More stories

  • in

    How marsh grass protects shorelines

    Marsh plants, which are ubiquitous along the world’s shorelines, can play a major role in mitigating the damage to coastlines as sea levels rise and storm surges increase. Now, a new MIT study provides greater detail about how these protective benefits work under real-world conditions shaped by waves and currents.

    The study combined laboratory experiments using simulated plants in a large wave tank along with mathematical modeling. It appears in the journal Physical Review — Fluids, in a paper by former MIT visiting doctoral student Xiaoxia Zhang, now a postdoc at Dalian University of Technology, and professor of civil and environmental engineering Heidi Nepf.

    It’s already clear that coastal marsh plants provide significant protection from surges and devastating  storms. For example, it has been estimated that the damage caused by Hurricane Sandy was reduced by $625 million thanks to the damping of wave energy provided by extensive areas of marsh along the affected coasts. But the new MIT analysis incorporates details of plant morphology, such as the number and spacing of flexible leaves versus stiffer stems, and the complex interactions of currents and waves that may be coming from different directions.

    This level of detail could enable coastal restoration planners to determine the area of marsh needed to mitigate expected amounts of storm surge or sea-level rise, and to decide which types of plants to introduce to maximize protection.

    “When you go to a marsh, you often will see that the plants are arranged in zones,” says Nepf, who is the Donald and Martha Harleman Professor of Civil and Environmental Engineering. “Along the edge, you tend to have plants that are more flexible, because they are using their flexibility to reduce the wave forces they feel. In the next zone, the plants are a little more rigid and have a bit more leaves.”

    As the zones progress, the plants become stiffer, leafier, and more effective at absorbing wave energy thanks to their greater leaf area. The new modeling done in this research, which incorporated work with simulated plants in the 24-meter-long wave tank at MIT’s Parsons Lab, can enable coastal planners to take these kinds of details into account when planning protection, mitigation, or restoration projects.

    “If you put the stiffest plants at the edge, they might not survive, because they’re feeling very high wave forces. By describing why Mother Nature organizes plants in this way, we can hopefully design a more sustainable restoration,” Nepf says.

    Once established, the marsh plants provide a positive feedback cycle that helps to not only stabilize but also build up these delicate coastal lands, Zhang says. “After a few years, the marsh grasses start to trap and hold the sediment, and the elevation gets higher and higher, which might keep up with sea level rise,” she says.

    The new MIT analysis incorporates details of plant morphology, such as the number and spacing of flexible leaves versus stiffer stems, and the complex interactions of currents and waves that may be coming from different directions.

    Awareness of the protective effects of marshland has been growing, Nepf says. For example, the Netherlands has been restoring lost marshland outside the dikes that surround much of the nation’s agricultural land, finding that the marsh can protect the dikes from erosion; the marsh and dikes work together much more effectively than the dikes alone at preventing flooding.

    But most such efforts so far have been largely empirical, trial-and-error plans, Nepf says. Now, they could take advantage of this modeling to know just how much marshland with what types of plants would be needed to provide the desired level of protection.

    It also provides a more quantitative way to estimate the value provided by marshes, she says. “It could allow you to more accurately say, ‘40 meters of marsh will reduce waves this much and therefore will reduce overtopping of your levee by this much.’ Someone could use that to say, ‘I’m going to save this much money over the next 10 years if I reduce flooding by maintaining this marsh.’ It might help generate some political motivation for restoration efforts.”

    Nepf herself is already trying to get some of these findings included in coastal planning processes. She serves on a practitioner panel led by Chris Esposito of the Water Institute of the Gulf, which serves the storm-battered Louisiana coastline. “We’d like to get this work into the coatal simulations that are used for large-scale restoration and coastal planning,” she says.

    “Understanding the wave damping process in real vegetation wetlands is of critical value, as it is needed in the assessment of the coastal defense value of these wetlands,” says Zhan Hu, an associate professor of marine sciences at Sun Yat-Sen University, who was not associated with this work. “The challenge, however, lies in the quantitative representation of the wave damping process, in which many factors are at play, such as plant flexibility, morphology, and coexisting currents.”

    The new study, Hu says, “neatly combines experimental findings and analytical modeling to reveal the impact of each factor in the wave damping process. … Overall, this work is a solid step forward toward a more accurate assessment of wave damping capacity of real coastal wetlands, which is needed for science-based design and management of nature-based coastal protection.”

    The work was partly supported by the National Science Foundation and the China Scholarship Council.  More

  • in

    Making roadway spending more sustainable

    The share of federal spending on infrastructure has reached an all-time low, falling from 30 percent in 1960 to just 12 percent in 2018.

    While the nation’s ailing infrastructure will require more funding to reach its full potential, recent MIT research finds that more sustainable and higher performing roads are still possible even with today’s limited budgets.

    The research, conducted by a team of current and former MIT Concrete Sustainability Hub (MIT CSHub) scientists and published in Transportation Research D, finds that a set of innovative planning strategies could improve pavement network environmental and performance outcomes even if budgets don’t increase.

    The paper presents a novel budget allocation tool and pairs it with three innovative strategies for managing pavement networks: a mix of paving materials, a mix of short- and long-term paving actions, and a long evaluation period for those actions.

