More stories

  • in

    MIT scientists contribute to National Ignition Facility fusion milestone

    On Monday, Dec. 5, at around 1 a.m., a tiny sphere of deuterium-tritium fuel surrounded by a cylindrical can of gold called a hohlraum was targeted by 192 lasers at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in California. Over the course of billionths of a second, the lasers fired, generating X-rays inside the gold can, and imploding the sphere of fuel.

    On that morning, for the first time ever, the lasers delivered 2.1 megajoules of energy and yielded 3.15 megajoules in return, achieving a historic fusion energy gain well above 1 — a result verified by diagnostic tools developed by the MIT Plasma Science and Fusion Center (PSFC). The use of these tools and their importance was referenced by Arthur Pak, a LLNL staff scientist who spoke at a U.S. Department of Energy press event on Dec. 13 announcing the NIF’s success.

    Johan Frenje, head of the PSFC High-Energy-Density Physics division, notes that this milestone “will have profound implications for laboratory fusion research in general.”

    Since the late 1950s, researchers worldwide have pursued fusion ignition and energy gain in a laboratory, considering it one of the grand challenges of the 21st century. Ignition can only be reached when the internal fusion heating power is high enough to overcome the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop that very rapidly increases the plasma temperature. In the case of inertial confinement fusion, the method used at the NIF, ignition can initiate a “fuel burn propagation” into the surrounding dense and cold fuel, and when done correctly, enable fusion-energy gain.

    Frenje and his PSFC division initially designed dozens of diagnostic systems that were implemented at the NIF, including the vitally important magnetic recoil neutron spectrometer (MRS), which measures the neutron energy spectrum, the data from which fusion yield, plasma ion temperature, and spherical fuel pellet compression (“fuel areal density”) can be determined. Overseen by PSFC Research Scientist Maria Gatu Johnson since 2013, the MRS is one of two systems at the NIF relied upon to measure the absolute neutron yield from the Dec. 5 experiment because of its unique ability to accurately interpret an implosion’s neutron signals.

    “Before the announcement of this historic achievement could be made, the LLNL team wanted to wait until Maria had analyzed the MRS data to an adequate level for a fusion yield to be determined,” says Frenje.

    Response around MIT to NIF’s announcement has been enthusiastic and hopeful. “This is the kind of breakthrough that ignites the imagination,” says Vice President for Research Maria Zuber, “reminding us of the wonder of discovery and the possibilities of human ingenuity. Although we have a long, hard path ahead of us before fusion can deliver clean energy to the electrical grid, we should find much reason for optimism in today’s announcement. Innovation in science and technology holds great power and promise to address some of the world’s biggest challenges, including climate change.”

    Frenje also credits the rest of the team at the PSFC’s High-Energy-Density Physics division, the Laboratory for Laser Energetics at the University of Rochester, LLNL, and other collaborators for their support and involvement in this research, as well as the National Nuclear Security Administration of the Department of Energy, which has funded much of their work since the early 1990s. He is also proud of the number of MIT PhDs that have been generated by the High-Energy-Density Physics Division and subsequently hired by LLNL, including the experimental lead for this experiment, Alex Zylstra PhD ’15.

    “This is really a team effort,” says Frenje. “Without the scientific dialogue and the extensive know-how at the HEDP Division, the critical contributions made by the MRS system would not have happened.” More

  • in

    Microparticles could help prevent vitamin A deficiency

    Vitamin A deficiency is the world’s leading cause of childhood blindness, and in severe cases, it can be fatal. About one-third of the global population of preschool-aged children suffer from this vitamin deficiency, which is most prevalent in sub-Saharan Africa and South Asia.

    MIT researchers have now developed a new way to fortify foods with vitamin A, which they hope could help to improve the health of millions of people around the world. In a new study, they showed that encapsulating vitamin A in a protective polymer prevents the nutrient from being broken down during cooking or storage.

    “Vitamin A is a very important micronutrient, but it’s an unstable molecule,” says Ana Jaklenec, a research scientist at MIT’s Koch Institute for Integrative Cancer Research. “We wanted to see if our encapsulated vitamin A could fortify a food vehicle like bouillon cubes or flour, throughout storage and cooking, and whether the vitamin A could remain biologically active and be absorbed.”

    In a small clinical trial, the researchers showed that when people ate bread fortified with encapsulated vitamin A, the bioavailability of the nutrient was similar to when they consumed vitamin A on its own. The technology has been licensed to two companies that hope to develop it for use in food products.

    “This is a study that our team is really excited about because it shows that everything we did in test tubes and animals works safely and effectively in humans,” says Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute. “We hope this opens the door for someday helping millions, if not billions, of people in the developing world.”

    Jaklenec and Langer are the senior authors of the new study, which appears this week in the Proceedings of the National Academy of Sciences. The paper’s lead author is former MIT postdoc Wen Tang, who is now an associate professor at South China University of Technology.

    Nutrient stability

    Vitamin A is critical not only for vision but also the functioning of the immune system and organs such as the heart and lungs. Efforts to add vitamin A to bread or other foods such as bouillon cubes, which are commonly consumed in West African countries, have been largely unsuccessful because the vitamin breaks down during storage or cooking.

    In a 2019 study, the MIT team showed that they could use a polymer called BMC to encapsulate nutrients, including iron, vitamin A, and several others. They showed that this protective coating improved the shelf life of the nutrients, and that people who consumed bread fortified with encapsulated iron were able to absorb the iron.

    BMC is classified by the FDA as “generally regarded as safe,” and is already used in coatings for drugs and dietary supplements. In the new study, the researchers focused on using this polymer to encapsulate vitamin A, a nutrient that is very sensitive to temperature and ultraviolet light.

