhD ’19, a graduate of the Department of Mechanical Engineering and the Harvard-MIT Program in Health Sciences and Technology who is now an assistant professor of bioengineering at the New York University (NYU) Tandon School of Engineering and the director of the Laboratory for Advanced Neuroengineering and Translational Medicine at NYU Abu Dhabi, and James McRae, an MIT graduate student, are the lead authors of the paper, which appears today in Science Robotics.

    Electrical stimulation

    The enteric nervous system controls all aspects of digestion, including the movement of food through the GI tract. Some patients with gastroparesis, a disorder of the stomach nerves that leads to very slow movement of food, have shown symptomatic improvement after electrical stimulation generated by a pacemaker-like device that can be surgically implanted in the stomach.

    Doctors had theorized that the electrical stimulation would provoke the stomach into contracting, which would help push food along. However, it was later found that while the treatment does help patients feel better, it affected motility to a lesser degree. The MIT team hypothesized that the electrical stimulation of the stomach might be leading to the release of ghrelin, which is known to promote hunger and reduce feelings of nausea.

    To test that hypothesis, the researchers used an electrical probe to deliver electrical stimulation in the stomachs of animals. They found that after 20 minutes of stimulation, ghrelin levels in the bloodstream were considerably elevated. They also found that electrical stimulation did not lead to any significant inflammation or other adverse effects.

    Once they established that electrical stimulation was provoking ghrelin release, the researchers set out to see if they could achieve the same thing using a device that could be swallowed and temporarily reside in the stomach. One of the main challenges in designing such a device is ensuring that the electrodes on the capsule can contact the stomach tissue, which are coated with fluid. 

    Play video

    To create a drier surface that electrodes can interact with, the researchers gave their capsule a grooved surface that wicks fluid away from the electrodes. The surface they designed is inspired by the skin of the Australian thorny devil lizard, which uses ridged scales to collect water. When the lizard touches water with any part of its skin, water is transported by capillary action along the channels to the lizard’s mouth.

    “We were inspired by that to incorporate surface textures and patterns onto the outside of this capsule,” McRae says. “That surface can manage the fluid that could potentially prevent the electrodes from touching the tissue in the stomach, so it can reliably deliver electrical stimulation.”

    The capsule surface consists of grooves with a hydrophilic coating. These grooves function as channels that draw fluid away from the stomach tissue. Inside the device are battery-powered electronics that produce an electric current that flows across electrodes on the surface of the capsule. In the prototype used in this study, the current runs constantly, but future versions could be designed so that the current can be wirelessly turned on and off, according to the researchers.

    Hormone boost

    The researchers tested their capsule by administering it into the stomachs of large animals, and they found that the capsule produced a substantial spike in ghrelin levels in the bloodstream.

    “As far as we know, this is the first example of using electrical stimuli through an ingestible device to increase endogenous levels of hormones in the body, like ghrelin. And so, it has this effect of utilizing the body’s own systems rather than introducing external agents,” Ramadi says.

    The researchers found that in order for this stimulation to work, the vagus nerve, which controls digestion, must be intact. They theorize that the electrical pulses transmit to the brain via the vagus nerve, which then stimulates endocrine cells in the stomach to produce ghrelin.

    Traverso’s lab now plans to explore using this approach in other parts of the GI tract, and the researchers hope to test the device in human patients within the next three years. If developed for use in human patients, this type of treatment could potentially replace or complement some of the existing drugs used to prevent nausea and stimulate appetite in people with cachexia or anorexia, the researchers say.

    “It’s a relatively simple device, so we believe it’s something that we can get into humans on a relatively quick time scale,” Traverso says.

    The research was funded by the Koch Institute Support (core) Grant from the National Cancer Institute, the National Institute for Diabetes and Digestive and Kidney Diseases, the Division of Engineering at New York University Abu Dhabi, a National Science Foundation graduate research fellowship, Novo Nordisk, and the Department of Mechanical Engineering at MIT. More

  • in

    Exploring the bow shock and beyond

    For most people, the night sky conjures a sense of stillness, an occasional shooting star the only visible movement. A conversation with Rishabh Datta, however, unveils the supersonic drama crashing above planet Earth. The PhD candidate has focused his recent study on the plasma speeding through space, flung from sources like the sun’s corona and headed toward Earth, halted abruptly by colliding with the planet’s magnetosphere. The resulting shock wave is similar to the “bow shock” that forms around the nose cone of a supersonic jet, which manifests as the familiar sonic boom.

    The bow shock phenomenon has been well studied. “It’s probably one of the things that’s keeping life alive,” says Datta, “protecting us from the solar wind.” While he feels the magnetosphere provides “a very interesting space laboratory,” Datta’s main focus is, “Can we create this high-energy plasma that is moving supersonically in a laboratory, and can we study it? And can we learn things that are hard to diagnose in an astrophysical plasma?”

