More stories

  • in

    Powering the future in Mongolia

    Nestled within the Tuul River valley and embraced by the southern Khentii Mountain Range, Ulaanbaatar (UB), Mongolia’s largest city, presents itself as an arena where nature’s forces wage an unrelenting battle against human resilience. The capital city is an icy crucible, with bone-chilling winters that plummet temperatures to an astonishing -40 degrees Fahrenheit (-40 degrees Celsius). Mongolia, often hailed with the celestial moniker of “The Land of the Eternal Blue Sky,” paradoxically succumbs to a veil of pollution and energy struggles during the winter months, obscuring the true shade of the cherished vista.

    To understand the root of these issues, MIT students from classes 22.S094 (Climate and Sustainability Systems: Decarbonizing Ulaanbaatar at Scale) and 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale) visited Mongolia to conduct on-site surveys, diving into the diverse tapestry of local life as they gleaned insight from various stakeholder groups. Setting foot on Mongolian soil on a crisp day in January, they wasted no time in shaking off the weariness of their arduous 17-hour flight, promptly embarking on a waiting bus. As they traversed the vast expanse of the countryside, their eyes were captivated by snow-laden terrain.

    That is, until a disconcerting sight unfolded — thick smog, akin to ethereal pillars, permeated the cityscape ahead. These imposing plumes emanated from the colossal smokestacks of Ulaanbaatar’s coal-fired power plants, steadfastly churning electricity and heat to fuel Mongolia’s central and district energy systems. Over 93 percent of the nation’s energy comes from coal-fired power plants, where the most considerable load is caused by household consumption. Nevertheless, with nearly half of Ulaanbaatar’s population disconnected from the central heating networks, one of Mongolia’s most significant sources of pollution comes from coal-burning stoves in the residential settlements known as the ger districts. Over the past three decades, since the democratic revolution in 1990, Mongolians have grappled with escalating concerns surrounding energy provision, accessibility, and sustainability.

    Engineers who think like anthropologists

    “We find ourselves compelled to venture on-site, engaging in direct conversations with the locals, and immersing ourselves in the fabric of daily life to uncover what we don’t know,” emphasized Michael Short, professor in MIT’s Department of Nuclear Science and Engineering and faculty lead of MIT’s NEET Climate and Sustainability Systems thread, shortly before heading to Mongolia.

    The Ulaanbaatar Project sprang from a multiyear collaboration between MIT and the National University of Mongolia (NUM). Shedding light on the matter, Professor Munkhbat Byambajav of the Department of Chemical and Biological Engineering at NUM underscored the paramount importance of mitigating environmental pollution at an economic scale to alleviate the heavy burden borne by the people.

    Class 22.S094 is offered through MIT’s New Engineering Education Transformation (NEET) program, which allows students with multidisciplinary interests to collaborate across departments within four different subject areas, or threads. In this capstone project, students consider ways to decarbonize a city like Ulaanbaatar, transitioning from burning coal briquettes to a more sustainable, energy-efficient solution, given several parameters and constraints set by the local context.

    One of the ideas students have recently explored is a thermal battery made with molten salt that can store enough energy to heat a ger for up to 12 hours with added insulation for cooling curve regulation. The Mongolian ger, meaning home, is a dome-like portable dwelling covered in felt and canvas, held together by ropes traditionally crafted of animal hair or wool. Over several semesters, students have been testing a version of their proposed idea on campus, working with a prototype that weighs around 35 pounds.

    Nathan Melenbrink, the lead instructor of NEET’s Climate and Sustainability Systems (CSS) thread, believes that the complexity of the Ulaanbaatar capstone project allows students to reject the one-way solution approach and instead consider challenges with a nonprescriptive mindset. The uniqueness of the CSS thread is that students are asked to build on the previous findings from the past cohort and iterate on their designs each year. This workflow has allowed the project to mature and advance in ways that may not be feasible within a semester schedule. When asked how the recent trip impacted the ongoing research back on campus, Melenbrink states, “In light of the recent trip to Mongolia, students are beginning to see the impact of cultural immersion and social awareness leveraging the technical scope and rigor of their work.”

    Course 21A.S01, taught by Professor Manduhai Buyandelger of the MIT Anthropology Section, proved instrumental in deepening students’ understanding of the intricate dynamics at play. She asks, “The prototype works in the lab, but does it work in real life once you factor in the challenges in the larger structures of delivery, production, and implementation in Mongolia?”

    This recognition of the social dimensions of engineering permeated the early stages of the UB project, engaging all participants, including students from MIT and NUM, professionals residing in Mongolia, and local nongovernmental organizations, fostering what Buyandelger aptly describes as “a collaboration on multiple scales: trans-disciplinary and transcontinental.” Lauren Bonilla, co-lecturer for the anthropology course, was crucial in devising the first onsite trip to Mongolia. Drawing upon her extensive ethnographic research in Mongolia that spans decades, Bonilla remarks, “To me, engineering is a highly social discipline.” She further stresses how anthro-engineering elevates the social dimensions of engineering by critically questioning the framing of problems and solutions, stating, “It draws on anthropological insights and methods, like ethnography, to bring a human face to the users of a technology and adds complexity and nuance to the social constraints that limit designs.”

    Making of khorkhog

    Amidst the frigid atmosphere, a traditional Mongolian ger stands in front of the Nuclear Science Laboratory at the National University of Mongolia, emitting warm steam from its roof. The faculty and students of NUM organize a welcoming event inside the ger, inviting everyone to partake in a khorkhog cookout. Earlier that week, a remark from the Mongolian energy representative stood out during one of the presentations: “We need powerful heat. Solar is not enough, and electricity is not enough. Mongolians need fire,” he had emphasized.

