More stories

  • in

    MIT in the media: 2023 in review

    It was an eventful trip around the sun for MIT this year, from President Sally Kornbluth’s inauguration and Mark Rober’s Commencement address to Professor Moungi Bawendi winning the Nobel Prize in Chemistry. In 2023 MIT researchers made key advances, detecting a dying star swallowing a planet, exploring the frontiers of artificial intelligence, creating clean energy solutions, inventing tools aimed at earlier detection and diagnosis of cancer, and even exploring the science of spreading kindness. Below are highlights of some of the uplifting people, breakthroughs, and ideas from MIT that made headlines in 2023.

    The gift: Kindness goes viral with Steve HartmanSteve Hartman visited Professor Anette “Peko” Hosoi to explore the science behind whether a single act of kindness can change the world.Full story via CBS News

    Trio wins Nobel Prize in chemistry for work on quantum dots, used in electronics and medical imaging“The motivation really is the basic science. A basic understanding, the curiosity of ‘how does the world work?’” said Professor Moungi Bawendi of the inspiration for his research on quantum dots, for which he was co-awarded the 2023 Nobel Prize in Chemistry.Full story via the Associated Press

    How MIT’s all-women leadership team plans to change science for the betterPresident Sally Kornbluth, Provost Cynthia Barnhart, and Chancellor Melissa Nobles emphasized the importance of representation for women and underrepresented groups in STEM.Full story via Radio Boston

    MIT via community college? Transfer students find a new path to a degreeUndergraduate Subin Kim shared his experience transferring from community college to MIT through the Transfer Scholars Network, which is aimed at helping community college students find a path to four-year universities.Full story via the Christian Science Monitor

    MIT president Sally Kornbluth doesn’t think we can hit the pause button on AIPresident Kornbluth discussed the future of AI, ethics in science, and climate change with columnist Shirley Leung on her new “Say More” podcast. “I view [the climate crisis] as an existential issue to the extent that if we don’t take action there, all of the many, many other things that we’re working on, not that they’ll be irrelevant, but they’ll pale in comparison,” Kornbluth said.Full story via The Boston Globe 

    It’s the end of a world as we know itAstronomers from MIT, Harvard University, Caltech and elsewhere spotted a dying star swallowing a large planet. Postdoc Kishalay De explained that: “Finding an event like this really puts all of the theories that have been out there to the most stringent tests possible. It really opens up this entire new field of research.”Full story via The New York Times

    Frontiers of AI

    Hey, Alexa, what should students learn about AI?The Day of AI is a program developed by the MIT RAISE initiative aimed at introducing and teaching K-12 students about AI. “We want students to be informed, responsible users and informed, responsible designers of these technologies,” said Professor Cynthia Breazeal, dean of digital learning at MIT.Full story via The New York Times

    AI tipping pointFour faculty members from across MIT — Professors Song Han, Simon Johnson, Yoon Kim and Rosalind Picard — described the opportunities and risks posed by the rapid advancements in the field of AI.Full story via Curiosity Stream 

    A look into the future of AI at MIT’s robotics laboratoryProfessor Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory, discussed the future of artificial intelligence, robotics, and machine learning, emphasizing the importance of balancing the development of new technologies with the need to ensure they are deployed in a way that benefits humanity.Full story via Mashable

    Health care providers say artificial intelligence could transform medicineProfessor Regina Barzilay spoke about her work developing new AI systems that could be used to help diagnose breast and lung cancer before the cancers are detectable to the human eye.Full story via Chronicle

    Is AI coming for your job? Tech experts weigh in: “They don’t replace human labor”Professor David Autor discussed how the rise of artificial intelligence could change the quality of jobs available.Full story via CBS News

    Big tech is bad. Big AI will be worse.Institute Professor Daron Acemoglu and Professor Simon Johnson made the case that “rather than machine intelligence, what we need is ‘machine usefulness,’ which emphasizes the ability of computers to augment human capabilities.”Full story via The New York Times

    Engineering excitement

    MIT’s 3D-printed hearts could pump new life into customized treatments MIT engineers developed a technique for 3D printing a soft, flexible, custom-designed replica of a patient’s heart.Full story via WBUR

    Mystery of why Roman buildings have survived so long has been unraveled, scientists sayScientists from MIT and other institutions discovered that ancient Romans used lime clasts when manufacturing concrete, giving the material self-healing properties.Full story via CNN

    The most interesting startup in America is in Massachusetts. You’ve probably never heard of it.VulcanForms, an MIT startup, is at the “leading edge of a push to transform 3D printing from a niche technology — best known for new-product prototyping and art-class experimentation — into an industrial force.”Full story via The Boston Globe

