More stories

  • in

    MIT-led teams win National Science Foundation grants to research sustainable materials

    Three MIT-led teams are among 16 nationwide to receive funding awards to address sustainable materials for global challenges through the National Science Foundation’s Convergence Accelerator program. Launched in 2019, the program targets solutions to especially compelling societal or scientific challenges at an accelerated pace, by incorporating a multidisciplinary research approach.

    “Solutions for today’s national-scale societal challenges are hard to solve within a single discipline. Instead, these challenges require convergence to merge ideas, approaches, and technologies from a wide range of diverse sectors, disciplines, and experts,” the NSF explains in its description of the Convergence Accelerator program. Phase 1 of the award involves planning to expand initial concepts, identify new team members, participate in an NSF development curriculum, and create an early prototype.

    Sustainable microchips

    One of the funded projects, “Building a Sustainable, Innovative Ecosystem for Microchip Manufacturing,” will be led by Anuradha Murthy Agarwal, a principal research scientist at the MIT Materials Research Laboratory. The aim of this project is to help transition the manufacturing of microchips to more sustainable processes that, for example, can reduce e-waste landfills by allowing repair of chips, or enable users to swap out a rogue chip in a motherboard rather than tossing out the entire laptop or cellphone.

    “Our goal is to help transition microchip manufacturing towards a sustainable industry,” says Agarwal. “We aim to do that by partnering with industry in a multimodal approach that prototypes technology designs to minimize energy consumption and waste generation, retrains the semiconductor workforce, and creates a roadmap for a new industrial ecology to mitigate materials-critical limitations and supply-chain constraints.”

    Agarwal’s co-principal investigators are Samuel Serna, an MIT visiting professor and assistant professor of physics at Bridgewater State University, and two MIT faculty affiliated with the Materials Research Laboratory: Juejun Hu, the John Elliott Professor of Materials Science and Engineering; and Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering.

    The training component of the project will also create curricula for multiple audiences. “At Bridgewater State University, we will create a new undergraduate course on microchip manufacturing sustainability, and eventually adapt it for audiences from K-12, as well as incumbent employees,” says Serna.

    Sajan Saini and Erik Verlage of the MIT Department of Materials Science and Engineering (DMSE), and Randolph Kirchain from the MIT Materials Systems Laboratory, who have led MIT initiatives in virtual reality digital education, materials criticality, and roadmapping, are key contributors. The project also includes DMSE graduate students Drew Weninger and Luigi Ranno, and undergraduate Samuel Bechtold from Bridgewater State University’s Department of Physics.

    Sustainable topological materials

    Under the direction of Mingda Li, the Class of 1947 Career Development Professor and an Associate Professor of Nuclear Science and Engineering, the “Sustainable Topological Energy Materials (STEM) for Energy-efficient Applications” project will accelerate research in sustainable topological quantum materials.

    Topological materials are ones that retain a particular property through all external disturbances. Such materials could potentially be a boon for quantum computing, which has so far been plagued by instability, and would usher in a post-silicon era for microelectronics. Even better, says Li, topological materials can do their job without dissipating energy even at room temperatures.

    Topological materials can find a variety of applications in quantum computing, energy harvesting, and microelectronics. Despite their promise, and a few thousands of potential candidates, discovery and mass production of these materials has been challenging. Topology itself is not a measurable characteristic so researchers have to first develop ways to find hints of it. Synthesis of materials and related process optimization can take months, if not years, Li adds. Machine learning can accelerate the discovery and vetting stage.

    Given that a best-in-class topological quantum material has the potential to disrupt the semiconductor and computing industries, Li and team are paying special attention to the environmental sustainability of prospective materials. For example, some potential candidates include gold, lead, or cadmium, whose scarcity or toxicity does not lend itself to mass production and have been disqualified.

    Co-principal investigators on the project include Liang Fu, associate professor of physics at MIT; Tomas Palacios, professor of electrical engineering and computer science at MIT and director of the Microsystems Technology Laboratories; Susanne Stemmer of the University of California at Santa Barbara; and Qiong Ma of Boston College. The $750,000 one-year Phase 1 grant will focus on three priorities: building a topological materials database; identifying the most environmentally sustainable candidates for energy-efficient topological applications; and building the foundation for a Center for Sustainable Topological Energy Materials at MIT that will encourage industry-academia collaborations.

