More stories

  • in

    Climate Action Learning Lab helps state and local leaders identify and implement effective climate mitigation strategies

    This spring, J-PAL North America — a regional office of MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) — launched its first ever Learning Lab, centered on climate action. The Learning Lab convened a cohort of government leaders who are enacting a broad range of policies and programs to support the transition to a low-carbon economy. Through the Learning Lab, participants explored how to embed randomized evaluation into promising solutions to determine how to maximize changes in behavior — a strategy that can help advance decarbonization in the most cost-effective ways to benefit all communities. The inaugural cohort included more than 25 participants from state agencies and cities, including the Massachusetts Clean Energy Center, the Minnesota Housing Finance Agency, and the cities of Lincoln, Nebraska; Newport News, Virginia; Orlando, Florida; and Philadelphia.“State and local governments have demonstrated tremendous leadership in designing and implementing decarbonization policies and climate action plans over the past few years,” said Peter Christensen, scientific advisor of the J-PAL North America Environment, Energy, and Climate Change Sector. “And while these are informed by scientific projections on which programs and technologies may effectively and equitably reduce emissions, the projection methods involve a lot of assumptions. It can be challenging for governments to determine whether their programs are actually achieving the expected level of emissions reductions that we desperately need. The Climate Action Learning Lab was designed to support state and local governments in addressing this need — helping them to rigorously evaluate their programs to detect their true impact.”From May to July, the Learning Lab offered a suite of resources for participants to leverage rigorous evaluation to identify effective and equitable climate mitigation solutions. Offerings included training lectures, one-on-one strategy sessions, peer learning engagements, and researcher collaboration. State and local leaders built skills and knowledge in evidence generation and use, reviewed and applied research insights to their own programmatic areas, and identified priority research questions to guide evidence-building and decision-making practices. Programs prioritized for evaluation covered topics such as compliance with building energy benchmarking policies, take-up rates of energy-efficient home improvement programs such as heat pumps and Solar for All, and scoring criteria for affordable housing development programs.“We appreciated the chance to learn about randomized evaluation methodology, and how this impact assessment tool could be utilized in our ongoing climate action planning. With so many potential initiatives to pursue, this approach will help us prioritize our time and resources on the most effective solutions,” said Anna Shugoll, program manager at the City of Philadelphia’s Office of Sustainability.This phase of the Learning Lab was possible thanks to grant funding from J-PAL North America’s longtime supporter and collaborator Arnold Ventures. The work culminated in an in-person summit in Cambridge, Massachusetts, on July 23, where Learning Lab participants delivered a presentation on their jurisdiction’s priority research questions and strategic evaluation plans. They also connected with researchers in the J-PAL network to further explore impact evaluation opportunities for promising decarbonization programs.“The Climate Action Learning Lab has helped us identify research questions for some of the City of Orlando’s deep decarbonization goals. J-PAL staff, along with researchers in the J-PAL network, worked hard to bridge the gap between behavior change theory and the applied, tangible benefits that we achieve through rigorous evaluation of our programs,” said Brittany Sellers, assistant director for sustainability, resilience and future-ready for Orlando. “Whether we’re discussing an energy-efficiency policy for some of the biggest buildings in the City of Orlando or expanding [electric vehicle] adoption across the city, it’s been very easy to communicate some of these high-level research concepts and what they can help us do to actually pursue our decarbonization goals.”The next phase of the Climate Action Learning Lab will center on building partnerships between jurisdictions and researchers in the J-PAL network to explore the launch of randomized evaluations, deepening the community of practice among current cohort members, and cultivating a broad culture of evidence building and use in the climate space. “The Climate Action Learning Lab provided a critical space for our city to collaborate with other cities and states seeking to implement similar decarbonization programs, as well as with researchers in the J-PAL network to help rigorously evaluate these programs,” said Daniel Collins, innovation team director at the City of Newport News. “We look forward to further collaboration and opportunities to learn from evaluations of our mitigation efforts so we, as a city, can better allocate resources to the most effective solutions.”The Climate Action Learning Lab is one of several offerings under the J-PAL North America Evidence for Climate Action Project. The project’s goal is to convene an influential network of researchers, policymakers, and practitioners to generate rigorous evidence to identify and advance equitable, high-impact policy solutions to climate change in the United States. In addition to the Learning Lab, J-PAL North America will launch a climate special topic request for proposals this fall to fund research on climate mitigation and adaptation initiatives. J-PAL will welcome applications from both research partnerships formed through the Learning Lab as well as other eligible applicants.Local government leaders, researchers, potential partners, or funders committed to advancing climate solutions that work, and who want to learn more about the Evidence for Climate Action Project, may email na_eecc@povertyactionlab.org or subscribe to the J-PAL North America Climate Action newsletter. More