    Catalyzing climate innovations

    Can Boston’s energy innovators save the world?Boston Magazine reporter Rowan Jacobsen spotlighted how MIT faculty, students, and alumni are leading the charge in clean energy startups. “When it comes to game-changing breakthroughs in energy, three letters keep surfacing again and again: MIT,” writes Jacobsen.Full story via Boston Magazine

    MIT research could be game changer in combating water shortagesMIT researchers discovered that a common hydrogel used in cosmetic creams, industrial coatings, and pharmaceutical capsules can absorb moisture from the atmosphere even as the temperature rises. “For a planet that’s getting hotter, this could be a game-changing discovery.”Full story via NBC Boston

    Energy-storing concrete could form foundations for solar-powered homesMIT engineers uncovered a new way of creating an energy supercapacitor by combining cement, carbon black, and water that could one day be used to power homes or electric vehicles.Full story via New Scientist

    MIT researchers tackle key question of EV adoption: When to charge?MIT scientists found that delayed charging and strategic placement of EV charging stations could help reduce additional energy demands caused by more widespread EV adoption.Full story via Fast Company

    Building better buildingsProfessor John Fernández examined how to reduce the climate footprints of homes and office buildings, recommending creating airtight structures, switching to cleaner heating sources, using more environmentally friendly building materials, and retrofitting existing homes and offices.Full story via The New York Times

    They’re building an “ice penetrator” on a hillside in WestfordResearchers from MIT’s Haystack Observatory built an “ice penetrator,” a device designed to monitor the changing conditions of sea ice.Full story via The Boston Globe

    Healing health solutions

    How Boston is beating cancerMIT researchers are developing drug-delivery nanoparticles aimed at targeting cancer cells without disturbing healthy cells. Essentially, the nanoparticles are “engineered for selectivity,” explained Professor Paula Hammond, head of MIT’s Department of Chemical Engineering.Full story via Boston Magazine

    A new antibiotic, discovered with artificial intelligence, may defeat a dangerous superbugUsing a machine-learning algorithm, researchers from MIT discovered a type of antibiotic that’s effective against a particular strain of drug-resistant bacteria.Full story via CNN

    To detect breast cancer sooner, an MIT professor designs an ultrasound braMIT researchers designed a wearable ultrasound device that attaches to a bra and could be used to detect early-stage breast tumors.Full story via STAT

    The quest for a switch to turn on hungerAn ingestible pill developed by MIT scientists can raise levels of hormones to help increase appetite and decrease nausea in patients with gastroparesis.Full story via Wired

    Here’s how to use dreams for creative inspirationMIT scientists found that the earlier stages of sleep are key to sparking creativity and that people can be guided to dream about specific topics, further boosting creativity.Full story via Scientific American

    Astounding art

    An AI opera from 1987 reboots for a new generationProfessor Tod Machover discussed the restaging of his opera “VALIS” at MIT, which featured an artificial intelligence-assisted musical instrument developed by Nina Masuelli ’23.Full story via The Boston Globe

    Surfacing the stories hidden in migration dataAssociate Professor Sarah Williams discussed the Civic Data Design Lab’s “Motivational Tapestry,” a large woven art piece that uses data from the United Nations World Food Program to visually represent the individual motivations of 1,624 Central Americans who have migrated to the U.S.Full story via Metropolis

    Augmented reality-infused production of Wagner’s “Parsifal” opens Bayreuth FestivalProfessor Jay Scheib’s augmented reality-infused production of Richard Wagner’s “Parsifal” brought “fantastical images” to audience members.Full story via the Associated Press

    Understanding our universe

    New image reveals violent events near a supermassive black holeScientists captured a new image of M87*, the black hole at the center of the Messier 87 galaxy, showing the “launching point of a colossal jet of high-energy particles shooting outward into space.”Full story via Reuters

    Gravitational waves: A new universeMIT researchers Lisa Barsotti, Deep Chatterjee, and Victoria Xu explored how advances in gravitational wave detection are enabling a better understanding of the universe.Full story via Curiosity Stream 

    Nergis Mavalvala helped detect the first gravitational wave. Her work doesn’t stop thereProfessor Nergis Mavalvala, dean of the School of Science, discussed her work searching for gravitational waves, the importance of skepticism in scientific research, and why she enjoys working with young people.Full story via Wired

    Hitting the books

    “The Transcendent Brain” review: Beyond ones and zeroesIn his book “The Transcendent Brain: Spirituality in the Age of Science,” Alan Lightman, a professor of the practice of humanities, displayed his gift for “distilling complex ideas and emotions to their bright essence.”Full story via The Wall Street Journal