    Using an industrial process known as a spinning disc process, the researchers mixed vitamin A with the polymer to form particles 100 to 200 microns in diameter. They also coated the particles with starch, which prevents them from sticking to each other.

    The researchers found that vitamin A encapsulated in the polymer particles were more resistant to degradation by intense light, high temperatures, or boiling water. Under those conditions, much more vitamin A remained active than when the vitamin A was free or when it was delivered in a form called VitA 250, which is currently the most stable form of vitamin A used for food fortification.

    The researchers also showed that the encapsulated particles could be easily incorporated into flour or bouillon cubes. To test how well they would survive long-term storage, the researchers exposed the cubes to harsh conditions, as recommended by the World Health Organization: 40 degrees Celsius (104 degrees Fahrenheit) and 75 percent humidity. Under those conditions, the encapsulated vitamin A was much more stable than other forms of vitamin A. 

    “The enhanced stability of vitamin A with our technology can ensure that the vitamin A-fortified food does provide the recommended daily uptake of vitamin A, even after long-term storage in a hot humidified environment, and cooking processes such as boiling or baking,” Tang says. “People who are suffering from vitamin A deficiency and want to get vitamin A through fortified food will benefit, without changing their daily routines, and without wondering how much vitamin A is still in the food.”

    Vitamin absorption

    When the researchers cooked their encapsulated particles and then fed them to animals, they found that 30 percent of the vitamin A was absorbed, the same as free uncooked vitamin A, compared to about 3 percent of free vitamin A that had been cooked.

    Working with Biofortis, a company that does dietary clinical testing, the researchers then evaluated how well vitamin A was absorbed in people who ate foods fortified with the particles. For this study, the researchers incorporated the particles into bread, then measured vitamin A levels in the blood over a 24-hour period after the bread was consumed. They found that when vitamin A was encapsulated in the BMC polymer, it was absorbed from the food at levels comparable to free vitamin A, indicating that it is readily released in bioactive form.

    Two companies have licensed the technology and are focusing on developing products fortified with vitamin A and other nutrients. A benefit corporation called Particles for Humanity, funded by the Bill and Melinda Gates Foundation, is working with partners in Africa to incorporate this technology into existing fortification efforts. Another company called VitaKey, founded by Jaklenec, Langer, and others, is working on using this approach to add nutrients to a variety of foods and beverages.

    The research was funded by the Bill and Melinda Gates Foundation. Other authors of the paper include Jia Zhuang, Aaron Anselmo, Xian Xu, Aranda Duan, Ruojie Zhang, James Sugarman, Yingying Zeng, Evan Rosenberg, Tyler Graf, Kevin McHugh, Stephany Tzeng, Adam Behrens, Lisa Freed, Lihong Jing, Surangi Jayawardena, Shelley Weinstock, Xiao Le, Christopher Sears, James Oxley, John Daristotle, and Joe Collins. More

  • in

    Pursuing a practical approach to research

    Koroush Shirvan, the John Clark Hardwick Career Development Professor in the Department of Nuclear Science and Engineering (NSE), knows that the nuclear industry has traditionally been wary of innovations until they are shown to have proven utility. As a result, he has relentlessly focused on practical applications in his research, work that has netted him the 2022 Reactor Technology Award from the American Nuclear Society. “The award has usually recognized practical contributions to the field of reactor design and has not often gone to academia,” Shirvan says.

    One of these “practical contributions” is in the field of accident-tolerant fuels, a program launched by the U.S. Nuclear Regulatory Commission in the wake of the 2011 Fukushima Daiichi incident. The goal within this program, says Shirvan, is to develop new forms of nuclear fuels that can tolerate heat. His team, with students from over 16 countries, is working on numerous possibilities that range in composition and method of production.

    Another aspect of Shirvan’s research focuses on how radiation impacts heat transfer mechanisms in the reactor. The team found fuel corrosion to be the driving force. “[The research] informs how nuclear fuels perform in the reactor, from a practical point of view,” Shirvan says.

    Optimizing nuclear reactor design

    A summer internship when Shirvan was an undergraduate at the University of Florida at Gainesville seeded his drive to focus on practical applications in his studies. A nearby nuclear utility was losing millions because of crud accumulating on fuel rods. Over time, the company was solving the problem by using more fuel, before it had extracted all the life from earlier batches.

    Placement of fuel rods in nuclear reactors is a complex problem with many factors — the life of the fuel, location of hot spots — affecting outcomes. Nuclear reactors change their configuration of fuel rods every 18-24 months to optimize close to 15-20 constraints, leading to roughly 200-800 assemblies. The mind-boggling nature of the problem means that plants have to rely on experienced engineers.

    During his internship, Shirvan optimized the program used to place fuel rods in the reactor. He found that certain rods in assemblies were more prone to the crud deposits, and reworked their configurations, optimizing for these rods’ performance instead of adding assemblies.

    In recent years, Shirvan has applied a branch of artificial intelligence — reinforcement learning — to the configuration problem and created a software program used by the largest U.S. nuclear utility. “This program gives even a layperson the ability to reconfigure the fuels and the reactor without having expert knowledge,” Shirvan says.

    From advanced math to counting jelly beans

    Shirvan’s own expertise in nuclear science and engineering developed quite organically. He grew up in Tehran, Iran, and when he was 14 the family moved to Gainesville, where Shirvan’s aunt and family live. He remembers an awkward couple of years at the new high school where he was grouped in with newly arrived international students, and placed in entry-level classes. “I went from doing advanced mathematics in Iran to counting jelly beans,” he laughs.