  • in

    MIT gears up to transform manufacturing

    “Manufacturing is the engine of society, and it is the backbone of robust, resilient economies,” says John Hart, head of MIT’s Department of Mechanical Engineering (MechE) and faculty co-director of the MIT Initiative for New Manufacturing (INM). “With manufacturing a lively topic in today’s news, there’s a renewed appreciation and understanding of the importance of manufacturing to innovation, to economic and national security, and to daily lives.”Launched this May, INM will “help create a transformation of manufacturing through new technology, through development of talent, and through an understanding of how to scale manufacturing in a way that enables imparts higher productivity and resilience, drives adoption of new technologies, and creates good jobs,” Hart says.INM is one of MIT’s strategic initiatives and builds on the successful three-year-old Manufacturing@MIT program. “It’s a recognition by MIT that manufacturing is an Institute-wide theme and an Institute-wide priority, and that manufacturing connects faculty and students across campus,” says Hart. Alongside Hart, INM’s faculty co-directors are Institute Professor Suzanne Berger and Chris Love, professor of chemical engineering.The initiative is pursuing four main themes: reimagining manufacturing technologies and systems, elevating the productivity and human experience of manufacturing, scaling up new manufacturing, and transforming the manufacturing base.Breaking manufacturing barriers for corporationsAmgen, Autodesk, Flex, GE Vernova, PTC, Sanofi, and Siemens are founding members of INM’s industry consortium. These industry partners will work closely with MIT faculty, researchers, and students across many aspects of manufacturing-related research, both in broad-scale initiatives and in particular areas of shared interests. Membership requires a minimum three-year commitment of $500,000 a year to manufacturing-related activities at MIT, including the INM membership fee of $275,000 per year, which supports several core activities that engage the industry members.One major thrust for INM industry collaboration is the deployment and adoption of AI and automation in manufacturing. This effort will include seed research projects at MIT, collaborative case studies, and shared strategy development.INM also offers companies participation in the MIT-wide New Manufacturing Research effort, which is studying the trajectories of specific manufacturing industries and examining cross-cutting themes such as technology and financing.Additionally, INM will concentrate on education for all professions in manufacturing, with alliances bringing together corporations, community colleges, government agencies, and other partners. “We’ll scale our curriculum to broader audiences, from aspiring manufacturing workers and aspiring production line supervisors all the way up to engineers and executives,” says Hart.In workforce training, INM will collaborate with companies broadly to help understand the challenges and frame its overall workforce agenda, and with individual firms on specific challenges, such as acquiring suitably prepared employees for a new factory.Importantly, industry partners will also engage directly with students. Founding member Flex, for instance, hosted MIT researchers and students at the Flex Institute of Technology in Sorocaba, Brazil, developing new solutions for electronics manufacturing.“History shows that you need to innovate in manufacturing alongside the innovation in products,” Hart comments. “At MIT, as more students take classes in manufacturing, they’ll think more about key manufacturing issues as they decide what research problems they want to solve, or what choices they make as they prototype their devices. The same is true for industry — companies that operate at the frontier of manufacturing, whether through internal capabilities or their supply chains, are positioned to be on the frontier of product innovation and overall growth.”“We’ll have an opportunity to bring manufacturing upstream to the early stage of research, designing new processes and new devices with scalability in mind,” he says.Additionally, MIT expects to open new manufacturing-related labs and to further broaden cooperation with industry at existing shared facilities, such as MIT.nano. Hart says that facilities will also invite tighter collaborations with corporations — not just providing advanced equipment, but working jointly on, say, new technologies for weaving textiles, or speeding up battery manufacturing.Homing in on the United StatesINM is a global project that brings a particular focus on the United States, which remains the world’s second-largest manufacturing economy, but has suffered a significant decline in manufacturing employment and innovation.One key to reversing this trend and reinvigorating the U.S. manufacturing base is advocacy for manufacturing’s critical role in society and the career opportunities it offers.“No one really disputes the importance of manufacturing,” Hart says. “But we need to elevate interest in manufacturing as a rewarding career, from the production workers to manufacturing engineers and leaders, through advocacy, education programs, and buy-in from industry, government, and academia.”MIT is in a unique position to convene industry, academic, and government stakeholders in manufacturing to work together on this vital issue, he points out.Moreover, in times of radical and rapid changes in manufacturing, “we need to focus on deploying new technologies into factories and supply chains,” Hart says. “Technology is not all of the solution, but for the U.S. to expand our manufacturing base, we need to do it with technology as a key enabler, embracing companies of all sizes, including small and medium enterprises.”“As AI becomes more capable, and automation becomes more flexible and more available, these are key building blocks upon which you can address manufacturing challenges,” he says. “AI and automation offer new accelerated ways to develop, deploy, and monitor production processes, which present a huge opportunity and, in some cases, a necessity.”“While manufacturing is always a combination of old technology, new technology, established practice, and new ways of thinking, digital technology gives manufacturers an opportunity to leapfrog competitors,” Hart says. “That’s very, very powerful for the U.S. and any company, or country, that aims to create differentiated capabilities.”Fortunately, in recent years, investors have increasingly bought into new manufacturing in the United States. “They see the opportunity to re-industrialize, to build the factories and production systems of the future,” Hart says.“That said, building new manufacturing is capital-intensive, and takes time,” he adds. “So that’s another area where it’s important to convene stakeholders and to think about how startups and growth-stage companies build their capital portfolios, how large industry can support an ecosystem of small businesses and young companies, and how to develop talent to support those growing companies.”All these concerns and opportunities in the manufacturing ecosystem play to MIT’s strengths. “MIT’s DNA of cross-disciplinary collaboration and working with industry can let us create a lot of impact,” Hart emphasizes. “We can understand the practical challenges. We can also explore breakthrough ideas in research and cultivate successful outcomes, all the way to new companies and partnerships. Sometimes those are seen as disparate approaches, but we like to bring them together.” More