    What happens when CEOs treat workers better? Companies (and workers) win.Professor of the practice Zeynep Ton published a book, “The Case for Good Jobs,” and is “on a mission to change how company leaders think, and how they treat their employees.”Full story via The Boston Globe

    How to wage war on conspiracy theoriesProfessor Adam Berinsky’s book, “Political Rumors: Why We Accept Misinformation and How to Fight it,” examined “attitudes toward both politics and health, both of which are undermined by distrust and misinformation in ways that cause harm to both individuals and society.”Full story via Politico

    What it takes for Mexican coders to cross the cultural border with Silicon ValleyAssistant Professor Héctor Beltrán discussed his new book, “Code Work: Hacking across the U.S./México Techno-Borderlands,” which explores the culture of hackathons and entrepreneurship in Mexico.Full story via Marketplace

    Cultivating community

    The Indigenous rocketeerNicole McGaa, a fourth-year student at MIT, discussed her work leading MIT’s all-Indigenous rocket team at the 2023 First Nations Launch National Rocket Competition.Full story via Nature

    “You totally got this,” YouTube star and former NASA engineer Mark Rober tells MIT graduatesDuring his Commencement address at MIT, Mark Rober urged graduates to embrace their accomplishments and boldly face any challenges they encounter.Full story via The Boston Globe

    MIT Juggling Club going strong after half centuryAfter almost 50 years, the MIT Juggling Club, which was founded in 1975 and then merged with a unicycle club, is the oldest drop-in juggling club in continuous operation and still welcomes any aspiring jugglers to come toss a ball (or three) into the air.Full story via Cambridge Day

    Volpe Transportation Center opens as part of $750 million deal between MIT and fedsThe John A. Volpe National Transportation Systems Center in Kendall Square was the first building to open in MIT’s redevelopment of the 14-acre Volpe site that will ultimately include “research labs, retail, affordable housing, and open space, with the goal of not only encouraging innovation, but also enhancing the surrounding community.”Full story via The Boston Globe

    Sparking conversation

    The future of AI innovation and the role of academics in shaping itProfessor Daniela Rus emphasized the central role universities play in fostering innovation and the importance of ensuring universities have the computing resources necessary to help tackle major global challenges.Full story via The Boston Globe

    Moving the needle on supply chain sustainabilityProfessor Yossi Sheffi examined several strategies companies could use to help improve supply chain sustainability, including redesigning last-mile deliveries, influencing consumer choices and incentivizing returnable containers.Full story via The Hill

    Expelled from the mountain top?Sylvester James Gates Jr. ’73, PhD ’77 made the case that “diverse learning environments expose students to a broader range of perspectives, enhance education, and inculcate creativity and innovative habits of mind.”Full story via Science

    Marketing magic of “Barbie” movie has lessons for women’s sportsMIT Sloan Lecturer Shira Springer explored how the success of the “Barbie” movie could be applied to women’s sports.Full story via Sports Business Journal

    We’re already paying for universal health care. Why don’t we have it?Professor Amy Finkelstein asserted that the solution to health insurance reform in the U.S. is “universal coverage that is automatic, free and basic.”Full story via The New York Times 

    The internet could be so good. Really.Professor Deb Roy described how “new kinds of social networks can be designed for constructive communication — for listening, dialogue, deliberation, and mediation — and they can actually work.”Full story via The Atlantic

    Fostering educational excellence

    MIT students give legendary linear algebra professor standing ovation in last lectureAfter 63 years of teaching and over 10 million views of his online lectures, Professor Gilbert Strang received a standing ovation after his last lecture on linear algebra. “I am so grateful to everyone who likes linear algebra and sees its importance. So many universities (and even high schools) now appreciate how beautiful it is and how valuable it is,” said Strang.Full story via USA Today

    “Brave Behind Bars”: Reshaping the lives of inmates through coding classesGraduate students Martin Nisser and Marisa Gaetz co-founded Brave Behind Bars, a program designed to provide incarcerated individuals with coding and digital literacy skills to better prepare them for life after prison.Full story via MSNBC

    Melrose TikTok user “Ms. Nuclear Energy” teaching about nuclear power through social mediaGraduate student Kaylee Cunningham discussed her work using social media to help educate and inform the public about nuclear energy.Full story via CBS Boston  More

  • in

    Solve Challenge Finals 2023: Action in service to the world

    In a celebratory convergence of innovation and global impact, the 2023 Solve Challenge Finals, hosted by MIT Solve, unfolded to welcome the 2023 Solver Class. These teams, resolute in their commitment to addressing Solve’s 2023 Global Challenges and rooted in advancing the United Nation’s Sustainable Development Goals, serve as the perfect examples of the impact technology can have when addressed toward social good.