    This novel approach offers numerous benefits. When applied to a 30-year case study of the Iowa U.S. Route network, the MIT CSHub model and management strategies cut emissions by 20 percent while sustaining current levels of road quality. Achieving this with a conventional planning approach would require the state to spend 32 percent more than it does today. The key to its success is the consideration of a fundamental — but fraught — aspect of pavement asset management: uncertainty.

    Predicting unpredictability

    The average road must last many years and support the traffic of thousands — if not millions — of vehicles. Over that time, a lot can change. Material prices may fluctuate, budgets may tighten, and traffic levels may intensify. Climate (and climate change), too, can hasten unexpected repairs.

    Managing these uncertainties effectively means looking long into the future and anticipating possible changes.

    “Capturing the impacts of uncertainty is essential for making effective paving decisions,” explains Fengdi Guo, the paper’s lead author and a departing CSHub research assistant.

    “Yet, measuring and relating these uncertainties to outcomes is also computationally intensive and expensive. Consequently, many DOTs [departments of transportation] are forced to simplify their analysis to plan maintenance — often resulting in suboptimal spending and outcomes.”

    To give DOTs accessible tools to factor uncertainties into their planning, CSHub researchers have developed a streamlined planning approach. It offers greater specificity and is paired with several new pavement management strategies.

    The planning approach, known as Probabilistic Treatment Path Dependence (PTPD), is based on machine learning and was devised by Guo.

    “Our PTPD model is composed of four steps,” he explains. “These steps are, in order, pavement damage prediction; treatment cost prediction; budget allocation; and pavement network condition evaluation.”

    The model begins by investigating every segment in an entire pavement network and predicting future possibilities for pavement deterioration, cost, and traffic.

    “We [then] run thousands of simulations for each segment in the network to determine the likely cost and performance outcomes for each initial and subsequent sequence, or ‘path,’ of treatment actions,” says Guo. “The treatment paths with the best cost and performance outcomes are selected for each segment, and then across the network.”

    The PTPD model not only seeks to minimize costs to agencies but also to users — in this case, drivers. These user costs can come primarily in the form of excess fuel consumption due to poor road quality.

    “One improvement in our analysis is the incorporation of electric vehicle uptake into our cost and environmental impact predictions,” Randolph Kirchain, a principal research scientist at MIT CSHub and MIT Materials Research Laboratory (MRL) and one of the paper’s co-authors. “Since the vehicle fleet will change over the next several decades due to electric vehicle adoption, we made sure to consider how these changes might impact our predictions of excess energy consumption.”

    After developing the PTPD model, Guo wanted to see how the efficacy of various pavement management strategies might differ. To do this, he developed a sophisticated deterioration prediction model.

    A novel aspect of this deterioration model is its treatment of multiple deterioration metrics simultaneously. Using a multi-output neural network, a tool of artificial intelligence, the model can predict several forms of pavement deterioration simultaneously, thereby, accounting for their correlations among one another.

    The MIT team selected two key metrics to compare the effectiveness of various treatment paths: pavement quality and greenhouse gas emissions. These metrics were then calculated for all pavement segments in the Iowa network.

    Improvement through variation

     The MIT model can help DOTs make better decisions, but that decision-making is ultimately constrained by the potential options considered.

    Guo and his colleagues, therefore, sought to expand current decision-making paradigms by exploring a broad set of network management strategies and evaluating them with their PTPD approach. Based on that evaluation, the team discovered that networks had the best outcomes when the management strategy includes using a mix of paving materials, a variety of long- and short-term paving repair actions (treatments), and longer time periods on which to base paving decisions.

    They then compared this proposed approach with a baseline management approach that reflects current, widespread practices: the use of solely asphalt materials, short-term treatments, and a five-year period for evaluating the outcomes of paving actions.

    With these two approaches established, the team used them to plan 30 years of maintenance across the Iowa U.S. Route network. They then measured the subsequent road quality and emissions.

    Their case study found that the MIT approach offered substantial benefits. Pavement-related greenhouse gas emissions would fall by around 20 percent across the network over the whole period. Pavement performance improved as well. To achieve the same level of road quality as the MIT approach, the baseline approach would need a 32 percent greater budget.

    “It’s worth noting,” says Guo, “that since conventional practices employ less effective allocation tools, the difference between them and the CSHub approach should be even larger in practice.”

    Much of the improvement derived from the precision of the CSHub planning model. But the three treatment strategies also play a key role.

    “We’ve found that a mix of asphalt and concrete paving materials allows DOTs to not only find materials best-suited to certain projects, but also mitigates the risk of material price volatility over time,” says Kirchain.

    It’s a similar story with a mix of paving actions. Employing a mix of short- and long-term fixes gives DOTs the flexibility to choose the right action for the right project.

    The final strategy, a long-term evaluation period, enables DOTs to see the entire scope of their choices. If the ramifications of a decision are predicted over only five years, many long-term implications won’t be considered. Expanding the window for planning, then, can introduce beneficial, long-term options.

    It’s not surprising that paving decisions are daunting to make; their impacts on the environment, driver safety, and budget levels are long-lasting. But rather than simplify this fraught process, the CSHub method aims to reflect its complexity. The result is an approach that provides DOTs with the tools to do more with less.