  • in

    MIT-Africa launches new collaboration with Angola

    The MIT Center for International Studies announced the launch of a new pilot initiative with Angola, to be implemented through its MIT-Africa Program.The new initiative marks a significant collaboration between MIT-Africa, Sonangol (Angola’s national energy company), and the Instituto Superior Politécnico de Tecnologias e Ciências (ISPTEC). The collaboration was formalized at a signing ceremony on MIT’s campus in June with key stakeholders from all three institutions present, including Diamantino Pedro Azevedo, the Angolan minister of mineral resources, petroleum, and gas, and Sonangol CEO Gaspar Martins.“This partnership marks a pivotal step in the Angolan government’s commitment to leveraging knowledge as the cornerstone of the country’s economic transformation,” says Azevedo. “By connecting the oil and gas sector with science, innovation, and world-class training, we are equipping future generations to lead Angola into a more technological, sustainable, and globally competitive era.”The sentiment is shared by the MIT-Africa Program leaders. “This initiative reflects MIT’s deep commitment to fostering meaningful, long-term relationships across the African continent,” says Mai Hassan, faculty director of the MIT-Africa Program. “It supports our mission of advancing knowledge and educating students in ways that are globally informed, and it provides a platform for mutual learning. By working with Angolan partners, we gain new perspectives and opportunities for innovation that benefit both MIT and our collaborators.”In addition to its new collaboration with MIT-Africa, Sonangol has joined MIT’s Industrial Liaison Program (ILP), breaking new ground as its first corporate member based in sub-Saharan Africa. ILP enables companies worldwide to harness MIT resources to address current challenges and to anticipate future needs. As an ILP member, Sonangol seeks to facilitate collaboration in key sectors such as natural resources and mining, energy, construction, and infrastructure.The MIT-Africa Program manages a portfolio of research, teaching, and learning initiatives that emphasize two-way value — offering impactful experiences to MIT students and faculty while collaborating closely with institutions and communities across Africa. The new Angola collaboration is aligned with this ethos, and will launch with two core activities during the upcoming academic year:Global Classroom: An MIT course on geo-spatial technologies for environmental monitoring, taught by an MIT faculty member, will be brought directly to the ISPTEC campus, offering Angolan students and MIT participants a collaborative, in-country learning experience.Global Teaching Labs: MIT students will travel to ISPTEC to teach science, technology, engineering, arts, and mathematics subjects on renewable energy technologies, engaging Angolan students through hands-on instruction.“This is not a traditional development project,” says Ari Jacobovits, managing director of MIT-Africa. “This is about building genuine partnerships rooted in academic rigor, innovation, and shared curiosity. The collaboration has been designed from the ground up with our partners at ISPTEC and Sonangol. We’re coming in with a readiness to learn as much as we teach.”The pilot marks an important first step in establishing a long-term collaboration with Angola. By investing in collaborative education and innovation, the new initiative aims to spark novel approaches to global challenges and strengthen academic institutions on both sides.These agreements with MIT-Africa and ILP “not only enhance our innovation and technological capabilities, but also create opportunities for sustainable development and operational excellence,” says Gaspar. “They advance our mission to be a leading force in the African energy sector.”“The vision behind this initiative is bold,” says Hassan. “It’s about co-creating knowledge and building capacity that lasts.” More

  • in

    “Each of us holds a piece of the solution”