    Shirvan applied to the University of Florida for his undergraduate studies since it made economic sense; the school gave full scholarships to Floridian students who received a certain minimum SAT score. Shirvan qualified. His uncle, who was a professor in the nuclear engineering department then, encouraged Shirvan to take classes in the department. Under his uncle’s mentorship, the courses Shirvan took, and his internship, cemented his love of the interdisciplinary approach that the field demanded.

    Having always known that he wanted to teach — he remembers finishing his math tests early in Tehran so he could earn the reward of being class monitor — Shirvan knew graduate school was next. His uncle encouraged him to apply to MIT and to the University of Michigan, home to reputable programs in the field. Shirvan chose MIT because “only at MIT was there a program on nuclear design. There were faculty dedicated to designing new reactors, looking at multiple disciplines, and putting all of that together.” He went on to pursue his master’s and doctoral studies at NSE under the supervision of Professor Mujid Kazimi, focusing on compact pressurized and boiling water reactor designs. When Kazimi passed away suddenly in 2015, Shirvan was a research scientist, and switched to tenure track to guide the professor’s team.

    Another project that Shirvan took in 2015: leadership of MIT’s course on nuclear reactor technology for utility executives. Offered only by the Institute, the program is an introduction to nuclear engineering and safety for personnel who might not have much background in the area. “It’s a great course because you get to see what the real problems are in the energy sector … like grid stability,” Shirvan says.

    A multipronged approach to savings

    Another very real problem nuclear utilities face is cost. Contrary to what one hears on the news, one of the biggest stumbling blocks to building new nuclear facilities in the United States is cost, which today can be up to three times that of renewables, Shirvan says. While many approaches such as advanced manufacturing have been tried, Shirvan believes that the solution to decrease expenditures lies in designing more compact reactors.

    His team has developed an open-source advanced nuclear cost tool and has focused on two different designs: a small water reactor using compact steam technology and a horizontal gas reactor. Compactness also means making fuels more efficient, as Shirvan’s work does, and in improving the heat exchange device. It’s all back to the basics and bringing “commercial viable arguments in with your research,” Shirvan explains.

    Shirvan is excited about the future of the U.S. nuclear industry, and that the 2022 Inflation Reduction Act grants the same subsidies to nuclear as it does for renewables. In this new level playing field, advanced nuclear still has a long way to go in terms of affordability, he admits. “It’s time to push forward with cost-effective design,” Shirvan says, “I look forward to supporting this by continuing to guide these efforts with research from my team.” More

  • in

    Reversing the charge

    Owners of electric vehicles (EVs) are accustomed to plugging into charging stations at home and at work and filling up their batteries with electricity from the power grid. But someday soon, when these drivers plug in, their cars will also have the capacity to reverse the flow and send electrons back to the grid. As the number of EVs climbs, the fleet’s batteries could serve as a cost-effective, large-scale energy source, with potentially dramatic impacts on the energy transition, according to a new paper published by an MIT team in the journal Energy Advances.

    “At scale, vehicle-to-grid (V2G) can boost renewable energy growth, displacing the need for stationary energy storage and decreasing reliance on firm [always-on] generators, such as natural gas, that are traditionally used to balance wind and solar intermittency,” says Jim Owens, lead author and a doctoral student in the MIT Department of Chemical Engineering. Additional authors include Emre Gençer, a principal research scientist at the MIT Energy Initiative (MITEI), and Ian Miller, a research specialist for MITEI at the time of the study.

    The group’s work is the first comprehensive, systems-based analysis of future power systems, drawing on a novel mix of computational models integrating such factors as carbon emission goals, variable renewable energy (VRE) generation, and costs of building energy storage, production, and transmission infrastructure.

    “We explored not just how EVs could provide service back to the grid — thinking of these vehicles almost like energy storage on wheels — but also the value of V2G applications to the entire energy system and if EVs could reduce the cost of decarbonizing the power system,” says Gençer. “The results were surprising; I personally didn’t believe we’d have so much potential here.”

    Displacing new infrastructure

    As the United States and other nations pursue stringent goals to limit carbon emissions, electrification of transportation has taken off, with the rate of EV adoption rapidly accelerating. (Some projections show EVs supplanting internal combustion vehicles over the next 30 years.) With the rise of emission-free driving, though, there will be increased demand for energy. “The challenge is ensuring both that there’s enough electricity to charge the vehicles and that this electricity is coming from renewable sources,” says Gençer.

    But solar and wind energy is intermittent. Without adequate backup for these sources, such as stationary energy storage facilities using lithium-ion batteries, for instance, or large-scale, natural gas- or hydrogen-fueled power plants, achieving clean energy goals will prove elusive. More vexing, costs for building the necessary new energy infrastructure runs to the hundreds of billions.

    This is precisely where V2G can play a critical, and welcome, role, the researchers reported. In their case study of a theoretical New England power system meeting strict carbon constraints, for instance, the team found that participation from just 13.9 percent of the region’s 8 million light-duty (passenger) EVs displaced 14.7 gigawatts of stationary energy storage. This added up to $700 million in savings — the anticipated costs of building new storage capacity.

    Their paper also described the role EV batteries could play at times of peak demand, such as hot summer days. “V2G technology has the ability to inject electricity back into the system to cover these episodes, so we don’t need to install or invest in additional natural gas turbines,” says Owens. “The way that EVs and V2G can influence the future of our power systems is one of the most exciting and novel aspects of our study.”