    At a time when the size of silicon-based electronic circuit boards is reaching its lower limit, the promise of topological materials whose conductivity increases with decreasing size is especially attractive, Li says. In addition, topological materials can harvest wasted heat: Imagine using your body heat to power your phone. “There are different types of application scenarios, and we can go much beyond the capabilities of existing materials,” Li says, “the possibilities of topological materials are endlessly exciting.”

    Socioresilient materials design

    Researchers in the MIT Department of Materials Science and Engineering (DMSE) have been awarded $750,000 in a cross-disciplinary project that aims to fundamentally redirect materials research and development toward more environmentally, socially, and economically sustainable and resilient materials. This “socioresilient materials design” will serve as the foundation for a new research and development framework that takes into account technical, environmental, and social factors from the beginning of the materials design and development process.

    Christine Ortiz, the Morris Cohen Professor of Materials Science and Engineering, and Ellan Spero PhD ’14, an instructor in DMSE, are leading this research effort, which includes Cornell University, the University of Swansea, Citrine Informatics, Station1, and 14 other organizations in academia, industry, venture capital, the social sector, government, and philanthropy.

    The team’s project, “Mind Over Matter: Socioresilient Materials Design,” emphasizes that circular design approaches, which aim to minimize waste and maximize the reuse, repair, and recycling of materials, are often insufficient to address negative repercussions for the planet and for human health and safety.

    Too often society understands the unintended negative consequences long after the materials that make up our homes and cities and systems have been in production and use for many years. Examples include disparate and negative public health impacts due to industrial scale manufacturing of materials, water and air contamination with harmful materials, and increased risk of fire in lower-income housing buildings due to flawed materials usage and design. Adverse climate events including drought, flood, extreme temperatures, and hurricanes have accelerated materials degradation, for example in critical infrastructure, leading to amplified environmental damage and social injustice. While classical materials design and selection approaches are insufficient to address these challenges, the new research project aims to do just that.

    “The imagination and technical expertise that goes into materials design is too often separated from the environmental and social realities of extraction, manufacturing, and end-of-life for materials,” says Ortiz. 

    Drawing on materials science and engineering, chemistry, and computer science, the project will develop a framework for materials design and development. It will incorporate powerful computational capabilities — artificial intelligence and machine learning with physics-based materials models — plus rigorous methodologies from the social sciences and the humanities to understand what impacts any new material put into production could have on society. More

  • in

    Study: Smoke particles from wildfires can erode the ozone layer

    A wildfire can pump smoke up into the stratosphere, where the particles drift for over a year. A new MIT study has found that while suspended there, these particles can trigger chemical reactions that erode the protective ozone layer shielding the Earth from the sun’s damaging ultraviolet radiation.

    The study, which appears today in Nature, focuses on the smoke from the “Black Summer” megafire in eastern Australia, which burned from December 2019 into January 2020. The fires — the country’s most devastating on record — scorched tens of millions of acres and pumped more than 1 million tons of smoke into the atmosphere.

    The MIT team identified a new chemical reaction by which smoke particles from the Australian wildfires made ozone depletion worse. By triggering this reaction, the fires likely contributed to a 3-5 percent depletion of total ozone at mid-latitudes in the Southern Hemisphere, in regions overlying Australia, New Zealand, and parts of Africa and South America.

    The researchers’ model also indicates the fires had an effect in the polar regions, eating away at the edges of the ozone hole over Antarctica. By late 2020, smoke particles from the Australian wildfires widened the Antarctic ozone hole by 2.5 million square kilometers — 10 percent of its area compared to the previous year.

    It’s unclear what long-term effect wildfires will have on ozone recovery. The United Nations recently reported that the ozone hole, and ozone depletion around the world, is on a recovery track, thanks to a sustained international effort to phase out ozone-depleting chemicals. But the MIT study suggests that as long as these chemicals persist in the atmosphere, large fires could spark a reaction that temporarily depletes ozone.

    “The Australian fires of 2020 were really a wake-up call for the science community,” says Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies at MIT and a leading climate scientist who first identified the chemicals responsible for the Antarctic ozone hole. “The effect of wildfires was not previously accounted for in [projections of] ozone recovery. And I think that effect may depend on whether fires become more frequent and intense as the planet warms.”

    The study is led by Solomon and MIT research scientist Kane Stone, along with collaborators from the Institute for Environmental and Climate Research in Guangzhou, China; the U.S. National Oceanic and Atmospheric Administration; the U.S. National Center for Atmospheric Research; and Colorado State University.