    This research was supported through the MIT Concrete Sustainability Hub by the Portland Cement Association and the Ready Mixed Concrete Research and Education Foundation. More

  • in

    Institute Professor Paula Hammond named to White House science council

    Paula Hammond, an MIT Institute Professor and head of MIT’s Department of Chemical Engineering, has been chosen to serve on the President’s Council of Advisors on Science and Technology (PCAST), the White House announced today.

    The council advises the president on matters involving science, technology, education, and innovation policy. It also provides the White House with scientific and technical information that is needed to inform public policy relating to the U.S. economy, U.S. workers, and national security.

    “For me, this is an exciting opportunity,” Hammond says. “I have always been interested in considering how science can solve important problems in our community, in our country, and globally. It’s very meaningful for me to have a chance to have an advisory role at that level.”

    Hammond is one of 30 members named to the council, which is co-chaired by Frances Arnold, a professor at Caltech, and Maria Zuber, MIT’s vice president for research.

    “Paula is an extraordinary engineer, teacher, and colleague, and President Biden’s decision to appoint her to the council is an excellent one,” Zuber says. “I think about the work ahead of us — not just to restore science and technology to their proper place in policymaking, but also to make sure that they lead to real improvements in the lives of everyone in our country — and I can’t think of anyone better suited to the challenge than Paula.”

    Hammond, whose research as a chemical engineer touches on the fields of both medicine and energy, said she hopes to help address critical issues such as equal access to health care and efforts to mitigate climate change.

    “I’m very excited about the opportunities presented at the interface of engineering and health, and in particular, how we might be able to expand the benefits that we gain from our work to a broader set of communities, so that we’re able to address some of the disparities we see in health, which have been so obvious during the pandemic,” says Hammond, who is also a member of MIT’s Koch Institute for Integrative Cancer Research. “How we might be able to use everything from computational modeling and data science to technological innovation to equalize access to health is one area that I care a lot about.”

    Hammond’s research focuses on developing novel polymers and nanomaterials for a variety of applications in drug delivery, noninvasive imaging, solar cells, and battery technology. Using techniques for building polymers with highly controlled architectures, she has designed drug-delivering nanoparticles that can home in on tumors, as well as polymer films that dramatically improve the efficiency of methanol fuel cells.

    As an MIT faculty member and mentor to graduate students, Hammond has worked to increase opportunities for underrepresented minorities in science and engineering fields. That is a goal she also hopes to pursue in her new role.

    “There’s a lot of work to be done when we look at the low numbers of students of color who are actually going on to science and engineering fields,” she says. “When I think about my work related to increasing diversity in those areas, part of the reason I do it is because that’s where we gain excellence, and where we gain solutions and the foresight to work on the right problems. I also think that it’s important for there to be broad access to the power that science brings.”

    Hammond, who earned both her bachelor’s degree and PhD from MIT, has been a member of the faculty since 1995. She has been a full professor since 2006 and has chaired the Department of Chemical Engineering since 2015. Earlier this year, she was named an Institute Professor, MIT’s highest faculty honor. She is also one of only 25 people who have been elected to all three National Academies — Engineering, Science, and Medicine.

    She has previously served on the U.S. Secretary of Energy Scientific Advisory Board, the NIH Center for Scientific Review Advisory Council, and the Board of Directors of the American Institute of Chemical Engineers. She also chaired or co-chaired two committees that contributed landmark reports on gender and race at MIT: the Initiative for Faculty Race and Diversity, and the Academic and Organizational Relationships Working Group. More

  • in

    A new method for removing lead from drinking water

    Engineers at MIT have developed a new approach to removing lead or other heavy-metal contaminants from water, in a process that they say is far more energy-efficient than any other currently used system, though there are others under development that come close. Ultimately, it might be used to treat lead-contaminated water supplies at the home level, or to treat contaminated water from some chemical or industrial processes.

    The new system is the latest in a series of applications based on initial findings six years ago by members of the same research team, initially developed for desalination of seawater or brackish water, and later adapted for removing radioactive compounds from the cooling water of nuclear power plants. The new version is the first such method that might be applicable for treating household water supplies, as well as industrial uses.

    The findings are published today in the journal Environmental Science and Technology – Water, in a paper by MIT graduate students Huanhuan Tian, Mohammad Alkhadra, and Kameron Conforti, and professor of chemical engineering Martin Bazant.

    “It’s notoriously difficult to remove toxic heavy metal that’s persistent and present in a lot of different water sources,” Alkhadra says. “Obviously there are competing methods today that do this function, so it’s a matter of which method can do it at lower cost and more reliably.”

    The biggest challenge in trying to remove lead is that it is generally present in such tiny concentrations, vastly exceeded by other elements or compounds. For example, sodium is typically present in drinking water at a concentration of tens of parts per million, whereas lead can be highly toxic at just a few parts per billion. Most existing processes, such as reverse osmosis or distillation, remove everything at once, Alkhadra explains. This not only takes much more energy than would be needed for a selective removal, but it’s counterproductive since small amounts of elements such as sodium and magnesium are actually essential for healthy drinking water.