    Modeling power

    To investigate the impacts of V2G on their hypothetical New England power system, the researchers integrated their EV travel and V2G service models with two of MITEI’s existing modeling tools: the Sustainable Energy System Analysis Modeling Environment (SESAME) to project vehicle fleet and electricity demand growth, and GenX, which models the investment and operation costs of electricity generation, storage, and transmission systems. They incorporated such inputs as different EV participation rates, costs of generation for conventional and renewable power suppliers, charging infrastructure upgrades, travel demand for vehicles, changes in electricity demand, and EV battery costs.

    Their analysis found benefits from V2G applications in power systems (in terms of displacing energy storage and firm generation) at all levels of carbon emission restrictions, including one with no emissions caps at all. However, their models suggest that V2G delivers the greatest value to the power system when carbon constraints are most aggressive — at 10 grams of carbon dioxide per kilowatt hour load. Total system savings from V2G ranged from $183 million to $1,326 million, reflecting EV participation rates between 5 percent and 80 percent.

    “Our study has begun to uncover the inherent value V2G has for a future power system, demonstrating that there is a lot of money we can save that would otherwise be spent on storage and firm generation,” says Owens.

    Harnessing V2G

    For scientists seeking ways to decarbonize the economy, the vision of millions of EVs parked in garages or in office spaces and plugged into the grid for 90 percent of their operating lives proves an irresistible provocation. “There is all this storage sitting right there, a huge available capacity that will only grow, and it is wasted unless we take full advantage of it,” says Gençer.

    This is not a distant prospect. Startup companies are currently testing software that would allow two-way communication between EVs and grid operators or other entities. With the right algorithms, EVs would charge from and dispatch energy to the grid according to profiles tailored to each car owner’s needs, never depleting the battery and endangering a commute.

    “We don’t assume all vehicles will be available to send energy back to the grid at the same time, at 6 p.m. for instance, when most commuters return home in the early evening,” says Gençer. He believes that the vastly varied schedules of EV drivers will make enough battery power available to cover spikes in electricity use over an average 24-hour period. And there are other potential sources of battery power down the road, such as electric school buses that are employed only for short stints during the day and then sit idle.

    The MIT team acknowledges the challenges of V2G consumer buy-in. While EV owners relish a clean, green drive, they may not be as enthusiastic handing over access to their car’s battery to a utility or an aggregator working with power system operators. Policies and incentives would help.

    “Since you’re providing a service to the grid, much as solar panel users do, you could be paid for your participation, and paid at a premium when electricity prices are very high,” says Gençer.

    “People may not be willing to participate ’round the clock, but if we have blackout scenarios like in Texas last year, or hot-day congestion on transmission lines, maybe we can turn on these vehicles for 24 to 48 hours, sending energy back to the system,” adds Owens. “If there’s a power outage and people wave a bunch of money at you, you might be willing to talk.”

    “Basically, I think this comes back to all of us being in this together, right?” says Gençer. “As you contribute to society by giving this service to the grid, you will get the full benefit of reducing system costs, and also help to decarbonize the system faster and to a greater extent.”

    Actionable insights

    Owens, who is building his dissertation on V2G research, is now investigating the potential impact of heavy-duty electric vehicles in decarbonizing the power system. “The last-mile delivery trucks of companies like Amazon and FedEx are likely to be the earliest adopters of EVs,” Owen says. “They are appealing because they have regularly scheduled routes during the day and go back to the depot at night, which makes them very useful for providing electricity and balancing services in the power system.”

    Owens is committed to “providing insights that are actionable by system planners, operators, and to a certain extent, investors,” he says. His work might come into play in determining what kind of charging infrastructure should be built, and where.

    “Our analysis is really timely because the EV market has not yet been developed,” says Gençer. “This means we can share our insights with vehicle manufacturers and system operators — potentially influencing them to invest in V2G technologies, avoiding the costs of building utility-scale storage, and enabling the transition to a cleaner future. It’s a huge win, within our grasp.”

    The research for this study was funded by MITEI’s Future Energy Systems Center. More

  • in

    Engineers solve a mystery on the path to smaller, lighter batteries

    A discovery by MIT researchers could finally unlock the door to the design of a new kind of rechargeable lithium battery that is more lightweight, compact, and safe than current versions, and that has been pursued by labs around the world for years.

    The key to this potential leap in battery technology is replacing the liquid electrolyte that sits between the positive and negative electrodes with a much thinner, lighter layer of solid ceramic material, and replacing one of the electrodes with solid lithium metal. This would greatly reduce the overall size and weight of the battery and remove the safety risk associated with liquid electrolytes, which are flammable. But that quest has been beset with one big problem: dendrites.

    Dendrites, whose name comes from the Latin for branches, are projections of metal that can build up on the lithium surface and penetrate into the solid electrolyte, eventually crossing from one electrode to the other and shorting out the battery cell. Researchers haven’t been able to agree on what gives rise to these metal filaments, nor has there been much progress on how to prevent them and thus make lightweight solid-state batteries a practical option.

    The new research, being published today in the journal Joule in a paper by MIT Professor Yet-Ming Chiang, graduate student Cole Fincher, and five others at MIT and Brown University, seems to resolve the question of what causes dendrite formation. It also shows how dendrites can be prevented from crossing through the electrolyte.

    Chiang says in the group’s earlier work, they made a “surprising and unexpected” finding, which was that the hard, solid electrolyte material used for a solid-state battery can be penetrated by lithium, which is a very soft metal, during the process of charging and discharging the battery, as ions of lithium move between the two sides.

    This shuttling back and forth of ions causes the volume of the electrodes to change. That inevitably causes stresses in the solid electrolyte, which has to remain fully in contact with both of the electrodes that it is sandwiched between. “To deposit this metal, there has to be an expansion of the volume because you’re adding new mass,” Chiang says. “So, there’s an increase in volume on the side of the cell where the lithium is being deposited. And if there are even microscopic flaws present, this will generate a pressure on those flaws that can cause cracking.”