    Chlorine cascade

    The new study expands on a 2022 discovery by Solomon and her colleagues, in which they first identified a chemical link between wildfires and ozone depletion. The researchers found that chlorine-containing compounds, originally emitted by factories in the form of chlorofluorocarbons (CFCs), could react with the surface of fire aerosols. This interaction, they found, set off a chemical cascade that produced chlorine monoxide — the ultimate ozone-depleting molecule. Their results showed that the Australian wildfires likely depleted ozone through this newly identified chemical reaction.

    “But that didn’t explain all the changes that were observed in the stratosphere,” Solomon says. “There was a whole bunch of chlorine-related chemistry that was totally out of whack.”

    In the new study, the team took a closer look at the composition of molecules in the stratosphere following the Australian wildfires. They combed through three independent sets of satellite data and observed that in the months following the fires, concentrations of hydrochloric acid dropped significantly at mid-latitudes, while chlorine monoxide spiked.

    Hydrochloric acid (HCl) is present in the stratosphere as CFCs break down naturally over time. As long as chlorine is bound in the form of HCl, it doesn’t have a chance to destroy ozone. But if HCl breaks apart, chlorine can react with oxygen to form ozone-depleting chlorine monoxide.

    In the polar regions, HCl can break apart when it interacts with the surface of cloud particles at frigid temperatures of about 155 kelvins. However, this reaction was not expected to occur at mid-latitudes, where temperatures are much warmer.

    “The fact that HCl at mid-latitudes dropped by this unprecedented amount was to me kind of a danger signal,” Solomon says.

    She wondered: What if HCl could also interact with smoke particles, at warmer temperatures and in a way that released chlorine to destroy ozone? If such a reaction was possible, it would explain the imbalance of molecules and much of the ozone depletion observed following the Australian wildfires.

    Smoky drift

    Solomon and her colleagues dug through the chemical literature to see what sort of organic molecules could react with HCl at warmer temperatures to break it apart.

    “Lo and behold, I learned that HCl is extremely soluble in a whole broad range of organic species,” Solomon says. “It likes to glom on to lots of compounds.”

    The question then, was whether the Australian wildfires released any of those compounds that could have triggered HCl’s breakup and any subsequent depletion of ozone. When the team looked at the composition of smoke particles in the first days after the fires, the picture was anything but clear.

    “I looked at that stuff and threw up my hands and thought, there’s so much stuff in there, how am I ever going to figure this out?” Solomon recalls. “But then I realized it had actually taken some weeks before you saw the HCl drop, so you really need to look at the data on aged wildfire particles.”

    When the team expanded their search, they found that smoke particles persisted over months, circulating in the stratosphere at mid-latitudes, in the same regions and times when concentrations of HCl dropped.

    “It’s the aged smoke particles that really take up a lot of the HCl,” Solomon says. “And then you get, amazingly, the same reactions that you get in the ozone hole, but over mid-latitudes, at much warmer temperatures.”

    When the team incorporated this new chemical reaction into a model of atmospheric chemistry, and simulated the conditions of the Australian wildfires, they observed a 5 percent depletion of ozone throughout the stratosphere at mid-latitudes, and a 10 percent widening of the ozone hole over Antarctica.

    The reaction with HCl is likely the main pathway by which wildfires can deplete ozone. But Solomon guesses there may be other chlorine-containing compounds drifting in the stratosphere, that wildfires could unlock.

    “There’s now sort of a race against time,” Solomon says. “Hopefully, chlorine-containing compounds will have been destroyed, before the frequency of fires increases with climate change. This is all the more reason to be vigilant about global warming and these chlorine-containing compounds.”

    This research was supported, in part, by NASA and the U.S. National Science Foundation. More

  • in

    Aviva Intveld named 2023 Gates Cambridge Scholar

    MIT senior Aviva Intveld has won the prestigious Gates Cambridge Scholarship, which offers students an opportunity to pursue graduate study in the field of their choice at Cambridge University in the U.K. Intveld will join the other 23 U.S. citizens selected for the 2023 class of scholars.

    Intveld, from Los Angeles, is majoring in earth, atmospheric, and planetary sciences, and minoring in materials science and engineering with concentrations in geology, geochemistry, and archaeology. Her research interests span the intersections among those fields to better understand how the natural environments of the past have shaped human movement and decision-making.