    To set the tone of the day, Cynthia Barnhart, MIT provost, called for bold action in service to the world, and Hala Hanna, MIT Solve executive director, urged the new Solver teams and attendees to harness the power of technology for benevolent purposes. “Humans have lived with the dichotomy of technology since the dawn of time. Today we find ourselves at another juncture with generative AI, and we have choices to make. So, what if we choose that every line of code heals, and every algorithm uplifts, and every device includes?” she said during the opening plenary, Tech-Powered and Locally-Led: Solutions for Global Progress.

    Global, intergenerational, and contextual change for good

    This year’s Solve Challenge Finals served as a global platform for reflection. Majid Al Suwaidi, director-general of COP28, shared the experiences that have shaped his approach to climate negotiation. He recounted a poignant visit to a United Nations High Commissioner for Refugees-facilitated refugee camp housing 300,000 climate migrants. There he met a mother and her nine children. In a sprawling camp housing 300,000 people, scarcity was evident, with just one toilet for every 100 residents. “There are people who contribute nothing to the problem but are impacted the most,” Majid emphasized, stressing the need to prioritize those most affected by climate change when crafting solutions.

    Moderator Lysa John, secretary-general of CIVICUS, steered the conversation toward Africa’s growing influence during her fireside chat with David Sengeh SM ’12, PhD ’16, chief minister of Sierra Leone, and Toyin Saraki, president of the Wellbeing Foundation. The African Union was recently named a permanent member of the G20. Saraki passionately advocated for Africa to assert itself: “I would like this to be more than just the North recognizing the South. This is the time now for us to bring African intelligence to the forefront. We have to bring our own people, our own data, our own resources.” She also called for an intergenerational shift, recognizing the readiness of the younger generation to lead.

    Sengeh, who is 36 himself, emphasized that young people are natural leaders, especially in a nation where 70 percent of the population is youth. He challenged the status quo, urging society to entrust leadership roles to the younger generation.

    Saraki praised Solve as a vital incubation hub, satisfying the need for contextual innovation while contributing to global progress. She views Solve as a marketplace of solutions to systemic weaknesses, drawing upon the diverse approaches of innovators both young and old. “That is the generation of intelligence that needs to grow, not just in Africa. Solve is amazing for that, it’s an investor’s delight,” she said.

    Henrietta Fore, managing partner, chair, and CEO of Radiate Capital, Holsman International, shared an example of entrepreneurship catalyzed by country-level leaders, referencing India’s Swachh Bharat program aimed at promoting cleaner environments. The government initiative led to a burst of entrepreneurial activity, with women opening various shops for toilets and bathroom commodities. Fore highlighted the potential for companies to collaborate with countries on such programs, creating momentum and innovation.

    Trust as capital

    Trust was a prevalent theme throughout the event, from personal to business levels.

    Johanna Mair, academic editor of the Stanford Social Innovation Review, asked Sarah Chandler, vice president of environment and supply chain innovation at Apple, for advice she may have for corporations and startups thinking about their holistic climate goals. Chandler emphasized the importance of trust that businesses must have that environmental goals can align with business goals, highlighting Apple’s 45 percent reduction in carbon footprint since 2015 and 65 percent revenue increase.

    Neela Montgomery, board partner at Greycroft, discussed her initial skepticism around collaborating with large entities, seeking advice from Ilan Goldfajn, president of the Inter-American Development Bank. “Don’t be shy to come … take advantage of a multilateral bank … think about multilateral organizations as the ones to make connections. We can be your support commercially and financially, we could be your clients, and we could be your promoters,” said Goldfajn.

    During a fireside chat among Janti Soeripto, president and CEO of Save the Children USA, and Imran Ahmed, founder and CEO of Center for Countering Digital, Soeripto shared her belief that the most effective change comes from the country and local community level. She pointed to a contextual example of this where Save the Children invested in scaling a small Austrian ed-tech startup — Library for All. The partnership positively impacted literacy for other communities around the world by making literature more accessible.

    There still exist major hurdles for small enterprises to enter the global market. Imran points to sclerosis and hesitancy to trust small-scale innovation as a roadblock to meaningful change. 

    The final discussion of the closing plenary, Funding the Future: Scaling up Inclusive Impact, featured Fore; Mohammed Nanabhay, managing partner of Mozilla Ventures; and Alfred Ironside, vice president of communications at MIT, who asked the two panelists, “What do you [look for] when thinking about putting money into leaders and organizations who are on this mission to create impact and achieve scale?”