    Indeed, the culinary delight known as khorkhog demands the relentless embrace of scorching flames. The process involves a large metal jug, stones, fire, and lamb. With skillful precision, the volunteer chef places the fire-heated stones and large pieces of lamb into the cooking container, triggering a cascade of steam that fills the ger, accompanied by the sounds of sizzling and hissing. Everyone waits patiently as the cook carefully inspects the dish, keenly listening for signs of readiness. And when the time comes, a feast is shared among all, complemented by steam-cooked potatoes, freshly sliced onions, and vegetables. In this moment, the presence of fire symbolizes a profound connection with the heart of Mongolian culture, evoking a deep resonance among the gathered crowd as they partake in this cherished staple meal.

    The distance between two points

    Familiar faces form a grid on the computer screen as the standing meeting between the students in Massachusetts and Ulaanbaatar begins. Sharing the morning (evening in Mongolia) for updates has been a critical effort by both sides to stay engaged and make decisions together. NEET CSS students in Cambridge proceeded to share their latest findings.

    Lucy Nester, a nuclear science and engineering major, has been diligently working on developing a high-efficiency electrical heating solution for individual consumers. Her primary focus is leveraging the discounted electricity rates available in the ger districts and utilize existing infrastructure. Recognizing the importance of maximum flexibility in heating the brick, Nester emphasizes the “no one-size-fits-all” solution. She shares the results of her test trials, which involve both inductive and resistive heating methods, outlining the advantages and disadvantages of each approach. Despite her limited experience in electrical engineering and circuit building, Nester has impressively overcome the steep learning curve. She enthusiastically describes her UB trip as “one of the most remarkable experiences I’ve had during my time at MIT.”

    Darshdeep Grewal, a dedicated materials science and engineering major with a strong passion for data science and computation, has been diligently conducting research on convection heating using COMSOL Multiphysics. In his investigation, Grewal explores the correlation between air temperature and heating, investigates the impact of convecting air arrangement on the heating process, and examines the conditions that may contribute to overheating. Leveraging his expertise in computational workflows, Grewal presents an impressive collection of heatmap simulations derived from the extensive data accumulated by his team throughout the project. Recognizing the immense value of these simulations in modeling complex scenarios, he highlights the importance of running experiments concurrently with simulations to ensure accurate calibration of results, stating, “It’s important to stay rooted in reality.”

    Arina Khotimsky, another materials science and engineering major, has actively engaged in NEET’s Climate and Sustainability Systems thread since her sophomore year. Balancing the demands of her final semester at MIT and the upcoming review of 22.S094, Khotimsky reveals how she has seamlessly integrated her project involvement into her energy studies minor. Reflecting on her journey, she remarks, “Working on the Ulaanbaatar project has taught me the significance of taking local context into account while suggesting solutions as an engineer.” Khotimsky has been tirelessly iterating and refining the insulation box prototype, which holds the thermal battery and controls the rate at which the battery releases heat. In addition, the on-site observations have unveiled another design challenge — ensuring the insulation box functions as a secure and dependable means of transportation. 

    To “engineer” means to contrive through one’s deliberate use of skills. What confronted the UB Project team on site was not the limitations of skill or technology, but the real-world constraints often amiss in the early equation: the people and their everyday lives. With over 6,195 miles of distance between the two groups, it takes more than just dedication to make a collaboration blossom. That may be the desire for a positive impact. Moreover, it may be the goal of cultivating a healthier relationship with energy that spans a million-person scale. No matter where you are, there is no one solution to the complex story of energy. This progressive realization brings the two teams together every two weeks in virtual space, bridging the distance between the two points.  More

  • in

    Arina Khotimsky ’23 awarded 2023 Michel David-Weill Scholarship

    Arina Khotimsky ’23 was selected for the 2023 Michel David-Weill scholarship, awarded each year to one student from the United States in a master’s program at Sciences Po in France who exemplifies the core values embodied by its namesake: excellence, leadership, multiculturalism, and high achievement. This fall Khotimsky will enter the master’s program in international energy, which is part of Sciences Po’s Paris School of International Affairs. The program aims to provide a holistic understanding of energy issues, across disciplines and across all energy sources.

    Khotimsky graduated this year from MIT with a major in materials science and engineering, and minors in energy studies and in French.

    Asked what drew her to her major, Khotimsky talked about her love of the outdoors. Seeing effects of climate change on the world around made her made her want to explore solutions. “I settled on material science and engineering because there’s so many different applications: whether it be solar power, developing different battery materials and chemistries, or some other technology. Getting that technical background at MIT can help me understand how we can implement solutions around the world, with diverse cultures in mind.”

    One of Khotimsky’s material sciences professors, Polina Anikeeva, observes that “Arina possesses the spirit of creativity, optimism, and unparalleled work ethic — all necessary ingredients to solve energy and climate challenges of our century.”

    Khotimsky is well aware of the big stakes in discussions around energy policy. She explains, “We have to cooperate internationally to make a dent in carbon emissions. The United States is historically the biggest CO2 emitter and has a large role to play to transition to a more sustainable future.”

    Her interest in studying climate change solutions on a world scale also converged with her interest in studying other languages and cultures. Her main language studies at MIT have been in French, although she also speaks Russian and beginner Chinese.