    MIT has an unparalleled history of bringing together interdisciplinary teams to solve pressing problems — think of the development of radar during World War II, or leading the international coalition that cracked the code of the human genome — but the challenge of climate change could demand a scale of collaboration unlike any that’s come before at MIT.“Solving climate change is not just about new technologies or better models. It’s about forging new partnerships across campus and beyond — between scientists and economists, between architects and data scientists, between policymakers and physicists, between anthropologists and engineers, and more,” MIT Vice President for Energy and Climate Evelyn Wang told an energetic crowd of faculty, students, and staff on May 6. “Each of us holds a piece of the solution — but only together can we see the whole.”Undeterred by heavy rain, approximately 300 campus community members filled the atrium in the Tina and Hamid Moghadam Building (Building 55) for a spring gathering hosted by Wang and the Climate Project at MIT. The initiative seeks to direct the full strength of MIT to address climate change, which Wang described as one of the defining challenges of this moment in history — and one of its greatest opportunities.“It calls on us to rethink how we power our world, how we build, how we live — and how we work together,” Wang said. “And there is no better place than MIT to lead this kind of bold, integrated effort. Our culture of curiosity, rigor, and relentless experimentation makes us uniquely suited to cross boundaries — to break down silos and build something new.”The Climate Project is organized around six missions, thematic areas in which MIT aims to make significant impact, ranging from decarbonizing industry to new policy approaches to designing resilient cities. The faculty leaders of these missions posed challenges to the crowd before circulating among the crowd to share their perspectives and to discuss community questions and ideas.Wang and the Climate Project team were joined by a number of research groups, startups, and MIT offices conducting relevant work today on issues related to energy and climate. For example, the MIT Office of Sustainability showcased efforts to use the MIT campus as a living laboratory; MIT spinouts such as Forma Systems, which is developing high-performance, low-carbon building systems, and Addis Energy, which envisions using the earth as a reactor to produce clean ammonia, presented their technologies; and visitors learned about current projects in MIT labs, including DebunkBot, an artificial intelligence-powered chatbot that can persuade people to shift their attitudes about conspiracies, developed by David Rand, the Erwin H. Schell Professor at the MIT Sloan School of Management.Benedetto Marelli, an associate professor in the Department of Civil and Environmental Engineering who leads the Wild Cards Mission, said the energy and enthusiasm that filled the room was inspiring — but that the individual conversations were equally valuable.“I was especially pleased to see so many students come out. I also spoke with other faculty, talked to staff from across the Institute, and met representatives of external companies interested in collaborating with MIT,” Marelli said. “You could see connections being made all around the room, which is exactly what we need as we build momentum for the Climate Project.” More

  • in

    Shaping the future through systems thinking

    Long before she stepped into a lab, Ananda Santos Figueiredo was stargazing in Brazil, captivated by the cosmos and feeding her curiosity of science through pop culture, books, and the internet. She was drawn to astrophysics for its blend of visual wonder and mathematics.Even as a child, Santos sensed her aspirations reaching beyond the boundaries of her hometown. “I’ve always been drawn to STEM,” she says. “I had this persistent feeling that I was meant to go somewhere else to learn more, explore, and do more.”Her parents saw their daughter’s ambitions as an opportunity to create a better future. The summer before her sophomore year of high school, her family moved from Brazil to Florida.  She recalls that moment as “a big leap of faith in something bigger and we had no idea how it would turn out.” She was certain of one thing: She wanted an education that was both technically rigorous and deeply expansive, one that would allow her to pursue all her passions.At MIT, she found exactly what she was seeking in a community and curriculum that matched her curiosity and ambition. “I’ve always associated MIT with something new and exciting that was grasping towards the very best we can achieve as humans,” Santos says, emphasizing the use of technology and science to significantly impact society. “It’s a place where people aren’t afraid to dream big and work hard to make it a reality.”As a first-generation college student, she carried the weight of financial stress and the uncertainty that comes with being the first in her family to navigate college in the U.S. But she found a sense