    Beyond aligning principles with organizations, Nanabhay said that he looks for tenacity and, most importantly, trust in oneself. “Entrepreneurship is a long journey, it’s a hard journey — whether you’re on the for-profit side or the nonprofit side. It’s easy to say people should have grit, everyone says this. When the time comes and you’re struggling … you need to have the fundamental belief that what you’re working on is meaningful and that it’s going to make the world better.” More

  • in

    Improving US air quality, equitably

    Decarbonization of national economies will be key to achieving global net-zero emissions by 2050, a major stepping stone to the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius (and ideally 1.5 C), and thereby averting the worst consequences of climate change. Toward that end, the United States has pledged to reduce its greenhouse gas emissions by 50-52 percent from 2005 levels by 2030, backed by its implementation of the 2022 Inflation Reduction Act. This strategy is consistent with a 50-percent reduction in carbon dioxide (CO2) by the end of the decade.

    If U.S. federal carbon policy is successful, the nation’s overall air quality will also improve. Cutting CO2 emissions reduces atmospheric concentrations of air pollutants that lead to the formation of fine particulate matter (PM2.5), which causes more than 200,000 premature deaths in the United States each year. But an average nationwide improvement in air quality will not be felt equally; air pollution exposure disproportionately harms people of color and lower-income populations.

    How effective are current federal decarbonization policies in reducing U.S. racial and economic disparities in PM2.5 exposure, and what changes will be needed to improve their performance? To answer that question, researchers at MIT and Stanford University recently evaluated a range of policies which, like current U.S. federal carbon policies, reduce economy-wide CO2 emissions by 40-60 percent from 2005 levels by 2030. Their findings appear in an open-access article in the journal Nature Communications.

    First, they show that a carbon-pricing policy, while effective in reducing PM2.5 exposure for all racial/ethnic groups, does not significantly mitigate relative disparities in exposure. On average, the white population undergoes far less exposure than Black, Hispanic, and Asian populations. This policy does little to reduce exposure disparities because the CO2 emissions reductions that it achieves primarily occur in the coal-fired electricity sector. Other sectors, such as industry and heavy-duty diesel transportation, contribute far more PM2.5-related emissions.

    The researchers then examine thousands of different reduction options through an optimization approach to identify whether any possible combination of carbon dioxide reductions in the range of 40-60 percent can mitigate disparities. They find that that no policy scenario aligned with current U.S. carbon dioxide emissions targets is likely to significantly reduce current PM2.5 exposure disparities.

    “Policies that address only about 50 percent of CO2 emissions leave many polluting sources in place, and those that prioritize reductions for minorities tend to benefit the entire population,” says Noelle Selin, supervising author of the study and a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences. “This means that a large range of policies that reduce CO2 can improve air quality overall, but can’t address long-standing inequities in air pollution exposure.”

    So if climate policy alone cannot adequately achieve equitable air quality results, what viable options remain? The researchers suggest that more ambitious carbon policies could narrow racial and economic PM2.5 exposure disparities in the long term, but not within the next decade. To make a near-term difference, they recommend interventions designed to reduce PM2.5 emissions resulting from non-CO2 sources, ideally at the economic sector or community level.

    “Achieving improved PM2.5 exposure for populations that are disproportionately exposed across the United States will require thinking that goes beyond current CO2 policy strategies, most likely involving large-scale structural changes,” says Selin. “This could involve changes in local and regional transportation and housing planning, together with accelerated efforts towards decarbonization.” More

  • in

    Putting public service into practice

    Salomé Otero ’23 doesn’t mince words about the social impact internship she had in 2022. “It was transformational for me,” she says.

    Otero, who majored in management with a concentration in education, always felt that education would play some role in her career path after MIT, but she wasn’t sure how. That all changed her junior year, when she got an email from the Priscilla King Gray Public Service Center (PKG Center) about an internship at The Last Mile, a San Francisco-based nonprofit that provides education and technology training for justice-impacted individuals.

    Otero applied and was selected as a web curriculum and re-entry intern at The Last Mile the summer between her junior and senior year — an eye-opening experience that cemented her post-graduation plans. “You hear some amazing stories, like this person was incarcerated before the iPhone had come out. Now he’s a software developer,” she explains. “And for me, the idea of using computer science education for good appealed to me on many fronts. But even if I hadn’t gotten the opportunity to work at The Last Mile, the fact that I saw a job description for this role and learned that companies have the resources to make a difference … I didn’t know that there were people and organizations dedicating their time and energy into this.”