    Due to her achievement in MIT French classes, Khotimsky was one of nine students selected for a two-week cultural immersion program in Paris last June, led by MIT Professor Bruno Perreau. Perreau also had her in class last fall, and spoke about the energy and commitment she brought to class, describing her as “one of my very best students since I started to teach 22 years ago.” Khotimsky is excited to be living in France for her master’s program and putting her French skills to work.

    Khotimsky’s impressive undergraduate career has also included being co-president of the MIT Energy and Climate Club, and participating in the MIT delegation to 2022 Conference of the Parties summit (COP27) of the United Nations in Egypt last November. She also participated in the NEET Decarbonizing Ulaanbaatar project, traveling to Mongolia in Independent Activities Period 2023 with a group of students and instructors to work on clean heating technologies for traditional ger homes.

    In addition to her academic work and other extracurricular activities, Khotimsky was also a member of the MIT women’s rowing team. She walked onto the team as a first-year student, making it into the Varsity 8 boat for her senior season. Holly Metcalf, MIT women’s varsity openweight rowing coach, explains, “Being on the rowing team has in many ways become a metaphor for what Arina has come to study … She realized that rowing is about so much more than physics — it is about who one must become as an individual to contribute to the sum of mental and physical strength of the entire team.” Khotimsky was recognized on May 22 by the Patriot League, who named her the 2023 Patriot League Women’s Rowing Scholar-Athlete of the Year.

    Looking ahead, Khotimsky envisions her future involving international energy negotiations or policy. “The master’s degree I’m pursuing in international relations will help me develop skills to communicate with stakeholders from around the world and figure out how to implement solutions globally.” More

  • in

    Q&A: Gabriela Sá Pessoa on Brazilian politics, human rights in the Amazon, and AI

    Gabriela Sá Pessoa is a journalist passionate about the intersection of human rights and climate change. She came to MIT from The Washington Post, where she worked from her home country of Brazil as a news researcher reporting on the Amazon, human rights violations, and environmental crimes. Before that, she held roles at two of the most influential media outlets in Brazil: Folha de S.Paulo, covering local and national politics, and UOL, where she was assigned to coronavirus coverage and later joined the investigative desk.

    Sá Pessoa was awarded the 2023 Elizabeth Neuffer Fellowship by the International Women’s Media Foundation, which supports its recipient with research opportunities at MIT and further training at The Boston Globe and The New York Times. She is currently based at the MIT Center for International Studies. Recently, she sat down to talk about her work on the Amazon, recent changes in Brazilian politics, and her experience at MIT.

    Q: One focus of your reporting is human rights and environmental issues in the Amazon. As part of your fellowship, you contributed to a recent editorial in The Boston Globe on fighting deforestation in the region. Why is reporting on this topic important?

    A: For many Brazilians, the Amazon is a remote and distant territory, and people living in other parts of the country aren’t fully aware of all of its problems and all of its potential. This is similar to the United States — like many people here, they don’t see how they could be related to the human rights violations and the destruction of the rainforest that are happening.

    But, we are all complicit in the destruction in some ways because the economic forces driving the deforestation of the rainforest all have a market, and these markets are everywhere, in Brazil and here in the U.S. I think it is part of journalism to show people in the U.S., Brazil, and elsewhere that we are part of the problem, and as part of the problem, we should be part of the solution by being aware of it, caring about it, and taking actions that are within our power.

    In the U.S., for example, voters can influence policy like the current negotiations for financial support for fighting deforestation in the Amazon. And as consumers, we can be more aware — is the beef we are consuming related to deforestation? Is the timber on our construction sites coming from the Amazon?

    Truth is, in Brazil, we have turned our backs to the Amazon for so long. It’s our duty to protect it for the sake of climate change. If we don’t take care of it, there will be serious consequences to our local climate, our local communities, and for the whole world. It’s a huge matter of human rights because our living depends on that, both locally and globally.

    Q: Before coming to MIT, you were at The Washington Post in São Paulo, where you contributed to reporting on the recent presidential election. What changes do you expect to see with the new Lula administration?

    A: To climate and environment, the first signs were positive. But the optimism did not last a semester, as politics is imposing itself. Lula is facing increasing difficulty building a majority in a conservative Congress, over which agribusiness holds tremendous power and influence. As we speak, environmental policy is under Congress’s attack. A committee in the House has just passed a ruling drowning power from the environmental minister, Marina Silva, and from the recently created National Indigenous People Ministry, led by Sonia Guajajara. Both Marina and Sonia are global ecological and human rights champions, and I wonder what the impact would be if Congress ratifies these changes. It is still unclear how it would impact the efforts to fight deforestation.

    In addition, there is an internal dispute in the government between environmentalists and those in favor of mining and big infrastructure projects. Petrobras, the state-run oil company, is trying to get authorization to research and drill offshore oil reserves in the mouth of the Amazon River. The federal environmental protection agency did a conclusive report suspending the operation, saying it is critical and threatens the region’s sensitive environment and indigenous communities. And, of course, it would be another source of greenhouse gas emissions. ​

    That said, it’s not a denialist government. I should mention the quick response from the administration to the Yanomami genocide earlier this year. In January, an independent media organization named Sumaúma reported on the deaths of over five hundred indigenous children from the Yanomami community in the Amazon over the past four years. This was a huge shock in Brazil, and the administration responded immediately. They sent task forces to the region and are now expelling the illegal miners that were bringing diseases and were ultimately responsible for these humanitarian tragedies. To be clear: It is still a problem. It’s not solved. But this is already a good example of positive action.