    At Cambridge, Intveld will undertake a research MPhil in earth sciences at the Godwin Lab for Paleoclimate Research, where she will investigate the impact of past climate on the ancient Maya in northwest Yucatán via cave sediment records. She hopes to pursue an impact-oriented research career in paleoclimate and paleoenvironment reconstruction and ultimately apply the lessons learned from her research to inform modern climate policy. She is particularly passionate about sustainable mining of energy-critical elements and addressing climate change inequality in her home state of California.

    Intveld’s work at Cambridge will build upon her extensive research experience at MIT. She currently works in the McGee Lab reconstructing the Late Pleistocene-Early Holocene paleoclimate of northeastern Mexico to provide a climatic background to the first peopling of the Americas. Previously, she explored the influence of mountain plate tectonics on biodiversity in the Perron Lab. During a summer research position at the University of Haifa in Israel she analyzed the microfossil assemblage of an offshore sediment core for paleo-coastal reconstruction.

    Last summer, Intveld interned at the National Oceanic and Atmospheric Administration in Homer, Alaska, to identify geologic controls on regional groundwater chemistry. She has also interned with the World Wildlife Fund and with the Natural History Museum of Los Angeles. During her the spring semester of her junior year, Intveld studied abroad through MISTI at Imperial College London’s Royal School of Mines and completed geology field work in Sardinia, Italy.

    Intveld has been a strong presence on MIT’s campus, serving as the undergraduate representative on the EAPS Diversity, Equity, and Inclusion Committee. She leads tours for the MIT List Visual Arts Center, is a member of and associate advisor for the Terrascope Learning Community, and is a participant in the Addir Interfaith Dialogue Fellowship.

    Inveld was advised in her application by Kim Benard, associate dean of the Distinguished Fellowships team in Career Advising and Professional Development, who says, “Aviva’s work is at a fascinating crossroads of archeology, geology, and sustainability. She has already done extraordinary work, and this opportunity will prepare her even more to be influential in the fight for climate mitigation.”

    Established by the Bill and Melinda Gates Foundation in 2000, the Gates Cambridge Scholarship provides full funding for talented students from outside the United Kingdom to pursue postgraduate study in any subject at Cambridge University. Since the program’s inception in 2001, there have been 33 Gates Cambridge Scholars from MIT. More

  • in

    Improving health outcomes by targeting climate and air pollution simultaneously

    Climate policies are typically designed to reduce greenhouse gas emissions that result from human activities and drive climate change. The largest source of these emissions is the combustion of fossil fuels, which increases atmospheric concentrations of ozone, fine particulate matter (PM2.5) and other air pollutants that pose public health risks. While climate policies may result in lower concentrations of health-damaging air pollutants as a “co-benefit” of reducing greenhouse gas emissions-intensive activities, they are most effective at improving health outcomes when deployed in tandem with geographically targeted air-quality regulations.

    Yet the computer models typically used to assess the likely air quality/health impacts of proposed climate/air-quality policy combinations come with drawbacks for decision-makers. Atmospheric chemistry/climate models can produce high-resolution results, but they are expensive and time-consuming to run. Integrated assessment models can produce results for far less time and money, but produce results at global and regional scales, rendering them insufficiently precise to obtain accurate assessments of air quality/health impacts at the subnational level.

    To overcome these drawbacks, a team of researchers at MIT and the University of California at Davis has developed a climate/air-quality policy assessment tool that is both computationally efficient and location-specific. Described in a new study in the journal ACS Environmental Au, the tool could enable users to obtain rapid estimates of combined policy impacts on air quality/health at more than 1,500 locations around the globe — estimates precise enough to reveal the equity implications of proposed policy combinations within a particular region.

    “The modeling approach described in this study may ultimately allow decision-makers to assess the efficacy of multiple combinations of climate and air-quality policies in reducing the health impacts of air pollution, and to design more effective policies,” says Sebastian Eastham, the study’s lead author and a principal research scientist at the MIT Joint Program on the Science and Policy of Global Change. “It may also be used to determine if a given policy combination would result in equitable health outcomes across a geographical area of interest.”

    To demonstrate the efficiency and accuracy of their policy assessment tool, the researchers showed that outcomes projected by the tool within seconds were consistent with region-specific results from detailed chemistry/climate models that took days or even months to run. While continuing to refine and develop their approaches, they are now working to embed the new tool into integrated assessment models for direct use by policymakers.