    She was so inspired that, when she returned for her senior year, Otero found work at two education labs at MIT, completed another social impact internship over Independent Activities Period (IAP) at G{Code}, an education nonprofit that provides computer science education to women and nonbinary people of color, and decided to apply to graduate school. “I can tell you with 100 percent certainty that I would not be pursuing a PhD in education policy right now if it weren’t for the PKG Center,” she says. She will begin her doctorate this fall.

    Otero’s experience doesn’t surprise Jill Bassett, associate dean and director of the PKG Center. “MIT students are deeply concerned about the world’s most challenging problems,” she says. “And social impact internships are an incredible way for them to leverage their unique talents and skills to help create meaningful change while broadening their perspectives and discovering potential career paths.”

    “There’s a lot more out there”

    Founded 35 years ago, the PKG Center offers a robust portfolio of experiential learning programs broadly focused on four themes: climate change, health equity, racial justice, and tech for social good. The Center’s Social Impact Internship Program provides funded internships to students interested in working with government agencies, nonprofits, and social ventures. Students reap rich rewards from these experiences, including learning ways to make social change, informing their academic journey and career path, and gaining valuable professional skills.

    “It was a really good learning opportunity,” says Juliet Liao ’23, a graduate of MIT’s Naval ROTC program who commissioned as a submarine officer in June. She completed a social impact internship with the World Wildlife Fund, where she researched greenhouse gas emissions related to the salmon industry. “I haven’t had much exposure to what work outside of the Navy looks like and what I’m interested in working on. And I really liked the science-based approach to mitigating greenhouse gas emissions.”

    Amina Abdalla, a rising junior in biological engineering, arrived at MIT with a strong interest in health care and determined to go to medical school. But her internship at MassHealth, the Medicaid and Children’s Health Insurance Program provider for the state of Massachusetts, broadened her understanding of the complexity of the health care system and introduced her to many career options that she didn’t know existed.

    “They did coffee chats between interns and various people who work in MassHealth, such as doctors, lawyers, policy advocates, and consultants. There’s a lot more out there that one can do with the degree that they get and the knowledge they gain. It just depends on your interests, and I came away from that really excited,” she says. The experience inspired her to take a class in health policy before she graduates. “I know I want to be a doctor and I have a lot of interest in science in general, but if I could do some kind of public sector impact with that knowledge, I would definitely be interested in doing that.”

    Social impact internships also provide an opportunity for students to hone their analytical, technical, and people skills. Selma Sharaf ’22 worked on developing a first-ever climate action plan for Bennett College in Greensboro, North Carolina, one of two all-women’s historically Black colleges and universities in the United States. She conducted research and stakeholder interviews with nonprofits; sustainability directors at similar colleges; local utility companies; and faculty, staff, and students at Bennett.

    “Our external outreach efforts with certain organizations allowed me to practice having conversations about energy justice and climate issues with people who aren’t already in this space. I learned how useful it can be to not only discuss the overall issues of climate change and carbon emissions, but to also zoom in on more relatable personal-level impacts,” she says. Sharaf is currently working in clean energy consulting and plans to pursue a master’s degree at Stanford University’s Atmosphere/Energy Program this fall.

    Working with “all stars”

    Organizations that partner with the PKG Center are often constrained by limited technical and financial resources. Since the program is funded by the PKG Center, these internships help expand their organizational capacity and broaden their impact; MIT students can take on projects that might not otherwise get done, and they also bring fresh skills and ideas to the organization — and the zeal to pursue those ideas.

    Emily Moberg ’11, PhD ’16 got involved with the social impact internship programs in 2020. Moberg, who is the director of Scope 3 Carbon Measurement and Mitigation at the World Wildlife Fund, has worked with 20 MIT students since then, including Liao. The body of work that Liao and several other interns completed has been published in the form of 10 briefs onmitigating greenhouse gas emissions from key commodities, such as soy, beef, coffee, and palm oil.

    “Social impact interns bring technical skills, deep curiosity, and tenacity,” Moberg says. “I’ve worked with students across many majors, including computer and materials science; all of them bring a new, fresh perspective to our problems and often sophisticated quantitative ability. Their presence often helps us to investigate new ideas or expand a project. In some cases, interns have proposed new projects and ideas themselves. The support from the PKG Center for us to host these interns has been critical, especially for these new explorations.”

    Anne Carrington Hayes, associate professor and executive director of the Global Leadership and Interdisciplinary Studies program at Bennett College, calls the MIT interns she’s worked with since 2021 “all stars.” The work Sharaf and three other students performed has culminated in a draft climate action plan that will inform campus renovations and other measures that will be implemented at the college in the coming years.