    Fighting deforestation in the Amazon and the Cerrado, another biome critical to climate regulation in Brazil, will not be easy. Rebuilding the environmental policy will take time, and the agencies responsible for enforcement are understaffed. In addition, environmental crime has become more sophisticated, connecting with other major criminal organizations in the country. In April, for the first time, there was a reduction in deforestation in the Amazon after two consecutive months of higher numbers. These are still preliminary data, and it is still too early to confirm whether they signal a turning point and may indicate a tendency for deforestation to decrease. On the other hand, the Cerrado registered record deforestation in April.

    There are problems everywhere in the economy and politics that Lula will have to face. In the first week of the new term, on Jan. 8, we saw an insurrection in Brasília, the country’s capital, from Bolsonaro voters who wouldn’t accept the election results. The events resembled what Americans saw in the Capitol attacks in 2021. We also seem to have imported problems from the United States, like mass killings in schools. We never used to have them in Brazil, but we are seeing them now. I’m curious to see how the country will address those problems and if the U.S. can also inspire solutions to that. That’s something I’m thinking about, being here: Are there solutions here? What are they?

    Q: What have you learned so far from MIT and your fellowship?

    A: It’s hard to put everything into words! I’m mostly taking courses and attending lectures on pressing issues to humanity, like existential threats such as climate change, artificial intelligence, biosecurity, and more.

    I’m learning about all these issues, but also, as a journalist, I think that I’m learning more about how I can incorporate the scientific approach into my work; for example, being more pro-positive. I am already a rigorous journalist, but I am thinking about how I can be more rigorous and more transparent about my methods. Being in the academic and scientific environment is inspiring that way.

    I am also learning a lot about how to cover scientific topics and thinking about how technology can offer us solutions (and problems). I’m learning so much that I think I will need some time to digest and fully understand what this period means for me!

    Q: You mentioned artificial intelligence. Would you like to weigh in on this subject and what you have been learning?

    A: It has been a particularly good semester to be at MIT. Generative artificial intelligence, which became more popular after ChatGPT, has been a topic of intense discussion this semester, and I was able to attend many classes, seminars, and events about AI here, especially from a policy perspective.

    Algorithms have influenced the economy, society, and public health for many years. It has had great outcomes, but also injustice. Popular systems like ChatGPT have made this technology incredibly popular and accessible, even for those with no computer knowledge. This is scary and, at the same time, very exciting. Here, I learned that we need guardrails for artificial intelligence, just like other technologies. Think of the pharmaceutical or automobile industries, which have to meet safety criteria before putting a new product on the market. But with artificial intelligence, it’s going to be different; supply chains are very complex and sometimes not very transparent, and the speed at which new resources develop is so fast that it challenges the policymaker’s ability to respond.

    Artificial intelligence is changing the world radically. It’s exciting to have the privilege of being here and seeing these discussions take place. After all, I have a future to report on. At least, I hope so!

    Q: What are you working on going forward?

    A: After MIT, I am going to New York, where I’ll be working with The New York Times in their internship program. I’m really excited about that because it will be a different pace from MIT. I am also doing research on carbon credit markets and hope to continue that project, either in a reporting or academic environment. 

    Honestly, I feel inspired to keep studying. I would love to spend more time here at MIT. I would love to do a master’s or join any program here. I’m going to work on coming back to academia because I think that I need to learn more from the academic environment. I hope that it’s at MIT because honestly, it’s the most exciting environment that I’ve ever been in, with all the people here from different fields and different backgrounds. I’m not a scientist, but it’s inspiring to be with them, and if there’s a way that I could contribute to their work in a way that they’re contributing to my work, I’ll be thrilled to spend more time here. More

  • in

    Civil discourse project to launch at MIT

    A new project on civil discourse aims to promote open and civil discussion of difficult topics on the MIT campus.

    The project, which will launch this fall, includes a speaker series and curricular activities in MIT’s Concourse program for first-year students. MIT philosophers Alex Byrne and Brad Skow from the Department of Linguistics and Philosophy lead the project, in close coordination with Anne McCants, professor of history and director of Concourse, and Linda Rabieh, a Concourse lecturer. 

    The Arthur Vining Davis Foundations provided a substantial grant to help fund the project. Promoting civil discourse on college campuses is an area of focus for AVDF — they sponsor related projects at many schools, including Duke University and Davidson College.

    The first event in the speaker series is planned for the evening of Oct. 24, on the question of how we should respond to climate change. The two speakers are Professor Steven Koonin (New York University, ex-provost of Caltech, and an MIT alum) and MIT Professor Kerry Emanuel from the Department of Earth, Atmospheric, and Planetary Sciences. Eight such events are planned over two years. Each will feature speakers discussing difficult or controversial topics, and will aim to model civil debate and dialogue involving experts from inside and outside the MIT community. 

    Byrne and Skow said that the project is meant to counterbalance a growing unwillingness to listen to others or to tolerate the expression of certain ideas. But the goal, says Byrne, “is not to platform heterodox views for their own sake, or to needlessly provoke. Rather, we want to platform collegial, informed conversations on important matters about which there is reasonable disagreement.” 

    Faculty at MIT voted last fall to adopt a statement on free expression, following a report written by an MIT working group. The project organizers want to build on that vote and the report. “The free expression statement says that discussion of controversial topics should not be prohibited or punished,” Skow says, “but the longer working-group report goes farther, urging MIT to promote free expression. This project is an attempt to do that — to show that open discussion and open inquiry are valuable.” 