    Those stresses, the team has now shown, cause the cracks that allow dendrites to form. The solution to the problem turns out to be more stress, applied in just the right direction and with the right amount of force.

    While previously, some researchers thought that dendrites formed by a purely electrochemical process, rather than a mechanical one, the team’s experiments demonstrate that it is mechanical stresses that cause the problem.

    The process of dendrite formation normally takes place deep within the opaque materials of the battery cell and cannot be observed directly, so Fincher developed a way of making thin cells using a transparent electrolyte, allowing the whole process to be directly seen and recorded. “You can see what happens when you put a compression on the system, and you can see whether or not the dendrites behave in a way that’s commensurate with a corrosion process or a fracture process,” he says.

    The team demonstrated that they could directly manipulate the growth of dendrites simply by applying and releasing pressure, causing the dendrites to zig and zag in perfect alignment with the direction of the force.

    Applying mechanical stresses to the solid electrolyte doesn’t eliminate the formation of dendrites, but it does control the direction of their growth. This means they can be directed to remain parallel to the two electrodes and prevented from ever crossing to the other side, and thus rendered harmless.

    In their tests, the researchers used pressure induced by bending the material, which was formed into a beam with a weight at one end. But they say that in practice, there could be many different ways of producing the needed stress. For example, the electrolyte could be made with two layers of material that have different amounts of thermal expansion, so that there is an inherent bending of the material, as is done in some thermostats.

    Another approach would be to “dope” the material with atoms that would become embedded in it, distorting it and leaving it in a permanently stressed state. This is the same method used to produce the super-hard glass used in the screens of smart phones and tablets, Chiang explains. And the amount of pressure needed is not extreme: The experiments showed that pressures of 150 to 200 megapascals were sufficient to stop the dendrites from crossing the electrolyte.

    The required pressure is “commensurate with stresses that are commonly induced in commercial film growth processes and many other manufacturing processes,” so should not be difficult to implement in practice, Fincher adds.

    In fact, a different kind of stress, called stack pressure, is often applied to battery cells, by essentially squishing the material in the direction perpendicular to the battery’s plates — somewhat like compressing a sandwich by putting a weight on top of it. It was thought that this might help prevent the layers from separating. But the experiments have now demonstrated that pressure in that direction actually exacerbates dendrite formation. “We showed that this type of stack pressure actually accelerates dendrite-induced failure,” Fincher says.

    What is needed instead is pressure along the plane of the plates, as if the sandwich were being squeezed from the sides. “What we have shown in this work is that when you apply a compressive force you can force the dendrites to travel in the direction of the compression,” Fincher says, and if that direction is along the plane of the plates, the dendrites “will never get to the other side.”

    That could finally make it practical to produce batteries using solid electrolyte and metallic lithium electrodes. Not only would these pack more energy into a given volume and weight, but they would eliminate the need for liquid electrolytes, which are flammable materials.

    Having demonstrated the basic principles involved, the team’s next step will be to try to apply these to the creation of a functional prototype battery, Chiang says, and then to figure out exactly what manufacturing processes would be needed to produce such batteries in quantity. Though they have filed for a patent, the researchers don’t plan to commercialize the system themselves, he says, as there are already companies working on the development of solid-state batteries. “I would say this is an understanding of failure modes in solid-state batteries that we believe the industry needs to be aware of and try to use in designing better products,” he says.

    The research team included Christos Athanasiou and Brian Sheldon at Brown University, and Colin Gilgenbach, Michael Wang, and W. Craig Carter at MIT. The work was supported by the U.S. National Science Foundation, the U.S. Department of Defense, the U.S. Defense Advanced Research Projects Agency, and the U.S. Department of Energy. More

  • in

    On batteries, teaching, and world peace

    Over his long career as an electrochemist and professor, Donald Sadoway has earned an impressive variety of honors, from being named one of Time magazine’s 100 most influential people in 2012 to appearing on “The Colbert Report,” where he talked about “renewable energy and world peace,” according to Comedy Central.

    What does he personally consider to be his top achievements?

    “That’s easy,” he says immediately. “For teaching, it’s 3.091,” the MIT course on solid-state chemistry he led for some 18 years. An MIT core requirement, 3.091 is also one of the largest classes at the Institute. In 2003 it was the largest, with 630 students. Sadoway, who retires this year after 45 years in the Department of Materials Science and Engineering, estimates that over the years he’s taught the course to some 10,000 undergraduates.

    A passion for teaching

    Along the way he turned the class into an MIT favorite, complete with music, art, and literature. “I brought in all that enrichment because I knew that 95 percent of the students in that room weren’t going to major in anything chemical and this might be the last class they’d take in the subject. But it’s a requirement. So they’re 18 years old, they’re very smart, and many of them are very bored. You have to find a hook [to reach them]. And I did.”

    In 1995, Sadoway was named a Margaret MacVicar Faculty Fellow, an honor that recognizes outstanding classroom teaching at the Institute. Among the communications in support of his nomination:

    “His contributions are enormous and the class is in rapt attention from beginning to end. His lectures are highly articulate yet animated and he has uncommon grace and style. I was awed by his ability to introduce playful and creative elements into a core lecture…”

    Bill Gates would agree. In the early 2000s Sadoway’s lectures were shared with the world through OpenCourseWare, the web-based publication of MIT course materials. Gates was so inspired by the lectures that he asked to meet with Sadoway to learn more about his research. (Sadoway initially ignored Gates’ email because he thought his account had been hacked by MIT pranksters.)