    “They have been foundational in helping me to research, frame, collect data, and engage with our students and the community around issues of environmental justice and sustainability, particularly from the lens of what would be impactful and meaningful for women of color at Bennett College,” she says.

    Balancing supply and demand

    Bassett says that the social impact internship program has grown exponentially in the past few years. Before the pandemic, the program served five students from summer 2019 to spring 2020; it now serves about 125 students per year. Over that time, funding has become a significant limiting factor; demand for internships was three times the number of available internships in summer 2022, and five times the supply during IAP 2023.

    “MIT students have no shortage of opportunities available to them in the private sector, yet students are seeking social impact internships because they want to apply their skills to issues that they care about,” says Julie Uva, the PKG Center’s program administrator for social impact internships and employment. “We want to ensure every student who wants a social impact internship can access that experience.”

    MIT has taken note of this financial shortfall: the Task Force 2021 report recommended fundraising to alleviate the under-supply of social impact experiential learning opportunities (ELOs), and MIT’s Fast Forward Climate Action Plan called on the Institute to make a climate or clean-energy ELOs available to every undergraduate who wants one. As a result, the Office of Experiential Learning is working with Resource Development to raise new funding to support many more opportunities, which would be available to students not only through the PKG Center but also other offices and programs, such as MIT D-Lab, Undergraduate Research Opportunity Programs, MISTI, and the Environmental Solutions Initiative, among others.

    That’s welcome news to Salomé Otero. She’s familiar with the Institute’s fundraising efforts, having worked as one of the Alumni Association’s Tech Callers. Now, as an alumna herself and a former social impact intern, she has an appreciation for the power of philanthropy.

    “MIT is ahead of the game compared to so many universities, in so many ways,” she says. “But if they want to continue to do that in the most impactful way possible, I think investing in ideas and missions like the PKG Center is the way to go. So when that call comes, I’ll tell whoever is working that night shift, ‘Yeah, I’ll donate to the PKG Center.’” More

  • in

    Q&A: Three Tata Fellows on the program’s impact on themselves and the world

    The Tata Fellowship at MIT gives graduate students the opportunity to pursue interdisciplinary research and work with real-world applications in developing countries. Part of the MIT Tata Center for Technology and Design, this fellowship contributes to the center’s goal of designing appropriate, practical solutions for resource-constrained communities. Three Tata Fellows — Serena Patel, Rameen Hayat Malik, and Ethan Harrison — discuss the impact of this program on their research, perspectives, and time at MIT.

    Serena Patel

    Serena Patel graduated from the University of California at Berkeley with a degree in energy engineering and a minor in energy and resources. She is currently pursuing her SM in technology and policy at MIT and is a Tata Fellow focusing on decarbonization in India using techno-economic modeling. Her interest in the intersection of technology, policy, economics, and social justice led her to attend COP27, where she experienced decision-maker and activist interactions firsthand.

    Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

    A: The Tata Center appealed to my interest in searching for creative, sustainable energy technologies that center collaboration with local-leading organizations. It has also shaped my understanding of the role of technology in sustainable development planning. Our current energy system disproportionately impacts marginalized communities, and new energy systems have the potential to perpetuate and/or create inequities. I am broadly interested in how we can put people at the core of our technological solutions and support equitable energy transitions. I specifically work on techno-economic modeling to analyze the potential for an early retirement of India’s large coal fleet and conversion to long-duration thermal energy storage. This could mitigate job losses from rapid transitions, support India’s energy system decarbonization plan, and provide a cost-effective way to retire stranded assets.

    Q: Why is interdisciplinary study important to real-world solutions for global communities, and how has working at the intersection of technology and policy influenced your research?

    A: Technology and policy work together in mediating and regulating the world around us. Technological solutions can be disruptive in all the good ways, but they can also do a lot of harm and perpetuate existing inequities. Interdisciplinary studies are important to mitigate these interrelated issues so innovative ideas in the ivory towers of Western academia do not negatively impact marginalized communities. For real-world solutions to positively impact individuals, marginalized communities need to be centered within the research design process. I think the research community’s perspective on real-world, global solutions is shifting to achieve these goals, but much work remains for resources to reach the right communities.

    The energy space is especially fascinating because it impacts everyone’s quality of life in overt or nuanced ways. I’ve had the privilege of taking classes that sit at the intersection of energy technology and policy, involving land-use law, geographic representation, energy regulation, and technology policy. In general, working at the intersection of technology and policy has shaped my perspective on how regulation influences widespread technology adoption and the overall research directions and assumptions in our energy models.

    Q: How has your experience at COP27 influenced your approach to your research?