    “It has the potential to generate lively, constructive, respectful discussion on campus and to show by example both that controversial views are not suppressed at MIT and that we learn by engaging with them openly,” says Kieran Setiya, the head of MIT Philosophy. Agustín Rayo, dean of the School of Humanities and Social Sciences, thinks that the project can “play a critical role in demonstrating — to faculty, students, staff, alumni, and friends — the Institute’s commitment to free speech and civil discourse.”

    Apart from climate change, topics for the first series of events include feminism and progress (Nov. 9, with Mary Harrington, author of “Feminism against Progress”), and Covid public health policy (Feb. 26, with Vinay Prasad, professor of epidemiology and biostatistics at the University of California at San Francisco). Organizers say they hope the speaker series becomes a permanent part of MIT’s intellectual life after the grant period. To amplify the work to an audience beyond MIT, the project organizers have partnered with the Johns Hopkins University political scientist Yascha Mounk and his team at Persuasion to produce podcast episodes around the speaker events. They will air as special episodes of Mounk’s podcast “The Good Fight.” 

    The Concourse component of the project will take advantage of the small learning community setting to develop the tools and experience for productive disagreement. 

    “The core mission of Concourse depends on both the principle of free expression and the practice of civil discourse,” says McCants, “making it a natural springboard for promoting both across the intellectual culture of MIT.”  

    Concourse will experiment with, among other things, seminars discussing the history and practice of freedom of expression, roundtable discussions, and student-led debates. Braver Angels, an organization with the mission of reducing political polarization, is another partner, along with Persuasion. 

    “Our goal,” says Rabieh, “is to facilitate, in collaboration with Braver Angels, the probing, intense, and often difficult conversations that lie at the heart of the Concourse program and that are the hallmark of education.” More

  • in

    MIT junior Anushree Chaudhuri named 2023 Udall Scholar

    MIT junior Anushree Chaudhuri has been selected as a 2023 Morris K. Udall and Stewart L. Udall Foundation Scholar. She is only the second MIT student to win this award and the first winner since 2008.

    The Udall Scholarship honors students who have demonstrated a commitment to the environment, Native American health care, or tribal public policy. Chaudhuri is one of 55 Udall Scholars selected nationally out of 384 nominated applicants.

    Chaudhuri, who hails from San Diego, studies urban studies and planning as well as economics at MIT. She plans to work across the public and private sectors to drive structural changes that connect the climate crisis to local issues and inequities. Chaudhuri has conducted research with the MIT Environmental Solutions Initiative Rapid Response Group, which develops science-based analysis on critical environmental issues for community partners in civil society, government, and industry.

    Throughout her sophomore year, Chaudhuri worked with MIT’s Office of Sustainability, creating data visualizations for travel and Scope 3 emissions as a resource for MIT departments, labs, and centers. As an MIT Washington intern at the U.S. Department of Energy, she also developed the Buildings Upgrade Equity Tool to assist local governments in identifying areas for decarbonization investments.

    While taking Bruno Verdini’s class 11.011 (Art and Science of Negotiation) in fall 2021, Chaudhuri became deeply interested in the field of dispute resolution as a way of engaging diverse stakeholders in collaborative problem-solving, and she began work with Professor Lawrence Susskind at the MIT Science Impact Collaborative. She has now completed multiple projects with the group, as part of the MIT Renewable Energy Siting Clinic, including creating qualitative case studies to inform mediated siting processes and developing an open-access website and database for 60 renewable energy siting conflicts from findings published in Energy Policy. Through the MIT Climate and Sustainability Consortium’s Climate Scholars Program and a DUSP-PKG Fellowship, she is conducting an ethnographic and econometric study on the energy justice impacts of clean infrastructure on local communities.

    As part of a yearlong campaign to revise MIT’s Fast Forward Climate Action Plan, Chaudhuri led the Investments Student Working Group, which advocated for institutional social responsibility and active engagement in the Climate Action 100+ investor coalition. She also served as chair of the Undergraduate Association Committee on Sustainability and co-leads the Student Sustainability Coalition. Her work led her to be selected by MIT as an undergraduate delegate to the U.N. Framework Convention on Climate Change Summit (COP27).

    Chaudhuri’s research experiences and leadership in campus sustainability organizations have strengthened her belief in deep community engagement as a catalyst for change. By taking an interdisciplinary approach that combines law, planning, conflict resolution, participatory research, and data science, she’s committed to a public service career creating policies that are human-centered and address climate injustices, creating co-benefits for diverse communities. More

  • in

    Governing for our descendants

    Social scientists worry that too often we think only of ourselves. 

    “There’s been an increasing recognition that over the last few decades the economy and society have become incredibly focused on the individual, to the detriment of our social fabric,” says Lily L. Tsai, the Ford Professor of Political Science at MIT.

    Tsai, who is also the director and founder of the MIT Governance LAB (MIT GOV/LAB) and is the current chair of the MIT faculty, is interested in distributive justice — allocating resources fairly across different groups of people. Typically, that might mean splitting resources between different socioeconomic groups, or between different nations. 

    But in an essay in the journal Dædalus, Tsai discusses policies and institutions that consider the needs of people in the future when determining who deserves what resources. That is, they broaden our concept of a collective society to include people who haven’t been born yet and will bear the brunt of climate change in the future.