    The new approach is to use a process called shock electrodialysis, in which an electric field is used to produce a shockwave inside a pipe carrying the contaminated water. The shockwave separates the liquid into two streams, selectively pulling certain electrically charged atoms, or ions, toward one side of the flow by tuning the properties of the shockwave to match the target ions, while leaving a stream of relatively pure water on the other side. The stream containing the concentrated lead ions can then be easily separated out using a mechanical barrier in the pipe.

    In principle, “this makes the process much cheaper,” Bazant says, “because the electrical energy that you’re putting in to do the separation is really going after the high-value target, which is the lead. You’re not wasting a lot of energy removing the sodium.” Because the lead is present at such low concentration, “there’s not a lot of current involved in removing those ions, so this can be a very cost-effective way.”

    The process still has its limitations, as it has only been demonstrated at small laboratory scale and at quite slow flow rates. Scaling up the process to make it practical for in-home use will require further research, and larger-scale industrial uses will take even longer. But it could be practical within a few years for some home-based systems, Bazant says.

    For example, a home whose water supply is heavily contaminated with lead might have a system in the cellar that slowly processes a stream of water, filling a tank with lead-free water to be used for drinking and cooking, while leaving most of the water untreated for uses like toilet flushing or watering the lawn. Such uses might be appropriate as an interim measure for places like Flint, Michigan, where the water, mostly contaminated by the distribution pipes, will take many years to remediate through pipe replacements.

    The process could also be adapted for some industrial uses such as cleaning water produced in mining or drilling operations, so that the treated water can be safely disposed of or reused. And in some cases, this could also provide a way of recovering metals that contaminate water but could actually be a valuable product if they were separated out; for example, some such minerals could be used to process semiconductors or pharmaceuticals or other high-tech products, the researchers say.

    Direct comparisons of the economics of such a system versus existing methods is difficult, Bazant says, because in filtration systems, for example, the costs are mainly for replacing the filter materials, which quickly clog up and become unusable, whereas in this system the costs are mostly for the ongoing energy input, which is very small. At this point, the shock electrodialysis system has been operated for several weeks, but it’s too soon to estimate the real-world longevity of such a system, he says.

    Developing the process into a scalable commercial product will take some time, but “we have shown how this could be done, from a technical standpoint,” Bazant says. “The main issue would be on the economic side,” he adds. That includes figuring out the most appropriate applications and developing specific configurations that would meet those uses. “We do have a reasonable idea of how to scale this up. So it’s a question of having the resources,” which might be a role for a startup company rather than an academic research lab, he adds.

    “I think this is an exciting result,” he says, “because it shows that we really can address this important application” of cleaning the lead from drinking water. For example, he says, there are places now that perform desalination of seawater using reverse osmosis, but they have to run this expensive process twice in a row, first to get the salt out, and then again to remove the low-level but highly toxic contaminants like lead. This new process might be used instead of the second round of reverse osmosis, at a far lower expenditure of energy.

    The research received support from a MathWorks Engineering Fellowship and a fellowship awarded by MIT’s Abdul Latif Jameel Water and Food Systems Lab, funded by Xylem, Inc. More

  • in

    Predicting building emissions across the US

    The United States is entering a building boom. Between 2017 and 2050, it will build the equivalent of New York City 20 times over. Yet, to meet climate targets, the nation must also significantly reduce the greenhouse gas (GHG) emissions of its buildings, which comprise 27 percent of the nation’s total emissions.

    A team of current and former MIT Concrete Sustainability Hub (CSHub) researchers is addressing these conflicting demands with the aim of giving policymakers the tools and information to act. They have detailed the results of their collaboration in a recent paper in the journal Applied Energy that projects emissions for all buildings across the United States under two GHG reduction scenarios.

    Their paper found that “embodied” emissions — those from materials production and construction — would represent around a quarter of emissions between 2016 and 2050 despite extensive construction.

    Further, many regions would have varying priorities for GHG reductions; some, like the West, would benefit most from reductions to embodied emissions, while others, like parts of the Midwest, would see the greatest payoff from interventions to emissions from energy consumption. If these regional priorities were addressed aggressively, building sector emissions could be reduced by around 30 percent between 2016 and 2050.

    Quantifying contradictions

    Modern buildings are far more complex — and efficient — than their predecessors. Due to new technologies and more stringent building codes, they can offer lower energy consumption and operational emissions. And yet, more-efficient materials and improved construction standards can also generate greater embodied emissions.

    Concrete, in many ways, epitomizes this tradeoff. Though its durability can minimize energy-intensive repairs over a building’s operational life, the scale of its production means that it contributes to a large proportion of the embodied impacts in the building sector.

    As such, the team centered GHG reductions for concrete in its analysis.

    “We took a bottom-up approach, developing reference designs based on a set of residential and commercial building models,” explains Ehsan Vahidi, an assistant professor at the University of Nevada at Reno and a former CSHub postdoc. “These designs were differentiated by roof and slab insulation, HVAC efficiency, and construction materials — chiefly concrete and wood.”