    Research breakthroughs

    Teaching is not Sadoway’s only passion. He’s also proud of his accomplishments in electrochemistry. The discipline that involves electron transfer reactions is key to everything from batteries to the primary extraction of metals like aluminum and magnesium. “It’s quite wide-ranging,” says the John F. Elliott Professor Emeritus of Materials Chemistry.

    Sadoway’s contributions include two battery breakthroughs. First came the liquid metal battery, which could enable the large-scale storage of renewable energy. “That represents a huge step forward in the transition to green energy,” said António Campinos, president of the European Patent Office, earlier this year when Sadoway won the 2022 European Inventor Award for the invention in the category for Non-European Patent Office Countries.

    On “The Colbert Report,” Sadoway alluded to that work when he told Stephen Colbert that electrochemistry is the key to world peace. Why? Because it could lead to a battery capable of storing energy from the sun when the sun doesn’t shine and otherwise make renewables an important part of the clean energy mix. And that in turn could “plummet the price of petroleum and depose dictators all over the world without one shot being fired,” he recently recalled.

    The liquid metal battery is the focus of Ambri, one of six companies based on Sadoway’s inventions. Bill Gates was the first funder of the company, which formed in 2010 and aims to install its first battery soon. That battery will store energy from a reported 500 megawatts of on-site renewable generation, the same output as a natural gas power plant.

    Then, in August of this year, Sadoway and colleagues published a paper in Nature about “one of the first new battery chemistries in 30 years,” Sadoway says. “I wanted to invent something that was better, much better,” than the expensive lithium-ion batteries used in, for example, today’s electric cars.

    That battery is the focus of Avanti, one of three Sadoway companies formed just last year. The other two are Pure Lithium, to commercialize his inventions related to that element, and Sadoway Labs. The latter, a nonprofit, is essentially “a space to try radical innovations. We’re gonna start working on wild ideas.”

    Another focus of Sadoway’s research: green steel. Steelmaking produces huge amounts of greenhouse gases. Enter Boston Metal, another Sadoway company. This one is developing a new approach to producing steel based on research begun some 25 years ago. Unlike the current technology for producing steel, the Boston Metal approach — molten oxide electrolysis — does not use the element at the root of steel’s problems: carbon. The principal byproduct of the new system? Oxygen.

    In 2012, Sadoway gave a TED talk to 2,000 people on the liquid metal battery. He believes that that talk, which has now been seen by almost 2.5 million people, led to the wider publicity of his work — and science overall — on “The Colbert Report” and elsewhere. “The moral here is that if you step out of your comfort zone, you might be surprised at what can happen,” he concludes.

    Colleagues’ reflections

    “I met Don in 2006 when I was working for the iron and steel industry in Europe on ways to reduce greenhouse gas emissions from the production of those materials,” says Antoine Allanore, professor of metallurgy, Department of Materials Science and Engineering. “He was the same Don Sadoway that you see in recordings of his lectures: very elegant, very charismatic, and passionate about the technical solutions and underlying science of the process we were all investigating; electrolysis. A few years later, when I decided to pursue an academic career, I contacted Don and became a postdoctoral associate in his lab. That ultimately led to my becoming an MIT professor. People don’t believe me, but before I came to MIT the only thing I knew about the Institute was that Noam Chomsky was there … and Don Sadoway. And I felt, that’s a great place to be. And I stayed because I saw the exceptional things that can be accomplished at MIT and Don is the perfect example of that.”

    “I had the joy of meeting Don when I first arrived on the MIT campus in 1994,” recalls Felice Frankel, research scientist in the MIT departments of Chemical Engineering and Mechanical Engineering. “I didn’t have to talk him into the idea that researchers needed to take their images and graphics more seriously.  He got it — that it wasn’t just about pretty pictures. He was an important part of our five-year National Science Foundation project — Picturing to Learn — to bring that concept into the classroom. How lucky that was for me!”

    “Don has been a friend and mentor since we met in 1995 when I was an MIT senior,” says Luis Ortiz, co-founder and chief executive officer, Avanti Battery Co. “One story that is emblematic of Don’s insistence on excellence is from when he and I met with Bill Gates about the challenges in addressing climate change and how batteries could be the linchpin in solving them. I suggested that we create our presentation in PowerPoint [Microsoft software]. Don balked. He insisted that we present using Keynote on his MacBook Air, because ‘it looks so much better.’ I was incredulous that he wanted to walk into that venue exclusively using Apple products. Of course, he won the argument, but not without my admonition that there had better not be even a blip of an issue. In the meeting room, Microsoft’s former chief technology officer asked Don if he needed anything to hook up to the screen, ‘we have all those dongles.’ Don declined, but gave me that knowing look and whispered, ‘You see, they know, too.’ I ate my crow and we had a great long conversation without any issues.”

    “I remember when I first started working with Don on the liquid metal battery project at MIT, after I had chosen it as the topic for my master’s of engineering thesis,” adds David Bradwell, co-founder and chief technology officer, Ambri. “I was a wide-eyed graduate student, sitting in his office, amongst his art deco decorations, unique furniture, and historical and stylistic infographics, and from our first meeting, I could see Don’s passion for coming up with new and creative, yet practical scientific ideas, and for working on hard problems, in service of society. Don’s approaches always appear to be unconventional — wanting to stand out in a crowd, take the path less trodden, both based on his ideas, and his sense of style. It’s been an amazing journey working with him over the past decade-and-a-half, and I remain excited to see what other new, unconventional ideas, he can bring to this world.” More

  • in

    Keeping indoor humidity levels at a “sweet spot” may reduce spread of Covid-19

    We know proper indoor ventilation is key to reducing the spread of Covid-19. Now, a study by MIT researchers finds that indoor relative humidity may also influence transmission of the virus.