    Some groups of people do actually consider the needs of future people when making decisions. For example, Wales has a Future Generations Commissioner who monitors whether the government’s actions compromise the needs of future generations. Norway’s Petroleum Fund invests parts of its oil profits for future generations. And MIT’s endowment “is explicitly charged” with ensuring that future students are just as well-off as current students, Tsai says.

    But in other ways, societies place a lower value on the needs of their descendants. For example, to determine the total return on an investment, governments use something called a discount rate that places more value in the present return on the investment than the future return on the investment. And humans are currently using up the planet’s resources at an unsustainable rate, which in turn is raising global temperatures and making earth less habitable for our children and our children’s children.

    The purpose of Tsai’s essay is not to suggest how, say, governments might set discount rates that more fairly consider future people. “I’m interested in the things that make people care about setting the discount rate lower and therefore valuing the future more,” she says. “What are the moral commitments and the kinds of cultural practices or social institutions that make people care more?”

    Tsai thinks the volatility of the modern world and anxiety about the future — say, the future habitability of the planet — make it harder for people to consider the needs of their descendants. In Tsai’s 2021 book “When People Want Punishment,” she argues that this volatility and anxiety make people seek out more stability and order. “The more uncertain the future is, the less you can be sure that saving for the future is going to be valuable to anybody,” she says. So, part of the solution could be making people feel less unsettled and more stable, which Tsai says can be done with institutions we already have, like social welfare systems.

    She also thinks the rate at which things change in the modern world has hurt our ability to consider the long view. “We no longer think in terms of decades and centuries the way in which we used to,” she says.

    MIT GOV/LAB is working with partners to figure out how to experiment in a lab setting with developing democratic practices or institutions that might better distribute resources between current people and future people. That would allow researchers to assess if structuring interactions or decision-making in a particular way encourages people to save more for future people. 

    Tsai thinks getting people to care about their descendants is a problem researchers can work on, and that humans have a natural inclination to consider the future. People have a desire to be entrusted with things of importance, to leave a legacy, and for conservation. “I think many humans actually naturally conserve things that are valuable and scarce, and there’s a strange way in which society has eroded that human instinct in favor of a culture of consumption,” she says. We need to “re-imagine the kinds of practices that encourage conservation rather than consumption,” she adds. More

  • in

    Exploring new sides of climate and sustainability research

    When the MIT Climate and Sustainability Consortium (MCSC) launched its Climate and Sustainability Scholars Program in fall 2022, the goal was to offer undergraduate students a unique way to develop and implement research projects with the strong support of each other and MIT faculty. Now into its second semester, the program is underscoring the value of fostering this kind of network — a community with MIT students at its core, exploring their diverse interests and passions in the climate and sustainability realms.Inspired by MIT’s successful SuperUROP [Undergraduate Research Opportunities Program], the yearlong MCSC Climate and Sustainability Scholars Program includes a classroom component combined with experiential learning opportunities and mentorship, all centered on climate and sustainability topics.“Harnessing the innovation, passion, and expertise of our talented students is critical to MIT’s mission of tackling the climate crisis,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MCSC. “The program is helping train students from a variety of disciplines and backgrounds to be effective leaders in climate and sustainability-focused roles in the future.”

    “What we found inspiring about MIT’s existing SuperUROP program was how it provides students with the guidance, training, and resources they need to investigate the world’s toughest problems,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director. “This incredible level of support and mentorship encourages students to think and explore in creative ways, make new connections, and develop strategies and solutions that propel their work forward.”The first and current cohort of Climate and Sustainability Scholars consists of 19 students, representing MIT’s School of Engineering, MIT Schwarzman College of Computing, School of Science, School of Architecture and Planning, and MIT Sloan School of Management. These students are learning new perspectives, approaches, and angles in climate and sustainability — from each other, MIT faculty, and industry professionals.Projects with real-world applicationsStudents in the program work directly with faculty and principal investigators across MIT to develop their research projects focused on a large scope of sustainability topics.

    “This broad scope is important,” says Desirée Plata, MIT’s Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, “because climate and sustainability solutions are needed in every facet of society. For a long time, people were searching for a ‘silver bullet’ solution to the climate change problems, but we didn’t get to this point with a single technological decision. This problem was created across a spectrum of sociotechnological activities, and fundamentally different thinking across a spectrum of solutions is what’s needed to move us forward. MCSC students are working to provide those solutions.”

    Undergraduate student and physics major M. (MG) Geogdzhayeva is working with Raffaele Ferrari, Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate, on their project “Using Continuous Time Markov Chains to Project Extreme Events under Climate.” Geogdzhayeva’s research supports the Flagship Climate Grand Challenges project that Ferrari is leading along with Professor Noelle Eckley Selin.

    “The project I am working on has a similar approach to the Climate Grand Challenges project entitled “Bringing computation to the climate challenge,” says Geogdzhayeva. “I am designing an emulator for climate extremes. Our goal is to boil down climate information to what is necessary and to create a framework that can deliver specific information — in order to develop valuable forecasts. As someone who comes from a physics background, the Climate and Sustainability Scholars Program has helped me think about how my research fits into the real world, and how it could be implemented.”