    After measuring the operational and embodied GHG emissions for each reference design, the team scaled up their results to the county level and then national level based on building stock forecasts. This allowed them to estimate the emissions of the entire building sector between 2016 and 2050.

    To understand how various interventions could cut GHG emissions, researchers ran two different scenarios — a “projected” and an “ambitious” scenario — through their framework.

    The projected scenario corresponded to current trends. It assumed grid decarbonization would follow Energy Information Administration predictions; the widespread adoption of new energy codes; efficiency improvement of lighting and appliances; and, for concrete, the implementation of 50 percent low-carbon cements and binders in all new concrete construction and the adoption of full carbon capture, storage, and utilization (CCUS) of all cement and concrete emissions.

    “Our ambitious scenario was intended to reflect a future where more aggressive actions are taken to reduce GHG emissions and achieve the targets,” says Vahidi. “Therefore, the ambitious scenario took these same strategies [of the projected scenario] but featured more aggressive targets for their implementation.”

    For instance, it assumed a 33 percent reduction in grid emissions by 2050 and moved the projected deadlines for lighting and appliances and thermal insulation forward by five and 10 years, respectively. Concrete decarbonization occurred far more quickly as well.

    Reductions and variations

    The extensive growth forecast for the U.S. building sector will inevitably generate a sizable number of emissions. But how much can this figure be minimized?

    Without the implementation of any GHG reduction strategies, the team found that the building sector would emit 62 gigatons CO2 equivalent between 2016 and 2050. That’s comparable to the emissions generated from 156 trillion passenger vehicle miles traveled.

    But both GHG reduction scenarios could cut the emissions from this unmitigated, business-as-usual scenario significantly.

    Under the projected scenario, emissions would fall to 45 gigatons CO2 equivalent — a 27 percent decrease over the analysis period. The ambitious scenario would offer a further 6 percent reduction over the projected scenario, reaching 40 gigatons CO2 equivalent — like removing around 55 trillion passenger vehicle miles from the road over the period.

    “In both scenarios, the largest contributor to reductions was the greening of the energy grid,” notes Vahidi. “Other notable opportunities for reductions were from increasing the efficiency of lighting, HVAC, and appliances. Combined, these four attributes contributed to 85 percent of the emissions over the analysis period. Improvements to them offered the greatest potential emissions reductions.”

    The remaining attributes, such as thermal insulation and low-carbon concrete, had a smaller impact on emissions and, consequently, offered smaller reduction opportunities. That’s because these two attributes were only applied to new construction in the analysis, which was outnumbered by existing structures throughout the period.

    The disparities in impact between strategies aimed at new and existing structures underscore a broader finding: Despite extensive construction over the period, embodied emissions would comprise just 23 percent of cumulative emissions between 2016 and 2050, with the remainder coming primarily from operation.  

    “This is a consequence of existing structures far outnumbering new structures,” explains Jasmina Burek, a CSHub postdoc and an incoming assistant professor at the University of Massachusetts Lowell. “The operational emissions generated by all new and existing structures between 2016 and 2050 will always greatly exceed the embodied emissions of new structures at any given time, even as buildings become more efficient and the grid gets greener.”

    Yet the emissions reductions from both scenarios were not distributed evenly across the entire country. The team identified several regional variations that could have implications for how policymakers must act to reduce building sector emissions.

    “We found that western regions in the United States would see the greatest reduction opportunities from interventions to residential emissions, which would constitute 90 percent of the region’s total emissions over the analysis period,” says Vahidi.

    The predominance of residential emissions stems from the region’s ongoing population surge and its subsequent growth in housing stock. Proposed solutions would include CCUS and low-carbon binders for concrete production, and improvements to energy codes aimed at residential buildings.

    As with the West, ideal solutions for the Southeast would include CCUS, low-carbon binders, and improved energy codes.

    “In the case of Southeastern regions, interventions should equally target commercial and residential buildings, which we found were split more evenly among the building stock,” explains Burek. “Due to the stringent energy codes in both regions, interventions to operational emissions were less impactful than those to embodied emissions.”

    Much of the Midwest saw the inverse outcome. Its energy mix remains one of the most carbon-intensive in the nation and improvements to energy efficiency and the grid would have a large payoff — particularly in Missouri, Kansas, and Colorado.

    New England and California would see the smallest reductions. As their already-strict energy codes would limit further operational reductions, opportunities to reduce embodied emissions would be the most impactful.

    This tremendous regional variation uncovered by the MIT team is in many ways a reflection of the great demographic and geographic diversity of the nation as a whole. And there are still further variables to consider.

    In addition to GHG emissions, future research could consider other environmental impacts, like water consumption and air quality. Other mitigation strategies to consider include longer building lifespans, retrofitting, rooftop solar, and recycling and reuse.

    In this sense, their findings represent the lower bounds of what is possible in the building sector. And even if further improvements are ultimately possible, they’ve shown that regional variation will invariably inform those environmental impact reductions.

    The MIT Concrete Sustainability Hub is a team of researchers from several departments across MIT working on concrete and infrastructure science, engineering, and economics. Its research is supported by the Portland Cement Association and the Ready Mixed Concrete Research and Education Foundation. More

  • in

    Crossing disciplines, adding fresh eyes to nuclear engineering

    Sometimes patterns repeat in nature. Spirals appear in sunflowers and hurricanes. Branches occur in veins and lightning. Limiao Zhang, a doctoral student in MIT’s Department of Nuclear Science and Engineering, has found another similarity: between street traffic and boiling water, with implications for preventing nuclear meltdowns.