    “As decision-makers implement climate policies in the context of other sustainability challenges like air pollution, efficient modeling tools are important for assessment — and new computational techniques allow us to build faster and more accurate tools to provide credible, relevant information to a broader range of users,” says Noelle Selin, a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences, and supervising author of the study. “We are looking forward to further developing such approaches, and to working with stakeholders to ensure that they provide timely, targeted and useful assessments.”

    The study was funded, in part, by the U.S. Environmental Protection Agency and the Biogen Foundation. More

  • in

    A more sustainable way to generate phosphorus

    Phosphorus is an essential ingredient in thousands of products, including herbicides, lithium-ion batteries, and even soft drinks. Most of this phosphorus comes from an energy-intensive process that contributes significantly to global carbon emissions.

    In an effort to reduce that carbon footprint, MIT chemists have devised an alternative way to generate white phosphorus, a critical intermediate in the manufacture of those phosphorus-containing products. Their approach, which uses electricity to speed up a key chemical reaction, could reduce the carbon emissions of the process by half or even more, the researchers say.

    “White phosphorus is currently an indispensable intermediate, and our process dramatically reduces the carbon footprint of converting phosphate to white phosphorus,” says Yogesh Surendranath, an associate professor of chemistry at MIT and the senior author of the study.

    The new process reduces the carbon footprint of white phosphorus production in two ways: It reduces the temperatures required for the reaction, and it generates significantly less carbon dioxide as a waste product.

    Recent MIT graduate Jonathan “Jo” Melville PhD ’21 and MIT graduate student Andrew Licini are the lead authors of the paper, which appears today in ACS Central Science.

    Purifying phosphorus

    When phosphorus is mined out of the ground, it is in the form of phosphate, a mineral whose basic unit comprises one atom of phosphorus bound to four oxygen atoms. About 95 percent of this phosphate ore is used to make fertilizer. The remaining phosphate ore is processed separately into white phosphorus, a molecule composed of four phosphorus atoms bound to each other. White phosphorus is then fed into a variety of chemical processes that are used to manufacture many different products, such as lithium battery electrolytes and semiconductor dopants.

    Converting those mined phosphates into white phosphorus accounts for a substantial fraction of the carbon footprint of the entire phosphorus industry, Surendranath says. The most energy-intensive part of the process is breaking the bonds between phosphorus and oxygen, which are very stable.

    Using the traditional “thermal process,” those bonds are broken by heating carbon coke and phosphate rock to a temperature of 1,500 degrees Celsius. In this process, the carbon serves to strip away the oxygen atoms from phosphorus, leading to the eventual generation of CO2 as a byproduct. In addition, sustaining those temperatures requires a great deal of energy, adding to the carbon footprint of the process.

    “That process hasn’t changed substantially since its inception over a century ago. Our goal was to figure out how we could develop a process that would substantially lower the carbon footprint of this process,” Surendranath says. “The idea was to combine it with renewable electricity and drive that conversion of phosphate to white phosphorus with electrons rather than using carbon.”

    To do that, the researchers had to come up with an alternative way to weaken the strong phosphorus-oxygen bonds found in phosphates. They achieved this by controlling the environment in which the reaction occurs. The researchers found that the reaction could be promoted using a dehydrated form of phosphoric acid, which contains long chains of phosphate salts held together by bonds called phosphoryl anhydrides. These bonds help to weaken the phosphorus-oxygen bonds.

    When the researchers run an electric current through these salts, electrons break the weakened bonds, allowing the phosphorus atoms to break free and bind to each other to form white phosphorus. At the temperatures needed for this system (about 800 C), phosphorus exists as a gas, so it can bubble out of the solution and be collected in an external chamber.

    Decarbonization

    The electrode that the researchers used for this demonstration relies on carbon as a source of electrons, so the process generates some carbon dioxide as a byproduct. However, they are now working on swapping that electrode out for one that would use phosphate itself as the electron source, which would further reduce the carbon footprint by cleanly separating phosphate into phosphorus and oxygen.

    With the process reported in this paper, the researchers have reduced the overall carbon footprint for generating white phosphorus by about 50 percent. With future modifications, they hope to bring the carbon emissions down to nearly zero, in part by using renewable energy such as solar or wind power to drive the electric current required.

    If the researchers succeed in scaling up their process and making it widely available, it could allow industrial users to generate white phosphorus on site instead of having it shipped from the few places in the world where it is currently manufactured. That would cut down on the risks of transporting white phosphorus, which is an explosive material.