    Investigating technology and stakeholders

    Within technology development, Jade Chongsathapornpong, also a physics major, is diving into photo-modulated catalytic reactions for clean energy applications. Chongsathapornpong, who has worked with the MCSC on carbon capture and sequestration through the Undergraduate Research Opportunities Program (UROP), is now working with Harry Tuller, MIT’s R.P. Simmons Professor of Ceramics and Electronic Materials. Louise Anderfaas, majoring in materials science and engineering, is also working with Tuller on her project “Robust and High Sensitivity Detectors for Exploration of Deep Geothermal Wells.”Two other students who have worked with the MCSC through UROP include Paul Irvine, electrical engineering and computer science major, who is now researching American conservatism’s current relation to and views about sustainability and climate change, and Pamela Duke, management major, now investigating the use of simulation tools to empower industrial decision-makers around climate change action.Other projects focusing on technology development include the experimental characterization of poly(arylene ethers) for energy-efficient propane/propylene separations by Duha Syar, who is a chemical engineering major and working with Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering; developing methods to improve sheet steel recycling by Rebecca Lizarde, who is majoring in materials science and engineering; and ion conduction in polymer-ceramic composite electrolytes by Melissa Stok, also majoring in materials science and engineering.

    Melissa Stok, materials science and engineering major, during a classroom discussion.

    Photo: Andrew Okyere

    Previous item
    Next item

    “My project is very closely connected to developing better Li-Ion batteries, which are extremely important in our transition towards clean energy,” explains Stok, who is working with Bilge Yildiz, MIT’s Breene M. Kerr (1951) Professor of Nuclear Science and Engineering. “Currently, electric cars are limited in their range by their battery capacity, so working to create more effective batteries with higher energy densities and better power capacities will help make these cars go farther and faster. In addition, using safer materials that do not have as high of an environmental toll for extraction is also important.” Claire Kim, a chemical engineering major, is focusing on batteries as well, but is honing in on large form factor batteries more relevant for grid-scale energy storage with Fikile Brushett, associate professor of chemical engineering.Some students in the program chose to focus on stakeholders, which, when it comes to climate and sustainability, can range from entities in business and industry to farmers to Indigenous people and their communities. Shivani Konduru, an electrical engineering and computer science major, is exploring the “backfire effects” in climate change communication, focusing on perceptions of climate change and how the messenger may change outcomes, and Einat Gavish, mathematics major, on how different stakeholders perceive information on driving behavior.Two students are researching the impact of technology on local populations. Anushree Chaudhuri, who is majoring in urban studies and planning, is working with Lawrence Susskind, Ford Professor of Urban and Environmental Planning, on community acceptance of renewable energy siting, and Amelia Dogan, also an urban studies and planning major, is working with Danielle Wood, assistant professor of aeronautics and astronautics and media arts and sciences, on Indigenous data sovereignty in environmental contexts.

    “I am interviewing Indigenous environmental activists for my project,” says Dogan. “This course is the first one directly related to sustainability that I have taken, and I am really enjoying it. It has opened me up to other aspects of climate beyond just the humanity side, which is my focus. I did MIT’s SuperUROP program and loved it, so was excited to do this similar opportunity with the climate and sustainability focus.”

    Other projects include in-field monitoring of water quality by Dahlia Dry, a physics major; understanding carbon release and accrual in coastal wetlands by Trinity Stallins, an urban studies and planning major; and investigating enzyme synthesis for bioremediation by Delight Nweneka, an electrical engineering and computer science major, each linked to the MCSC’s impact pathway work in nature-based solutions.

    The wide range of research topics underscores the Climate and Sustainability Program’s goal of bringing together diverse interests, backgrounds, and areas of study even within the same major. For example, Helena McDonald is studying pollution impacts of rocket launches, while Aviva Intveld is analyzing the paleoclimate and paleoenvironment background of the first peopling of the Americas. Both students are Earth, atmospheric and planetary sciences majors but are researching climate impacts from very different perspectives. Intveld was recently named a 2023 Gates Cambridge Scholar.

    “There are students represented from several majors in the program, and some people are working on more technical projects, while others are interpersonal. Both approaches are really necessary in the pursuit of climate resilience,” says Grace Harrington, who is majoring in civil and environmental engineering and whose project investigates ways to optimize the power of the wind farm. “I think it’s one of the few classes I’ve taken with such an interdisciplinary nature.”

    Shivani Konduru, electrical engineering and computer science major, during a classroom lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Perspectives and guidance from MIT and industry expertsAs students are developing these projects, they are also taking the program’s course (Climate.UAR), which covers key topics in climate change science, decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts. The course is cross-listed in departments across all five schools and is taught by an experienced and interdisciplinary team. Desirée Plata was central to developing the Climate and Sustainability Scholars Programs and course with Associate Professor Elsa Olivetti, who taught the first semester. Olivetti is now co-teaching the second semester with Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. The course’s writing instructors are Caroline Beimford and David Larson.  

    “I have been introduced to a lot of new angles in the climate space through the weekly guest lecturers, who each shared a different sustainability-related perspective,” says Claire Kim. “As a chemical engineering major, I have mostly looked into the technologies for decarbonization, and how to scale them, so learning about policy, for example, was helpful for me. Professor Black from the Department of History spoke about how we can analyze the effectiveness of past policy to guide future policy, while Professor Selin talked about framing different climate policies as having co-benefits. These perspectives are really useful because no matter how good a technology is, you need to convince other people to adopt it, or have strong policy in place to encourage its use, in order for it to be effective.”