    Growing up in China, Zhang enjoyed watching her father repair things around the house. He couldn’t fulfill his dream of becoming an engineer, instead joining the police force, but Zhang did have that opportunity and studied mechanical engineering at Three Gorges University. Being one of four girls among about 50 boys in the major didn’t discourage her. “My father always told me girls can do anything,” she says. She graduated at the top of her class.

    In college, she and a team of classmates won a national engineering competition. They designed and built a model of a carousel powered by solar, hydroelectric, and pedal power. One judge asked how long the system could operate safely. “I didn’t have a perfect answer,” she recalls. She realized that engineering means designing products that not only function, but are resilient. So for her master’s degree, at Beihang University, she turned to industrial engineering and analyzed the reliability of critical infrastructure, in particular traffic networks.

    “Among all the critical infrastructures, nuclear power plants are quite special,” Zhang says. “Although one can provide very enormous carbon-free energy, once it fails, it can cause catastrophic results.” So she decided to switch fields again and study nuclear engineering. At the time she had no nuclear background, and hadn’t studied in the United States, but “I tried to step out of my comfort zone,” she says. “I just applied and MIT welcomed me.” Her supervisor, Matteo Bucci, and her classmates explained the basics of fission reactions as she adjusted to the new material, language, and environment. She doubted herself — “my friend told me, ‘I saw clouds above your head’” — but she passed her first-year courses and published her first paper soon afterward.

    Much of the work in Bucci’s lab deals with what’s called the boiling crisis. In many applications, such as nuclear plants and powerful computers, water cools things. When a hot surface boils water, bubbles cling to the surface before rising, but if too many form, they merge into a layer of vapor that insulates the surface. The heat has nowhere to go — a boiling crisis.

    Bucci invited Zhang into his lab in part because she saw a connection between traffic and heat transfer. The data plots of both phenomena look surprisingly similar. “The mathematical tools she had developed for the study of traffic jams were a completely different way of looking into our problem” Bucci says, “by using something which is intuitively not connected.”

    One can view bubbles as cars. The more there are, the more they interfere with each other. People studying boiling had focused on the physics of individual bubbles. Zhang instead uses statistical physics to analyze collective patterns of behavior. “She brings a different set of skills, a different set of knowledge, to our research,” says Guanyu Su, a postdoc in the lab. “That’s very refreshing.”

    In her first paper on the boiling crisis, published in Physical Review Letters, Zhang used theory and simulations to identify scale-free behavior in boiling: just as in traffic, the same patterns appear whether zoomed in or out, in terms of space or time. Both small and large bubbles matter. Using this insight, the team found certain physical parameters that could predict a boiling crisis. Zhang’s mathematical tools both explain experimental data and suggest new experiments to try. For a second paper, the team collected more data and found ways to predict the boiling crisis in a wider variety of conditions.

    Zhang’s thesis and third paper, both in progress, propose a universal law for explaining the crisis. “She translated the mechanism into a physical law, like F=ma or E=mc2,” Bucci says. “She came up with an equally simple equation.” Zhang says she’s learned a lot from colleagues in the department who are pioneering new nuclear reactors or other technologies, “but for my own work, I try to get down to the very basics of a phenomenon.”

    Bucci describes Zhang as determined, open-minded, and commendably self-critical. Su says she’s careful, optimistic, and courageous. “If I imagine going from heat transfer to city planning, that would be almost impossible for me,” he says. “She has a strong mind.” Last year, Zhang gave birth to a boy, whom she’s raising on her own as she does her research. (Her husband is stuck in China during the pandemic.) “This, to me,” Bucci says, “is almost superhuman.”

    Zhang will graduate at the end of the year, and has started looking for jobs back in China. She wants to continue in the energy field, though maybe not nuclear. “I will use my interdisciplinary knowledge,” she says. “I hope I can design safer and more efficient and more reliable systems to provide energy for our society.” More

  • in

    Research collaboration puts climate-resilient crops in sight

    Any houseplant owner knows that changes in the amount of water or sunlight a plant receives can put it under immense stress. A dying plant brings certain disappointment to anyone with a green thumb. 

    But for farmers who make their living by successfully growing plants, and whose crops may nourish hundreds or thousands of people, the devastation of failing flora is that much greater. As climate change is poised to cause increasingly unpredictable weather patterns globally, crops may be subject to more extreme environmental conditions like droughts, fluctuating temperatures, floods, and wildfire. 

    Climate scientists and food systems researchers worry about the stress climate change may put on crops, and on global food security. In an ambitious interdisciplinary project funded by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), David Des Marais, the Gale Assistant Professor in the Department of Civil and Environmental Engineering at MIT, and Caroline Uhler, an associate professor in the MIT Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society, are investigating how plant genes communicate with one another under stress. Their research results can be used to breed plants more resilient to climate change.