    Datta’s research journey to the bow shock and beyond began when he joined a research program for high school students at the National University Singapore. Tasked with culturing bacteria and measuring the amount of methane they produced in a biogas tank, Datta found his first research experience “quite nasty.”

    “I was working with chicken manure, and every day I would come home smelling completely awful,” he says.

    As an undergraduate at Georgia Tech, Datta’s interests turned toward solar power, compelled by a new technology he felt could generate sustainable energy. By the time he joined MIT’s Department of Mechanical Engineering, though, his interests had morphed into researching the heat and mass transfer from airborne droplets. After a year of study, he felt the need to go in a yet another direction.

    The subject of astrophysical plasmas had recently piqued his interest, and he followed his curiosity to Department of Nuclear Science and Engineering Professor Nuno Loureiro’s introductory plasma class. There he encountered Professor Jack Hare, who was sitting in on the class and looking for students to work with him.

    “And that’s how I ended up doing plasma physics and studying bow shocks,” he says, “a long and circuitous route that started with culturing bacteria.”

    Gathering measurements from MAGPIE

    Datta is interested in what he can learn about plasma from gathering measurements of a laboratory-created bow shock, seeking to verify theoretical models. He uses data already collected from experiments on a pulsed-power generator known as MAGPIE (the Mega-Ampere Generator of Plasma Implosion Experiments), located at Imperial College, London. By observing how long it takes a plasma to reach an obstacle, in this case a probe that measures magnetic fields, Datta was able to determine its velocity.   

    With the velocity established, an interferometry system was able to provide images of the probe and the plasma around it, allowing Datta to characterize the structure of the bow shock.

    “The shape depends on how fast sound waves can travel in a plasma,” says Datta. “And this ‘sound speed’ depends on the temperature.”

    The interdependency of these characteristics means that by imaging a shock it’s possible to determine temperature, sound speed, and other measurements more easily and cheaply than with other methods.

    “And knowing more about your plasma allows you to make predictions about, for example, electrical resistivity, which can be important for understanding other physics that might interest you,” says Datta, “like magnetic reconnection.”

    This phenomenon, which controls the evolution of such violent events as solar flares, coronal mass ejections, magnetic storms that drive auroras, and even disruptions in fusion tokamaks, has become the focus of his recent research. It happens when opposing magnetic fields in a plasma break and then reconnect, generating vast quantities of heat and accelerating the plasma to high velocities.

    Onward to Z

    Datta travels to Sandia National Laboratories in Albuquerque, New Mexico, to work on the largest pulsed power facility in the world, informally known as “the Z machine,” to research how the properties of magnetic reconnection change when a plasma emits strong radiation and cools rapidly.

    In future years, Datta will only have to travel across Albany Street on the MIT campus to work on yet another machine, PUFFIN, currently being built at the Plasma Science and Fusion Center (PSFC). Like MAGPIE and Z, PUFFIN is a pulsed power facility, but with the ability to drive the current 10 times longer than other machines, opening up new opportunities in high-energy-density laboratory astrophysics.

    Hare, who leads the PUFFIN team, is pleased with Datta’s increasing experience.

    “Working with Rishabh is a real pleasure,” he says, “He has quickly learned the ins and outs of experimental plasma physics, often analyzing data from machines he hasn’t even yet had the chance to see! While we build PUFFIN it’s really useful for us to carry out experiments at other pulsed-power facilities worldwide, and Rishabh has already written papers on results from MAGPIE, COBRA at Cornell in Ithaca, New York, and the Z Machine.”

    Pursuing climate action at MIT

    Hand-in-hand with Datta’s quest to understand plasma is his pursuit of sustainability, including carbon-free energy solutions. A member of the Graduate Student Council’s Sustainability Committee since he arrived in 2019, he was heartened when MIT, revising their climate action plan, provided him and other students the chance to be involved in decision-making. He led focus groups to provide graduate student input on the plan, raising issues surrounding campus decarbonization, the need to expand hiring of early-career researchers working on climate and sustainability, and waste reduction and management for MIT laboratories.

    When not focused on bringing astrophysics to the laboratory, Datta sometimes experiments in a lab closer to home — the kitchen — where he often challenges himself to duplicate a recipe he has recently tried at a favorite restaurant. His stated ambition could apply to his sustainability work as well as to his pursuit of understanding plasma.

    “The goal is to try and make it better,” he says. “I try my best to get there.”

    Datta’s work has been funded, in part, by the National Science Foundation, National Nuclear Security Administration, and the Department of Energy. More