of belonging in the MIT community. “Being a first-generation student helped me grow,” she says. “It inspired me to seek out opportunities and help support others too.”She channeled that energy into student government roles for the undergraduate residence halls. Through Dormitory Council (DormCon) and her dormitory, Simmons Hall, her voice could help shape life on campus. She began serving as reservations chair for her dormitory but ended up becoming president of the dormitory before being elected dining chair and vice president for DormCon. She’s worked to improve dining hall operations and has planned major community events like Simmons Hall’s 20th anniversary and DormCon’s inaugural Field Day.Now, a senior about to earn her bachelor’s degree, Santos says MIT’s motto, “mens et manus” — “mind and hand” — has deeply resonated with her from the start. “Learning here goes far beyond the classroom,” she says. “I’ve been surrounded by people who are passionate and purposeful. That energy is infectious. It’s changed how I see myself and what I believe is possible.”Charting her own courseInitially a physics major, Santos’ academic path took a turn after a transformative internship with the World Bank’s data science lab between her sophomore and junior years. There, she used her coding skills to study the impacts of heat waves in the Philippines. The experience opened her eyes to the role technology and data can play in improving lives and broadened her view of what a STEM career could look like.“I realized I didn’t want to just study the universe — I wanted to change it,” she says. “I wanted to join systems thinking with my interest in the humanities, to build a better world for people and communities.”When MIT launched a new major in climate system science and engineering (Course 1-12) in 2023, Santos was the first student to declare it. The interdisciplinary structure of the program, blending climate science, engineering, energy systems, and policy, gave her a framework to connect her technical skills to real-world sustainability challenges.She tailored her coursework to align with her passions and career goals, applying her physics background (now her minor) to understand problems in climate, energy, and sustainable systems. “One of the most powerful things about the major is the breadth,” she says. “Even classes that aren’t my primary focus have expanded how I think.”Hands-on fieldwork has been a cornerstone of her learning. During MIT’s Independent Activities Period (IAP), she studied climate impacts in Hawai’i in the IAP Course 1.091 (Traveling Research Environmental Experiences, or TREX). This year, she studied the design of sustainable polymer systems in Course 1.096/10.496 (Design of Sustainable Polymer Systems) under MISTI’s Global Classroom program. The IAP class brought her to the middle of the Amazon Rainforest to see what the future of plastic production could look like with products from the Amazon. “That experience was incredibly eye opening,” she explains. “It helped me build a bridge between my own background and the kind of problems that I want to solve in the future.”Santos also found enjoyment beyond labs and lectures. A member of the MIT Shakespeare Ensemble since her first year, she took to the stage in her final spring production of “Henry V,” performing as both the Chorus and Kate. “The ensemble’s collaborative spirit and the way it brings centuries-old texts to life has been transformative,” she adds.Her passion for the arts also intersected with her interest in the MIT Lecture Series Committee. She helped host a special screening of the film “Sing Sing,” in collaboration with MIT’s Educational Justice Institute (TEJI). That connection led her to enroll in a TEJI course, illustrating the surprising and meaningful ways that different parts of MIT’s ecosystem overlap. “It’s one of the beautiful things about MIT,” she says. “You stumble into experiences that deeply change you.”Throughout her time at MIT, the community of passionate, sustainability-focused individuals has been a major source of inspiration. She’s been actively involved with the MIT Office of Sustainability’s decarbonization initiatives and participated in the Climate and Sustainability Scholars Program.Santos acknowledges that working in sustainability can sometimes feel overwhelming. “Tackling the challenges of sustainability can be discouraging,” she says. “The urgency to create meaningful change in a short period of time can be intimidating. But being surrounded by people who are actively working on it is so much better than not working on it at all.”Looking ahead, she plans to pursue graduate studies in technology and policy, with aspirations to shape sustainable development, whether through academia, international organizations, or diplomacy.“The most fulfilling moments I’ve had at MIT are when I’m working on hard problems while also reflecting on who I want to be, what kind of future I want to help create, and how we can be better and kinder to each other,” she says. “That’s what excites me — solving real problems that matter.” More