    Crops in trouble

    Governing plants’ responses to environmental stress are gene regulatory networks, or GRNs, which guide the development and behaviors of living things. A GRN may be comprised of thousands of genes and proteins that all communicate with one another. GRNs help a particular cell, tissue, or organism respond to environmental changes by signaling certain genes to turn their expression on or off.

    Even seemingly minor or short-term changes in weather patterns can have large effects on crop yield and food security. An environmental trigger, like a lack of water during a crucial phase of plant development, can turn a gene on or off, and is likely to affect many others in the GRN. For example, without water, a gene enabling photosynthesis may switch off. This can create a domino effect, where the genes that rely on those regulating photosynthesis are silenced, and the cycle continues. As a result, when photosynthesis is halted, the plant may experience other detrimental side effects, like no longer being able to reproduce or defend against pathogens. The chain reaction could even kill a plant before it has the chance to be revived by a big rain.

    Des Marais says he wishes there was a way to stop those genes from completely shutting off in such a situation. To do that, scientists would need to better understand how exactly gene networks respond to different environmental triggers. Bringing light to this molecular process is exactly what he aims to do in this collaborative research effort.

    Solving complex problems across disciplines

    Despite their crucial importance, GRNs are difficult to study because of how complex and interconnected they are. Usually, to understand how a particular gene is affecting others, biologists must silence one gene and see how the others in the network respond. 

    For years, scientists have aspired to an algorithm that could synthesize the massive amount of information contained in GRNs to “identify correct regulatory relationships among genes,” according to a 2019 article in the Encyclopedia of Bioinformatics and Computational Biology. 

    “A GRN can be seen as a large causal network, and understanding the effects that silencing one gene has on all other genes requires understanding the causal relationships among the genes,” says Uhler. “These are exactly the kinds of algorithms my group develops.”

    Des Marais and Uhler’s project aims to unravel these complex communication networks and discover how to breed crops that are more resilient to the increased droughts, flooding, and erratic weather patterns that climate change is already causing globally.

    In addition to climate change, by 2050, the world will demand 70 percent more food to feed a booming population. “Food systems challenges cannot be addressed individually in disciplinary or topic area silos,” says Greg Sixt, J-WAFS’ research manager for climate and food systems. “They must be addressed in a systems context that reflects the interconnected nature of the food system.”

    Des Marais’ background is in biology, and Uhler’s in statistics. “Dave’s project with Caroline was essentially experimental,” says Renee J. Robins, J-WAFS’ executive director. “This kind of exploratory research is exactly what the J-WAFS seed grant program is for.”

    Getting inside gene regulatory networks

    Des Marais and Uhler’s work begins in a windowless basement on MIT’s campus, where 300 genetically identical Brachypodium distachyon plants grow in large, temperature-controlled chambers. The plant, which contains more than 30,000 genes, is a good model for studying important cereal crops like wheat, barley, maize, and millet. For three weeks, all plants receive the same temperature, humidity, light, and water. Then, half are slowly tapered off water, simulating drought-like conditions.

    Six days into the forced drought, the plants are clearly suffering. Des Marais’ PhD student Jie Yun takes tissues from 50 hydrated and 50 dry plants, freezes them in liquid nitrogen to immediately halt metabolic activity, grinds them up into a fine powder, and chemically separates the genetic material. The genes from all 100 samples are then sequenced at a lab across the street.

    The team is left with a spreadsheet listing the 30,000 genes found in each of the 100 plants at the moment they were frozen, and how many copies there were. Uhler’s PhD student Anastasiya Belyaeva inputs the massive spreadsheet into the computer program she developed and runs her novel algorithm. Within a few hours, the group can see which genes were most active in one condition over another, how the genes were communicating, and which were causing changes in others. 

    The methodology captures important subtleties that could allow researchers to eventually alter gene pathways and breed more resilient crops. “When you expose a plant to drought stress, it’s not like there’s some canonical response,” Des Marais says. “There’s lots of things going on. It’s turning this physiologic process up, this one down, this one didn’t exist before, and now suddenly is turned on.” 

    In addition to Des Marais and Uhler’s research, J-WAFS has funded projects in food and water from researchers in 29 departments across all five MIT schools as well as the MIT Schwarzman College of Computing. J-WAFS seed grants typically fund seven to eight new projects every year.

    “The grants are really aimed at catalyzing new ideas, providing the sort of support [for MIT researchers] to be pushing boundaries, and also bringing in faculty who may have some interesting ideas that they haven’t yet applied to water or food concerns,” Robins says. “It’s an avenue for researchers all over the Institute to apply their ideas to water and food.”

    Alison Gold is a student in MIT’s Graduate Program in Science Writing. More

  • in

    MIT appoints members of new faculty committee to drive climate action plan

    In May, responding to the world’s accelerating climate crisis, MIT issued an ambitious new plan, “Fast Forward: MIT’s Climate Action Plan for the Decade.” The plan outlines a broad array of new and expanded initiatives across campus to build on the Institute’s longstanding climate work.

    Now, to unite these varied climate efforts, maximize their impact, and identify new ways for MIT to contribute climate solutions, the Institute has appointed more than a dozen faculty members to a new committee established by the Fast Forward plan, named the Climate Nucleus.