    “We’re excited about the prospect of doing on-site generation of this intermediate, so you don’t have to do the transportation and distribution,” Surendranath says. “If you could decentralize this production, the end user could make it on site and use it in an integrated fashion.”

    In order to do this study, the researchers had to develop new tools for controlling the electrolytes (such as salts and acids) present in the environment, and for measuring how those electrolytes affect the reaction. Now, they plan to use the same approach to try to develop lower-carbon processes for isolating other industrially important elements, such as silicon and iron.

    “This work falls within our broader interests in decarbonizing these legacy industrial processes that have a huge carbon footprint,” Surendranath says. “The basic science that leads us there is understanding how you can tailor the electrolytes to foster these processes.”

    The research was funded by the UMRP Partnership for Progress on Sustainable Development in Africa, a fellowship from the MIT Tata Center for Technology and Design, and a National Defense Science and Engineering Graduate Fellowship. More

  • in

    Featured video: Investigating our blue ocean planet

    A five-year doctoral degree program, the MIT – Woods Hole Oceanographic Institution (WHOI) Joint Program in Oceanography/Applied Ocean Science and Engineering combines the strengths of MIT and WHOI to create one of the largest oceanographic facilities in the world. Graduate study in oceanography encompasses virtually all the basic sciences as they apply to the marine environment: physics, chemistry, geochemistry, geology, geophysics, and biology.

    “As a species and as a society we really want to understand the planet that we live on and our place in it,” says Professor Michael Follows, who serves as director of the MIT-WHOI Joint Program.

    “The reason I joined the program was because we cannot afford to wait to be able to address the climate crisis,” explains graduate student Paris Smalls. “The freedom to be able to execute on and have your interests come to life has been incredibly rewarding.”

    “If you have a research problem, you can think of the top five people in that particular niche of a topic and they’re either down the hallway or have some association with WHOI,” adds graduate student Samantha Clevenger. “It’s a really incredible place in terms of connections and just having access to really anything you need.”

    Video by: Melanie Gonick/MIT | 5 min, 12 sec More

  • in

    Moving water and earth

    As a river cuts through a landscape, it can operate like a conveyer belt, moving truckloads of sediment over time. Knowing how quickly or slowly this sediment flows can help engineers plan for the downstream impact of restoring a river or removing a dam. But the models currently used to estimate sediment flow can be off by a wide margin.

    An MIT team has come up with a better formula to calculate how much sediment a fluid can push across a granular bed — a process known as bed load transport. The key to the new formula comes down to the shape of the sediment grains.

    It may seem intuitive: A smooth, round stone should skip across a river bed faster than an angular pebble. But flowing water also pushes harder on the angular pebble, which could erase the round stone’s advantage. Which effect wins? Existing sediment transport models surprisingly don’t offer an answer, mainly because the problem of measuring grain shape is too unwieldy: How do you quantify a pebble’s contours?

    The MIT researchers found that instead of considering a grain’s exact shape, they could boil the concept of shape down to two related properties: friction and drag. A grain’s drag, or resistance to fluid flow, relative to its internal friction, the resistance to sliding past other grains, can provide an easy way to gauge the effects of a grain’s shape.

    When they incorporated this new mathematical measure of grain shape into a standard model for bed load transport, the new formula made predictions that matched experiments that the team performed in the lab.

    “Sediment transport is a part of life on Earth’s surface, from the impact of storms on beaches to the gravel nests in mountain streams where salmon lay their eggs,” the team writes of their new study, appearing today in Nature. “Damming and sea level rise have already impacted many such terrains and pose ongoing threats. A good understanding of bed load transport is crucial to our ability to maintain these landscapes or restore them to their natural states.”

    The study’s authors are Eric Deal, Santiago Benavides, Qiong Zhang, Ken Kamrin, and Taylor Perron of MIT, and Jeremy Venditti and Ryan Bradley of Simon Fraser University in Canada.

    Figuring flow

    Video of glass spheres (top) and natural river gravel (bottom) undergoing bed load transport in a laboratory flume, slowed down 17x relative to real time. Average grain diameter is about 5 mm. This video shows how rolling and tumbling natural grains interact with one another in a way that is not possible for spheres. What can’t be seen so easily is that natural grains also experience higher drag forces from the flowing water than spheres do.