  • in

    MIT students turn vision to reality

    Life is a little brighter in Kapiyo these days.For many in this rural Kenyan town, nightfall used to signal the end to schoolwork and other family activities. Now, however, the darkness is pierced by electric lights from newly solar-powered homes. Inside, children in this off-the-grid area can study while parents extend daily activities past dusk, thanks to a project conceived by an MIT mechanical engineering student and financed by the MIT African Students Association (ASA) Impact Fund.There are changes coming, too, in the farmlands of Kashusha in the Democratic Republic of Congo (DRC), where another ASA Impact Fund project is working with local growers to establish an energy-efficient mill for processing corn — adding value, creating jobs, and sparking new economic opportunities. Similarly, plans are underway to automate processing of locally-grown cashews in the Mtwara area of Tanzania — an Impact Fund project meant to increase the income of farmers who now send over 90 percent of their nuts abroad for processing.Inspired by a desire by MIT students to turn promising ideas into practical solutions for people in their home countries, the ASA Impact Fund is a student-run initiative that launched during the 2023-24 academic year. Backed by an alumni board, the fund empowers students to conceive, design, and lead projects with social and economic impact in communities across Africa.After financing three projects its first year, the ASA Impact Fund received eight project proposals earlier this year and plans to announce its second round of two to four grants sometime this spring, says Pamela Abede, last year’s fund president. Last year’s awards totaled approximately $15,000.The fund is an outgrowth of MIT’s African Learning Circle, a seminar open to the entire MIT community where biweekly discussions focus on ways to apply MIT’s educational resources, entrepreneurial spirit, and innovation to improve lives on the African continent.“The Impact Fund was created,” says MIT African Students Association president Victory Yinka-Banjo, “to take this to the next level … to go from talking to execution.”Aimed at bridging a gap between projects Learning Circle participants envision and resources available to fund them, the ASA Impact Fund “exists as an avenue to assist our members in undertaking social impact projects on the African continent,” the initiative’s website states, “thereby combining theoretical learning with practical application in alignment with MIT’s motto.”The fund’s value extends to the Cambridge campus as well, says ASA Impact Fund board member and 2021 MIT graduate Bolu Akinola.“You can do cool projects anywhere,” says Akinola, who is originally from Nigeria and currently pursuing a master’s degree in business administration at Harvard University. “Where this is particularly catalyzing is in incentivizing folks to go back home and impact life back on the continent of Africa.”MIT-Africa managing director Ari Jacobovits, who helped students get the fund off the ground last year, agrees.“I think it galvanized the community, bringing people together to bridge a programmatic gap that had long felt like a missed opportunity,” Jacobovits says. “I’m always impressed by the level of service-mindedness ASA members have towards their home communities. It’s something we should all be celebrating and thinking about incorporating into our home communities, wherever they may be.”Alumni Board president Selam Gano notes that a big part of the Impact Fund’s appeal is the close connections project applicants have with the communities they’re working with. MIT engineering major Shekina Pita, for example, is from Kapiyo, and recalls “what it was like growing up in a place with unreliable electricity,” which “would impact every aspect of my life and the lives of those that I lived around.” Pita’s personal experience and familiarity with the community informed her proposal to install solar panels on Kapiyo homes.So far, the ASA Impact Fund has financed installation of solar panels for five households where families had been relying on candles so their children could do homework after dark.“A candle is 15 Kenya shillings, and I don’t always have that amount to buy candles for my children to study. I am grateful for your help,” comments one beneficiary of the Kapiyo solar project.Pita anticipates expanding the project, 10 homes at a time, and involving some college-age residents of those homes in solar panel installation apprenticeships.“In general, we try to balance projects where we fund some things that are very concrete solutions to a particular community’s problems — like a water project or solar energy — and projects with a longer-term view that could become an organization or a business — like a novel cashew nut processing method,” says Gano, who conducted projects in his father’s homeland of Ethiopia while an MIT student. “I think striking that balance is something I am particularly proud of. We believe that people in the community know best what they need, and it’s great to empower students from those same communities.”  Vivian Chinoda, who received a grant from the ASA Impact Fund and was part of the African Students Association board that founded it, agrees.“We want to address problems that can seem trivial without the lived experience of them,” says Chinoda. “For my friend and I, getting funding to go to Tanzania and drive more than 10 hours to speak to remotely located small-scale cashew farmers … made a difference. We were able to conduct market research and cross-check our hypotheses on a project idea we brainstormed in our dorm room in ways we would not have otherwise been able to access remotely.”Similarly, Florida Mahano’s Impact Fund-financed project is benefiting from her experience growing up near farms in the DRC. Partnering with her brother, a mechanical engineer in her home community of Bukavu in eastern DRC, Mahano is on her way to developing a processing plant that will serve the needs of local farmers. Informed by market research involving about 500 farmers, consumers, and retailers that took place in January, the plant will likely be operational by summer 2026, says Mahano, who has also received funding from MIT’s Priscilla King Gray (PKG) Public Service Center.“The ASA Impact Fund was the starting point for us,” paving the way for additional support, she says. “I feel like the ASA Impact Fund was really amazing because it allowed me to bring my idea to life.”Importantly, Chinoda notes that the Impact Fund has already had early success in fostering ties between undergraduate students and MIT alumni.“When we sent out the application to set up the alumni board, we had a volume of respondents coming in quite quickly, and it was really encouraging to see how the alums were so willing to be present and use their skill sets and connections to build this from the ground up,” she says.Abede, who is originally from Ghana, would like to see that enthusiasm continue — increasing alumni awareness about the fund “to get more alums involved … more alums on the board and mentoring the students.”Mentoring is already an important aspect of the ASA Impact Fund, says Akinola. Grantees, she says, get paired with alumni to help them through the process of getting projects underway. “This fund could be a really good opportunity to strengthen the ties between the alumni community and current students,” Akinola says. “I think there are a lot of opportunities for funds like this to tap into the MIT alumni community. I think where there is real value is in the advisory nature — mentoring and coaching current students, helping the transfer of skills and resources.”As more projects are proposed and funded each year, awareness of the ASA Impact Fund among MIT alumni will increase, Gano predicts.“We’ve had just one year of grantees so far, and all of the projects they’ve conducted have been great,” he says. “I think even if we just continue functioning at this scale, if we’re able to sustain the fund, we can have a real lasting impact as students and alumni and build more and more partnerships on the continent.” More