    The committee includes leaders of a number of climate- and energy-focused departments, labs, and centers that have significant responsibilities under the plan. Its membership spans all five schools and the MIT Schwarzman College of Computing. Professors Noelle Selin and Anne White have agreed to co-chair the Climate Nucleus for a term of three years.

    “I am thrilled and grateful that Noelle and Anne have agreed to step up to this important task,” says Maria T. Zuber, MIT’s vice president for research. “Under their leadership, I’m confident that the Climate Nucleus will bring new ideas and new energy to making the strategy laid out in the climate action plan a reality.”

    The Climate Nucleus has broad responsibility for the management and implementation of the Fast Forward plan across its five areas of action: sparking innovation, educating future generations, informing and leveraging government action, reducing MIT’s own climate impact, and uniting and coordinating all of MIT’s climate efforts.

    Over the next few years, the nucleus will aim to advance MIT’s contribution to a two-track approach to decarbonizing the global economy, an approach described in the Fast Forward plan. First, humanity must go as far and as fast as it can to reduce greenhouse gas emissions using existing tools and methods. Second, societies need to invest in, invent, and deploy new tools — and promote new institutions and policies — to get the global economy to net-zero emissions by mid-century.

    The co-chairs of the nucleus bring significant climate and energy expertise, along with deep knowledge of the MIT community, to their task.

    Selin is a professor with joint appointments in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences. She is also the director of the Technology and Policy Program. She began at MIT in 2007 as a postdoc with the Center for Global Change Science and the Joint Program on the Science and Policy of Global Change. Her research uses modeling to inform decision-making on air pollution, climate change, and hazardous substances.

    “Climate change affects everything we do at MIT. For the new climate action plan to be effective, the Climate Nucleus will need to engage the entire MIT community and beyond, including policymakers as well as people and communities most affected by climate change,” says Selin. “I look forward to helping to guide this effort.”

    White is the School of Engineering’s Distinguished Professor of Engineering and the head of the Department of Nuclear Science and Engineering. She joined the MIT faculty in 2009 and has also served as the associate director of MIT’s Plasma Science and Fusion Center. Her research focuses on assessing and refining the mathematical models used in the design of fusion energy devices, such as tokamaks, which hold promise for delivering limitless zero-carbon energy.

    “The latest IPCC report underscores the fact that we have no time to lose in decarbonizing the global economy quickly. This is a problem that demands we use every tool in our toolbox — and develop new ones — and we’re committed to doing that,” says White, referring to an August 2021 report from the Intergovernmental Panel on Climate Change, a UN climate science body, that found that climate change has already affected every region on Earth and is intensifying. “We must train future technical and policy leaders, expand opportunities for students to work on climate problems, and weave sustainability into every one of MIT’s activities. I am honored to be a part of helping foster this Institute-wide collaboration.”

    A first order of business for the Climate Nucleus will be standing up three working groups to address specific aspects of climate action at MIT: climate education, climate policy, and MIT’s own carbon footprint. The working groups will be responsible for making progress on their particular areas of focus under the plan and will make recommendations to the nucleus on ways of increasing MIT’s effectiveness and impact. The working groups will also include student, staff, and alumni members, so that the entire MIT community has the opportunity to contribute to the plan’s implementation.  

    The nucleus, in turn, will report and make regular recommendations to the Climate Steering Committee, a senior-level team consisting of Zuber; Richard Lester, the associate provost for international activities; Glen Shor, the executive vice president and treasurer; and the deans of the five schools and the MIT Schwarzman College of Computing. The new plan created the Climate Steering Committee to ensure that climate efforts will receive both the high-level attention and the resources needed to succeed.

    Together the new committees and working groups are meant to form a robust new infrastructure for uniting and coordinating MIT’s climate action efforts in order to maximize their impact. They replace the Climate Action Advisory Committee, which was created in 2016 following the release of MIT’s first climate action plan.

    In addition to Selin and White, the members of the Climate Nucleus are:

    Bob Armstrong, professor in the Department of Chemical Engineering and director of the MIT Energy Initiative;
    Dara Entekhabi, professor in the departments of Civil and Environmental Engineering and Earth, Atmospheric and Planetary Sciences;
    John Fernández, professor in the Department of Architecture and director of the Environmental Solutions Initiative;
    Stefan Helmreich, professor in the Department of Anthropology;
    Christopher Knittel, professor in the MIT Sloan School of Management and director of the Center for Energy and Environmental Policy Research;
    John Lienhard, professor in the Department of Mechanical Engineering and director of the Abdul Latif Jameel Water and Food Systems Lab;
    Julie Newman, director of the Office of Sustainability and lecturer in the Department of Urban Studies and Planning;
    Elsa Olivetti, professor in the Department of Materials Science and Engineering and co-director of the Climate and Sustainability Consortium;
    Christoph Reinhart, professor in the Department of Architecture and director of the Building Technology Program;
    John Sterman, professor in the MIT Sloan School of Management and director of the Sloan Sustainability Initiative;
    Rob van der Hilst, professor and head of the Department of Earth, Atmospheric and Planetary Sciences; and
    Chris Zegras, professor and head of the Department of Urban Studies and Planning. More