    Relative humidity is the amount of moisture in the air compared to the total moisture the air can hold at a given temperature before saturating and forming condensation.

    In a study appearing today in the Journal of the Royal Society Interface, the MIT team reports that maintaining an indoor relative humidity between 40 and 60 percent is associated with relatively lower rates of Covid-19 infections and deaths, while indoor conditions outside this range are associated with worse Covid-19 outcomes. To put this into perspective, most people are comfortable between 30 and 50 percent relative humidity, and an airplane cabin is at around 20 percent relative humidity.

    The findings are based on the team’s analysis of Covid-19 data combined with meteorological measurements from 121 countries, from January 2020 through August 2020. Their study suggests a strong connection between regional outbreaks and indoor relative humidity.

    In general, the researchers found that whenever a region experienced a rise in Covid-19 cases and deaths prevaccination, the estimated indoor relative humidity in that region, on average, was either lower than 40 percent or higher than 60 percent regardless of season. Nearly all regions in the study experienced fewer Covid-19 cases and deaths during periods when estimated indoor relative humidity was within a “sweet spot” between 40 and 60 percent.

    “There’s potentially a protective effect of this intermediate indoor relative humidity,” suggests lead author Connor Verheyen, a PhD student in medical engineering and medical physics in the Harvard-MIT Program in Health Sciences and Technology.

    “Indoor ventilation is still critical,” says co-author Lydia Bourouiba, director of the MIT Fluid Dynamics of Disease Transmission Laboratory and associate professor in the departments of Civil and Environmental Engineering and Mechanical Engineering, and at the Institute for Medical Engineering and Science at MIT. “However, we find that maintaining an indoor relative humidity in that sweet spot — of 40 to 60 percent — is associated with reduced Covid-19 cases and deaths.”

    Seasonal swing?

    Since the start of the Covid-19 pandemic, scientists have considered the possibility that the virus’ virulence swings with the seasons. Infections and associated deaths appear to rise in winter and ebb in summer. But studies looking to link the virus’ patterns to seasonal outdoor conditions have yielded mixed results.

    Verheyen and Bourouiba examined whether Covid-19 is influenced instead by indoor — rather than outdoor — conditions, and, specifically, relative humidity. After all, they note that most societies spend more than 90 percent of their time indoors, where the majority of viral transmission has been shown to occur. What’s more, indoor conditions can be quite different from outdoor conditions as a result of climate control systems, such as heaters that significantly dry out indoor air.

    Could indoor relative humidity have affected the spread and severity of Covid-19 around the world? And could it help explain the differences in health outcomes from region to region?

    Tracking humidity

    For answers, the team focused on the early period of the pandemic when vaccines were not yet available, reasoning that vaccinated populations would obscure the influence of any other factor such as indoor humidity. They gathered global Covid-19 data, including case counts and reported deaths, from January 2020 to August 2020,  and identified countries with at least 50 deaths, indicating at least one outbreak had occurred in those countries.

    In all, they focused on 121 countries where Covid-19 outbreaks occurred. For each country, they also tracked the local Covid-19 related policies, such as isolation, quarantine, and testing measures, and their statistical association with Covid-19 outcomes.

    For each day that Covid-19 data was available, they used meteorological data to calculate a country’s outdoor relative humidity. They then estimated the average indoor relative humidity, based on outdoor relative humidity and guidelines on temperature ranges for human comfort. For instance, guidelines report that humans are comfortable between 66 to 77 degrees Fahrenheit indoors. They also assumed that on average, most populations have the means to heat indoor spaces to comfortable temperatures. Finally, they also collected experimental data, which they used to validate their estimation approach.

    For every instance when outdoor temperatures were below the typical human comfort range, they assumed indoor spaces were heated to reach that comfort range. Based on the added heating, they calculated the associated drop in indoor relative humidity.

    In warmer times, both outdoor and indoor relative humidity for each country was about the same, but they quickly diverged in colder times. While outdoor humidity remained around 50 percent throughout the year, indoor relative humidity for countries in the Northern and Southern Hemispheres dropped below 40 percent in their respective colder periods, when Covid-19 cases and deaths also spiked in these regions.

    For countries in the tropics, relative humidity was about the same indoors and outdoors throughout the year, with a gradual rise indoors during the region’s summer season, when high outdoor humidity likely raised the indoor relative humidity over 60 percent. They found this rise mirrored the gradual increase in Covid-19 deaths in the tropics.

    “We saw more reported Covid-19 deaths on the low and high end of indoor relative humidity, and less in this sweet spot of 40 to 60 percent,” Verheyen says. “This intermediate relative humidity window is associated with a better outcome, meaning fewer deaths and a deceleration of the pandemic.”

    “We were very skeptical initially, especially as the Covid-19 data can be noisy and inconsistent,” Bourouiba says. “We thus were very thorough trying to poke holes in our own analysis, using a range of approaches to test the limits and robustness of the findings, including taking into account factors such as government intervention. Despite all our best efforts, we found that even when considering countries with very strong versus very weak Covid-19 mitigation policies, or wildly different outdoor conditions, indoor — rather than outdoor — relative humidity maintains an underlying strong and robust link with Covid-19 outcomes.”

    It’s still unclear how indoor relative humidity affects Covid-19 outcomes. The team’s follow-up studies suggest that pathogens may survive longer in respiratory droplets in both very dry and very humid conditions.