  • in

    Building for Ukraine: A hackathon with a mission

    “No cash prizes. But our friends in Kiev are calling in, and they’ll probably say thanks,”​ was the the tagline that drew students and tech professionals to join MIT-Ukraine’s first-ever hackathon this past January.The hackathon was co-sponsored by MIT-Ukraine and Mission Innovation X and was shaped by the efforts of MIT alumni from across the world. It was led by Hosea Siu ’14, SM ’15, PhD ’18, a seasoned hackathon organizer and AI researcher, in collaboration with Phil Tinn MCP ’16, a research engineer now based at SINTEF [Foundation for Industrial and Technical Research] in Norway. The program was designed to prioritize tangible impact: “In a typical hackathon, you might get a weekend of sleepless nights and some flashy but mostly useless prototypes. Here, we stretched it out over four weeks, and we’re expecting real, meaningful outcomes,”​ says Siu, the hackathon director.One week of training, three weeks of project developmentIn the first week, participants attended lectures with leading experts on key challenges Ukraine currently faces, from a talk on mine contamination with Andrew Heafitz PhD ’05 to a briefing on disinformation with Nina Lutz SM ’21. Then, participants formed teams to develop projects addressing these challenges, with mentorship from top MIT specialists including Phil Tinn (AI & defense), Svetlana Boriskina (energy resilience), and Gene Keselman (defense innovation and dual-use technology).“I really liked the solid structure they gave us — walking us through exactly what’s happening in Ukraine, and potential solutions,”​ says Timur Gray, a first-year in engineering at Olin College.The five final projects spanned demining, drone technology, AI and disinformation, education for Ukraine, and energy resilience. Supporting demining effortsWith current levels of technology, it is estimated that it will take 757 years to fully de-mine Ukraine. Students Timur Gray and Misha Donchenko, who is a sophomore mathematics major at MIT, came together to research the latest developments in demining technology and strategize how students could most effectively support innovations.The team has made connections with the Ukrainian Association of Humanitarian Demining and the HALO Trust to explore opportunities for MIT students to directly support demining efforts in Ukraine. They also explored project ideas to work on tools for civilians to report on mine locations, and the team created a demo web page рішучість757, which includes an interactive database mapping mine locations.“Being able to apply my skills to something that has a real-world impact — that’s been the best part of this hackathon,” says Donchenko.Innovating drone productionDrone technology has been one of Ukraine’s most critical advantages on the battlefield — but government bureaucracy threatens to slow innovation, according to Oleh Deineka, who made this challenge the focus of his hackathon project. Joining remotely from Ukraine, where he studies post-war recovery at the Kyiv School of Economics, Deineka brought invaluable firsthand insight from living and working on the ground, enriching the experience for all participants. Prior to the hackathon, he had already begun developing UxS.AGENCY, a secure digital platform to connect drone developers with independent funders, with the aim of ensuring that the speed of innovations in drone technology is not curbed. He notes that Ukrainian arms manufacturers have the capacity to produce three times more weapons and military equipment than the Ukrainian government can afford to purchase. Promoting private sector development of drone production could help solve this. The platform Deineka is working on also aims to reduce the risk of corruption, allowing developers to work directly with funders, bypassing any bureaucratic interference.Deineka is also working with MIT’s Keselman, who gave a talk during the hackathon on dual-use technology — the idea that military innovations should also have civilian applications. Deineka emphasized that developing such dual-use technology in Ukraine could help not only to win the war, but also to create sustainable civilian applications, ensuring that Ukraine’s 10,000 trained drone operators have jobs after it ends. He pointed to future applications such as drone-based urban infrastructure monitoring, precision agriculture, and even personal security — like a small drone following a child with asthma, allowing parents to monitor their well-being in real time​.“This hackathon has connected me with MIT’s top minds in innovation and security. Being invited to collaborate with Gene Keselman and others has been an incredible opportunity,” says Deineka.Disinformation dynamics on WikipediaWikipedia has long been a battleground for Russian disinformation, from the profiling of artists like Kazimir Malevich to the framing of historical events. The hackathon’s disinformation team worked together on a machine learning-based tool to detect biased edits. They found that Wikipedia’s moderation system is susceptible to reinforcing systemic bias, particularly when it comes to history. Their project laid the groundwork for a potential student-led initiative to track disinformation, propose corrections, and develop tools to improve fact-checking on Wikipedia.Education for Ukraine’s futureRussia’s war against Ukraine is having a detrimental impact on education, with constant air raid sirens disrupting classes, and over 2,000 Ukrainian schools damaged or destroyed. The STEM education team focused on what they could do to support Ukrainian students. They developed a plan for adapting MIT’s Beaver Works Summer Institute in STEM for students still living in Ukraine, or potentially for Ukrainians currently displaced to neighboring countries. “I didn’t realize how many schools had been destroyed and how deeply that could impact kids’ futures. You hear about the war, but the hackathon made it real in a way I hadn’t thought about before,” says Catherine Tang, a senior in electrical engineering and computer science.Vlad Duda, founder of Nomad AI, also contributed to the education track of the hackathon with a focus on language accessibility and learning support. One of the prototypes he presented, MOVA, is a Chrome extension that uses AI to translate online resources into Ukrainian — an especially valuable tool for high school students in Ukraine, who often lack the English proficiency needed to engage with complex academic content. Duda also developed OpenBookLM, an AI-powered tool that helps students turn notes into audio and personalized study guides, similar in concept to Google’s NotebookLM but designed to be open-source and adaptable to different languages and educational contexts.Energy resilience The energy resilience team worked on exploring cheaper, more reliable heating and cooling technologies so Ukrainian homes can be less dependent on traditional energy grids that are susceptible to Russian attacks.The team tested polymer filaments that generate heat when stretched and cool when released, which could potentially offer low-cost, durable home heating solutions in Ukraine. Their work focused on finding the most effective braid structure to enhance durability and efficiency.From hackathon to realityUnlike most hackathons, where projects end when the event does, MIT-Ukraine’s goal is to ensure these ideas don’t stop here. All the projects developed during the hackathon will be considered as potential avenues for MIT’s Undergraduate Research Opportunities Program (UROP) and MISTI Ukraine summer internship programs. Last year, 15 students worked on UROP and MISTI projects for Ukraine, contributing in areas such as STEM education and reconstruction in Ukraine. With the many ideas generated during the hackathon, MIT-Ukraine is committed to expanding opportunities for student-led projects and collaborations in the coming year.”The MIT-Ukraine program is about learning by doing, and making an impact beyond MIT’s campus. This hackathon proved that students, researchers, and professionals can work together to develop solutions that matter — and Ukraine’s urgent challenges demand nothing less,” says Elizabeth Wood, Ford International Professor of History at MIT and the faculty director of the MIT-Ukraine Program at the Center for International Studies.  More