    Credit: Courtesy of the researchers

    Previous item
    Next item

    Bed load transport is the process by which a fluid such as air or water drags grains across a bed of sediment, causing the grains to hop, skip, and roll along the surface as a fluid flows through. This movement of sediment in a current is what drives rocks to migrate down a river and sand grains to skip across a desert.

    Being able to estimate bed load transport can help scientists prepare for situations such as urban flooding and coastal erosion. Since the 1930s, one formula has been the go-to model for calculating bed load transport; it’s based on a quantity known as the Shields parameter, after the American engineer who originally derived it. This formula sets a relationship between the force of a fluid pushing on a bed of sediment, and how fast the sediment moves in response. Albert Shields incorporated certain variables into this formula, including the average size and density of a sediment’s grains — but not their shape.

    “People may have backed away from accounting for shape because it’s one of these very scary degrees of freedom,” says Kamrin, a professor of mechanical engineering at MIT. “Shape is not a single number.”

    And yet, the existing model has been known to be off by a factor of 10 in its predictions of sediment flow. The team wondered whether grain shape could be a missing ingredient, and if so, how the nebulous property could be mathematically represented.

    “The trick was to focus on characterizing the effect that shape has on sediment transport dynamics, rather than on characterizing the shape itself,” says Deal.

    “It took some thinking to figure that out,” says Perron, a professor of geology in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “But we went back to derive the Shields parameter, and when you do the math, this ratio of drag to friction falls out.”

    Drag and drop

    Their work showed that the Shields parameter — which predicts how much sediment is transported — can be modified to include not just size and density, but also grain shape, and furthermore, that a grain’s shape can be simply represented by a measure of the grain’s drag and its internal friction. The math seemed to make sense. But could the new formula predict how sediment actually flows?

    To answer this, the researchers ran a series of flume experiments, in which they pumped a current of water through an inclined tank with a floor covered in sediment. They ran tests with sediment of various grain shapes, including beds of round glass beads, smooth glass chips, rectangular prisms, and natural gravel. They measured the amount of sediment that was transported through the tank in a fixed amount of time. They then determined the effect of each sediment type’s grain shape by measuring the grains’ drag and friction.

    For drag, the researchers simply dropped individual grains down through a tank of water and gathered statistics for the time it took the grains of each sediment type to reach the bottom. For instance, a flatter grain type takes a longer time on average, and therefore has greater drag, than a round grain type of the same size and density.

    To measure friction, the team poured grains through a funnel and onto a circular tray, then measured the resulting pile’s angle, or slope — an indication of the grains’ friction, or ability to grip onto each other.

    For each sediment type, they then worked the corresponding shape’s drag and friction into the new formula, and found that it could indeed predict the bedload transport, or the amount of moving sediment that the researchers measured in their experiments.

    The team says the new model more accurately represents sediment flow. Going forward, scientists and engineers can use the model to better gauge how a river bed will respond to scenarios such as sudden flooding from severe weather or the removal of a dam.

    “If you were trying to make a prediction of how fast all that sediment will get evacuated after taking a dam out, and you’re wrong by a factor of three or five, that’s pretty bad,” Perron says. “Now we can do a lot better.”

    This research was supported, in part, by the U.S. Army Research Laboratory. More

  • in

    Looking to the past to prepare for an uncertain future

    Aviva Intveld, an MIT senior majoring in Earth, atmospheric, and planetary sciences, is accustomed to city life. But despite hailing from metropolitan Los Angeles, she has always maintained a love for the outdoors.

    “Growing up in L.A., you just have a wealth of resources when it comes to beautiful environments,” she says, “but you’re also constantly living connected to the environment.” She developed a profound respect for the natural world and its effects on people, from the earthquakes that shook the ground to the wildfires that displaced inhabitants.

    “I liked the lifestyle that environmental science afforded,” Intveld recalls. “I liked the idea that you can make a career out of spending a huge amount of time in the field and exploring different parts of the world.”

    From the moment she arrived at MIT, Intveld threw herself into research on and off campus. During her first semester, she joined Terrascope, a program that encourages first-year students to tackle complex, real-world problems. Intveld and her cohort developed proposals to make recovery from major storms in Puerto Rico faster, more sustainable, and more equitable.

    Intveld also spent a semester studying drought stress in the lab of Assistant Professor David Des Marais, worked as a research assistant at a mineral sciences research lab back in L.A., and interned at the World Wildlife Fund. Most of her work focused on contemporary issues like food insecurity and climate change. “I was really interested in questions about today,” Intveld says.