    “Our ongoing work shows that there are emerging hints of mechanistic links between these factors,” Bourouiba says. “For now however, we can say that indoor relative humidity emerges in a robust manner as another mitigation lever that organizations and individuals can monitor, adjust, and maintain in the optimal 40 to 60 percent range, in addition to proper ventillation.”

    This research was made possible, in part, by an MIT Alumni Class fund, the Richard and Susan Smith Family Foundation, the National Institutes of Health, and the National Science Foundation. More

  • in

    With new heat treatment, 3D-printed metals can withstand extreme conditions

    A new MIT-developed heat treatment transforms the microscopic structure of 3D-printed metals, making the materials stronger and more resilient in extreme thermal environments. The technique could make it possible to 3D print high-performance blades and vanes for power-generating gas turbines and jet engines, which would enable new designs with improved fuel consumption and energy efficiency.

    Today’s gas turbine blades are manufactured through conventional casting processes in which molten metal is poured into complex molds and directionally solidified. These components are made from some of the most heat-resistant metal alloys on Earth, as they are designed to rotate at high speeds in extremely hot gas, extracting work to generate electricity in power plants and thrust in jet engines.

    There is growing interest in manufacturing turbine blades through 3D-printing, which, in addition to its environmental and cost benefits, could allow manufacturers to quickly produce more intricate, energy-efficient blade geometries. But efforts to 3D-print turbine blades have yet to clear a big hurdle: creep.

    In metallurgy, creep refers to a metal’s tendency to permanently deform in the face of persistent mechanical stress and high temperatures. While researchers have explored printing turbine blades, they have found that the printing process produces fine grains on the order of tens to hundreds of microns in size — a microstructure that is especially vulnerable to creep.

    “In practice, this would mean a gas turbine would have a shorter life or less fuel efficiency,” says Zachary Cordero, the Boeing Career Development Professor in Aeronautics and Astronautics at MIT. “These are costly, undesirable outcomes.”

    Cordero and his colleagues found a way to improve the structure of 3D-printed alloys by adding an additional heat-treating step, which transforms the as-printed material’s fine grains into much larger “columnar” grains — a sturdier microstructure that should minimize the material’s creep potential, since the “columns” are aligned with the axis of greatest stress. The researchers say the method, outlined today in Additive Manufacturing, clears the way for industrial 3D-printing of gas turbine blades.

    “In the near future, we envision gas turbine manufacturers will print their blades and vanes at large-scale additive manufacturing plants, then post-process them using our heat treatment,” Cordero says. “3D-printing will enable new cooling architectures that can improve the thermal efficiency of a turbine, so that it produces the same amount of power while burning less fuel and ultimately emits less carbon dioxide.”

    Cordero’s co-authors on the study are lead author Dominic Peachey, Christopher Carter, and Andres Garcia-Jimenez at MIT, Anugrahaprada Mukundan and Marie-Agathe Charpagne of the University of Illinois at Urbana-Champaign, and Donovan Leonard of Oak Ridge National Laboratory.

    Triggering a transformation

    The team’s new method is a form of directional recrystallization — a heat treatment that passes a material through a hot zone at a precisely controlled speed to meld a material’s many microscopic grains into larger, sturdier, and more uniform crystals.

    Directional recrystallization was invented more than 80 years ago and has been applied to wrought materials. In their new study, the MIT team adapted directional recrystallization for 3D-printed superalloys.

    The team tested the method on 3D-printed nickel-based superalloys — metals that are typically cast and used in gas turbines. In a series of experiments, the researchers placed 3D-printed samples of rod-shaped superalloys in a room-temperature water bath placed just below an induction coil. They slowly drew each rod out of the water and through the coil at various speeds, dramatically heating the rods to temperatures varying between 1,200 and 1,245 degrees Celsius.

    They found that drawing the rods at a particular speed (2.5 millimeters per hour) and through a specific temperature (1,235 degrees Celsius) created a steep thermal gradient that triggered a transformation in the material’s printed, fine-grained microstructure.

    “The material starts as small grains with defects called dislocations, that are like a mangled spaghetti,” Cordero explains. “When you heat this material up, those defects can annihilate and reconfigure, and the grains are able to grow. We’re continuously elongating the grains by consuming the defective material and smaller grains — a process termed recrystallization.”

    Creep away

    After cooling the heat-treated rods, the researchers examined their microstructure using optical and electron microscopy, and found that the material’s printed microscopic grains were replaced with “columnar” grains, or long crystal-like regions that were significantly larger than the original grains.

    “We’ve completely transformed the structure,” says lead author Dominic Peachey. “We show we can increase the grain size by orders of magnitude, to massive columnar grains, which theoretically should lead to dramatic improvements in creep properties.”

    The team also showed they could manipulate the draw speed and temperature of the rod samples to tailor the material’s growing grains, creating regions of specific grain size and orientation. This level of control, Cordero says, can enable manufacturers to print turbine blades with site-specific microstructures that are resilient to specific operating conditions.

    Cordero plans to test the heat treatment on 3D-printed geometries that more closely resemble turbine blades. The team is also exploring ways to speed up the draw rate, as well as test a heat-treated structure’s resistance to creep. Then, they envision that the heat treatment could enable the practical application of 3D-printing to produce industrial-grade turbine blades, with more complex shapes and patterns.

    “New blade and vane geometries will enable more energy-efficient land-based gas turbines, as well as, eventually, aeroengines,” Cordero notes. “This could from a baseline perspective lead to lower carbon dioxide emissions, just through improved efficiency of these devices.”

    This research was supported, in part, by the U.S. Office of Naval Research. More