  • in

    Collaboration between MIT and GE Vernova aims to develop and scale sustainable energy systems

    MIT and GE Vernova today announced the creation of the MIT-GE Vernova Energy and Climate Alliance to help develop and scale sustainable energy systems across the globe.The alliance launches a five-year collaboration between MIT and GE Vernova, a global energy company that spun off from General Electric’s energy business in 2024. The endeavor will encompass research, education, and career opportunities for students, faculty, and staff across MIT’s five schools and the MIT Schwarzman College of Computing. It will focus on three main themes: decarbonization, electrification, and renewables acceleration.“This alliance will provide MIT students and researchers with a tremendous opportunity to work on energy solutions that could have real-world impact,” says Anantha Chandrakasan, MIT’s chief innovation and strategy officer and dean of the School of Engineering. “GE Vernova brings domain knowledge and expertise deploying these at scale. When our researchers develop new innovative technologies, GE Vernova is strongly positioned to bring them to global markets.”Through the alliance, GE Vernova is sponsoring research projects at MIT and providing philanthropic support for MIT research fellowships. The company will also engage with MIT’s community through participation in corporate membership programs and professional education.“It’s a privilege to combine forces with MIT’s world-class faculty and students as we work together to realize an optimistic, innovation-driven approach to solving the world’s most pressing challenges,” says Scott Strazik, GE Vernova CEO. “Through this alliance, we are proud to be able to help drive new technologies while at the same time inspire future leaders to play a meaningful role in deploying technology to improve the planet at companies like GE Vernova.”“This alliance embodies the spirit of the MIT Climate Project — combining cutting-edge research, a shared drive to tackle today’s toughest energy challenges, and a deep sense of optimism about what we can achieve together,” says Sally Kornbluth, president of MIT. “With the combined strengths of MIT and GE Vernova, we have a unique opportunity to make transformative progress in the flagship areas of electrification, decarbonization, and renewables acceleration.”The alliance, comprising a $50 million commitment, will operate within MIT’s Office of Innovation and Strategy. It will fund approximately 12 annual research projects relating to the three themes, as well as three master’s student projects in MIT’s Technology and Policy Program. The research projects will address challenges like developing and storing clean energy, as well as the creation of robust system architectures that help sustainable energy sources like solar, wind, advanced nuclear reactors, green hydrogen, and more compete with carbon-emitting sources.The projects will be selected by a joint steering committee composed of representatives from MIT and GE Vernova, following an annual Institute-wide call for proposals.The collaboration will also create approximately eight endowed GE Vernova research fellowships for MIT students, to be selected by faculty and beginning in the fall. There will also be 10 student internships that will span GE Vernova’s global operations, and GE Vernova will also sponsor programming through MIT’s New Engineering Education Transformation (NEET), which equips students with career-oriented experiential opportunities. Additionally, the alliance will create professional education programming for GE Vernova employees.“The internships and fellowships will be designed to bring students into our ecosystem,” says GE Vernova Chief Corporate Affairs Officer Roger Martella. “Students will walk our factory floor, come to our labs, be a part of our management teams, and see how we operate as business leaders. They’ll get a sense for how what they’re learning in the classroom is being applied in the real world.”Philanthropic support from GE Vernova will also support projects in MIT’s Human Insight Collaborative (MITHIC), which launched last fall to elevate human-centered research and teaching. The projects will allow faculty to explore how areas like energy and cybersecurity influence human behavior and experiences.In connection with the alliance, GE Vernova is expected to join several MIT consortia and membership programs, helping foster collaborations and dialogue between industry experts and researchers and educators across campus.With operations across more than 100 countries, GE Vernova designs, manufactures, and services technologies to generate, transfer, and store electricity with a mission to decarbonize the world. The company is headquartered in Kendall Square, right down the road from MIT, which its leaders say is not a coincidence.“We’re really good at taking proven technologies and commercializing them and scaling them up through our labs,” Martella says. “MIT excels at coming up with those ideas and being a sort of time machine that thinks outside the box to create the future. That’s why this such a great fit: We both have a commitment to research, innovation, and technology.”The alliance is the latest in MIT’s rapidly growing portfolio of research and innovation initiatives around sustainable energy systems, which also includes the Climate Project at MIT. Separate from, but complementary to, the MIT-GE Vernova Alliance, the Climate Project is a campus-wide effort to develop technological, behavioral, and policy solutions to some of the toughest problems impeding an effective global climate response. More