    Her focus began to shift to the past when she interned as a research assistant at the Marine Geoarchaeology and Micropaleontology Lab at the University of Haifa. For weeks, she would spend eight hours a day hunched over a microscope, using a paintbrush to sort through grains of sand from the coastal town of Caesarea. She was looking for tiny spiral-shaped fossils of foraminifera, an organism that resides in seafloor sediments.

    These microfossils can reveal a lot about the environment in which they originated, including extreme weather events. By cataloging diverse species of foraminifera, Intveld was helping to settle a rather niche debate in the field of geoarchaeology: Did tsunamis destroy the harbor of Caesarea during the time of the ancient Romans?

    But in addition to figuring out if and when these natural disasters occurred, Intveld was interested in understanding how ancient communities prepared for and recovered from them. What methods did they use? Could those same methods be used today?

    Intveld’s research at the University of Haifa was part of the Onward Israel program, which offers young Jewish people the chance to participate in internships, academic study, and fellowships in Israel. Intveld describes the experience as a great opportunity to learn about the culture, history, and diversity of the Israeli community. The trip was also an excellent lesson in dealing with challenging situations.

    Intveld suffers from claustrophobia, but she overcame her fears to climb through the Bar Kokhba caves, and despite a cat allergy, she grew to adore the many stray cats that roam the streets of Haifa. “Sometimes you can’t let your physical limitations stop you from doing what you love,” she quips.

    Over the course of her research, Intveld has often found herself in difficult and even downright dangerous situations, all of which she looks back on with good humor. As part of an internship with the National Oceanic and Atmospheric Administration, she spent three months investigating groundwater in Homer, Alaska. While she was there, she learned to avoid poisonous plants out in the field, got lost bushwhacking, and was twice charged by a moose.

    These days, Intveld spends less time in the field and more time thinking about the ancient past. She works in the lab of Associate Professor David McGee, where her undergraduate thesis research focuses on reconstructing the paleoclimate and paleoecology of northeastern Mexico during the Early Holocene. To get an idea of what the Mexican climate looked like thousands of years ago, Intveld analyzes stable isotopes and trace elements in stalagmites taken from Mexican caves. By analyzing the isotopes of carbon and oxygen present in these stalagmites, which were formed over thousands of years from countless droplets of mineral-rich rainwater, Intveld can estimate the amount of rainfall and average temperature in a given time period.

    Intveld is primarily interested in how the area’s climate may have influenced human migration. “It’s very interesting to learn about the history of human motivation, what drives us to do what we do,” she explains. “What causes humans to move, and what causes us to stay?” So far, it seems the Mexican climate during the Early Holocene was quite inconsistent, with oscillating periods of wet and dry, but Intveld needs to conduct more research before drawing any definitive conclusions.

    Recent research has linked periods of drought in the geological record to periods of violence in the archaeological one, suggesting ancient humans often fought over access to water. “I think you can easily see the connections to stuff that we deal with today,” Intveld says, pointing out the parallels between paleolithic migration and today’s climate refugees. “We have to answer a lot of difficult questions, and one way that we can do so is by looking to see what earlier human communities did and what we can learn from them.”

    Intveld recognizes the impact of the past on our present and future in many other areas. She works as a tour guide for the List Visual Arts Center, where she educates people about public art on the MIT campus. “[Art] interested me as a way to experience history and learn about the story of different communities and people over time,” she says.

    Intveld is also unafraid to acknowledge the history of discrimination and exclusion in science. “Earth science has a big problem when it comes to inclusion and diversity,” she says. As a member of the EAPS Diversity, Equity and Inclusion Committee, she aims to make earth science more accessible.

    “Aviva has a clear drive to be at the front lines of geoscience research, connecting her work to the urgent environmental issues we’re all facing,” says McGee. “She also understands the critical need for our field to include more voices, more perspectives — ultimately making for better science.”

    After MIT, Intveld hopes to pursue an advanced degree in the field of sustainable mining. This past spring, she studied abroad at Imperial College London, where she took courses within the Royal School of Mines. As Intveld explains, mining is becoming crucial to sustainable energy. The rise of electric vehicles in places like California has increased the need for energy-critical elements like lithium and cobalt, but mining for these elements often does more harm than good. “The current mining complex is very environmentally destructive,” Intveld says.

    But Intveld hopes to take the same approach to mining she does with her other endeavors — acknowledging the destructive past to make way for a better future. More