    Bringing the industry perspective, guests have presented from MCSC member companies such as PepsiCo, Holcim, Apple, Cargill, and Boeing. As an example, in one class, climate leaders from three companies presented together on their approaches to setting climate goals, barriers to reaching them, and ways to work together. “When I presented to the class, alongside my counterparts at Apple and Boeing, the student questions pushed us to explain how can collaborate on ways to achieve our climate goals, reflecting the broader opportunity we find within the MCSC,” says Dana Boyer, sustainability manager at Cargill.

    Witnessing the cross-industry dynamics unfold in class was particularly engaging for the students. “The most beneficial part of the program for me is the number of guest lectures who have come in to the class, not only from MIT but also from the industry side,” Grace Harrington adds. “The diverse range of people talking about their own fields has allowed me to make connections between all my classes.”Bringing in perspectives from both academia and industry is a reflection of the MCSC’s larger mission of linking its corporate members with each other and with the MIT community to develop scalable climate solutions.“In addition to focusing on an independent research project and engaging with a peer community, we’ve had the opportunity to hear from speakers across the sustainability space who are also part of or closely connected to the MIT ecosystem,” says Anushree Chaudhuri. “These opportunities have helped me make connections and learn about initiatives at the Institute that are closely related to existing or planned student sustainability projects. These connections — across topics like waste management, survey best practices, and climate communications — have strengthened student projects and opened pathways for future collaborations.

    Basuhi Ravi, MIT PhD candidate, giving a guest lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Having a positive impact as students and after graduation

    At the start of the program, students identified several goals, including developing focused independent research questions, drawing connections and links with real-world challenges, strengthening their critical thinking skills, and reflecting on their future career ambitions. A common thread throughout them all: the commitment to having a meaningful impact on climate and sustainability challenges both as students now, and as working professionals after graduation.“I’ve absolutely loved connecting with like-minded peers through the program. I happened to know most of the students coming in from various other communities on campus, so it’s been a really special experience for all of these people who I couldn’t connect with as a cohesive cohort before to come together. Whenever we have small group discussions in class, I’m always grateful for the time to learn about the interdisciplinary research projects everyone is involved with,” concludes Chaudhuri. “I’m looking forward to staying in touch with this group going forward, since I think most of us are planning on grad school and/or careers related to climate and sustainability.”

    The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research. Learn about how you can get involved. More

  • in

    Benjamin Mangrum receives the 2023 Levitan Prize in the Humanities

    Benjamin Mangrum, assistant professor of literature at MIT, has been awarded the 2023 Levitan Prize in the Humanities. This award, presented each year by a faculty committee, empowers a member of the MIT School of Humanities, Arts, and Social Sciences (SHASS) faculty with funding to enable research in their field. With an award of $30,000, this annual prize continues to power substantial projects among the members of the SHASS community.

    Mangrum will use the award to support research for his upcoming book, which is a cultural and intellectual history of environmental rights. In the book, Mangrum discusses the cultural structures that have helped link rights language to environmental concerns. Mangrum plans to use the funding from the Levitan Prize for research into a chapter involving literary personhood.

    “Assertions of environmental rights are typically the result of pragmatic or strategic alignments between, say, naturalists and labor organizers or indigenous communities and governments,” he writes. “My book examines the compromises and conceptual negotiations that occur for ‘environmental rights’ to be a workable concept.”

    The notion of environmental rights can refer to the right of citizens to live in a healthy environment, but it can also include the attribution of rights to nonhuman entities. Such designation received increased attention when New Zealand gave the Whanganui River a legal identity, bringing the longest-running litigation in New Zealand history to an end. India has named rivers legal entities and Bangladesh has given all its rivers legal rights.

    “Personhood status was a compromise between the government and a group of Māori tribes who demanded recognition for the river based on past treaties,” Mangrum writes. “I’m interested in how these very different kinds of discourse — political rights, environmental science, indigenous culture, public health — have come together during the 20th and 21st centuries.”

    For the chapter, Mangrum explores the argument made by legal theorist Christopher Stone in “Should Trees Have Standing?” First published in 1972, Stone’s essay is a foundational argument in environmental law. Stone maintains that natural objects can be given legal personhood, an argument that is often cited in legal framings of environmental rights. Mangrum explores the literary dimensions of legal personhood.

    “I argue that the intellectual and cultural history of legal personhood shares unacknowledged debts to the evolution in theories of literary personhood,” Mangrum writes. “A reader’s attribution of personhood does not serve the same social and moral functions as the attribution of personhood to corporations and other nonhuman entities. However, I argue that modern ideas about literary personhood are cognitively homologous with legal personhood: despite serving different functions, these conceptions of personhood share conceptual structures and intellectual origins.”

    In one recently published article, he examines the language used by Rachel Carson and others in the nascent environmental movement. In 1963, Carson testified before a U.S. Senate subcommittee on the threat of pesticides. It was considered a watershed moment for environmentalism, but notable also for intellectual history. Her use of the vocabulary of rights and her advocacy for environmental regulations in a public forum were significant forces in the institutionalization of environmental rights.

    Mangrum notes Carson’s claim of “the right of the citizen to be secure in his own home against the intrusion of poisons applied by other persons.” Carson uses the language of rights to introduce environmental concerns within the public sphere, but this language also has implications for how we understand our relationship to the nonhuman world.

    Before arriving at MIT in 2022, Mangrum taught at the University of the South, the University of Michigan, and Davidson College. He is the author of “Land of Tomorrow: Postwar Fiction and the Crisis of American Liberalism” (Oxford 2019), which examines 20th-century literary fiction and popular philosophy to understand shifts in American liberalism after World War II. He received his PhD from the University of North Carolina at Chapel Hill. More