    A: Attending COP27 at Sharm El-Sheikh, Egypt, last November influenced my understanding of the role of science, research, and activism in climate negotiations and action. Science and research are often promoted as necessary for sharing knowledge at the higher levels, but they were also used as a delay tactic by negotiators. I heard how institutional bodies meant to support fair science and research often did not reach intended stakeholders. Lofty goals or financial commitments to ensure global climate stability and resilience still lacked implementation and coordination with deep technology transfer and support. On the face of it, these agreements have impact and influence, but I heard many frustrations over the lack of tangible, local support. This has driven my research to be as context-specific as possible, to provide actionable insights and leverage different disciplines.

    I also observed the role of activism in the negotiations. Decision-makers are accountable to their country, and activists are spreading awareness and bringing transparency to the COP process. As a U.S. citizen, I suddenly became more aware of how political engagement and awareness in the country could push the boundaries of international climate agreements if the government were more aligned on climate action.

    Rameen Hayat Malik

    Rameen Hayat Malik graduated from the University of Sydney with a bachelor’s degree in chemical and biomolecular engineering and a Bachelor of Laws. She is currently pursuing her SM in technology and policy and is a Tata Fellow researching the impacts of electric vehicle (EV) battery production in Indonesia. Originally from Australia, she first became interested in the geopolitical landscape of resources trade and its implications for the clean energy transition while working in her native country’s Department of Climate Change, Energy, the Environment and Water.

    Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

    A: I came across the Tata Fellowship while looking for research opportunities that aligned with my interest in understanding how a just energy transition will occur in a global context, with a particular focus on emerging economies. My research explores the techno-economic, social, and environmental impacts of nickel mining in Indonesia as it seeks to establish itself as a major producer of EV batteries. The fellowship’s focus on community-driven research has given me the freedom to guide the scope of my research. It has allowed me to integrate a community voice into my work that seeks to understand the impact of this mining on forest-dependent communities, Indigenous communities, and workforce development.

    Q: Battery technology and production are highly discussed in the energy sector. How does your research on Indonesia’s battery production contribute to the current discussion around batteries, and what drew you to this topic?

    A: Indonesia is one of the world’s largest exporters of coal, while also having one of the largest nickel reserves in the world — a key mineral for EV battery production. This presents an exciting opportunity for Indonesia to be a leader in the energy transition, as it both seeks to phase out coal production and establish itself as a key supplier of critical minerals. It is also an opportunity to actually apply principles of a just transition to the region, which seeks to repurpose and re-skill existing coal workforces, to bring Indigenous communities into the conversation around the future of their lands, and to explore whether it is actually possible to sustainably and ethically produce nickel for EV battery production.

    I’ve always seen battery technologies and EVs as products that, at least today, are accessible to a small, privileged customer base that can afford such technologies. I’m interested in understanding how we can make such products more widely affordable and provide our lowest-income communities with the opportunities to actively participate in the transition — especially since access to transportation is a key driver of social mobility. With nickel prices impacting EV prices in such a dramatic way, unlocking more nickel supply chains presents an opportunity to make EV batteries more accessible and affordable.

    Q: What advice would you give to new students who want to be a part of real-world solutions to the climate crisis?

    A: Bring your whole self with you when engaging these issues. Quite often we get caught up with the technology or modeling aspect of addressing the climate crisis and forget to bring people and their experiences into our work. Think about your positionality: Who is your community, what are the avenues you have to bring that community along, and what privileges do you hold to empower and amplify voices that need to be heard? Find a piece of this complex puzzle that excites you, and find opportunities to talk and listen to people who are directly impacted by the solutions you are looking to explore. It can get quite overwhelming working in this space, which carries a sense of urgency, politicization, and polarization with it. Stay optimistic, keep advocating, and remember to take care of yourself while doing this important work.

    Ethan Harrison

    After earning his degree in economics and applied science from the College of William and Mary, Ethan Harrison worked at the United Nations Development Program in its Crisis Bureau as a research officer focused on conflict prevention and predictive analysis. He is currently pursuing his SM in technology and policy at MIT. In his Tata Fellowship, he focuses on the impacts of the Ukraine-Russia conflict on global vulnerability and the global energy market.

    Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

    A: Coming to MIT, one of my chief interests was figuring out how we can leverage gains from technology to improve outcomes and build pro-poor solutions in developing and crisis contexts. The Tata Fellowship aligned with many of the conclusions I drew while working in crisis contexts and some of the outstanding questions that I was hoping to answer during my time at MIT, specifically: How can we leverage technology to build sustainable, participatory, and ethically grounded interventions in these contexts?

    My research currently examines the secondary impacts of the Ukraine-Russia conflict on low- and middle-income countries — especially fragile states — with a focus on shocks in the global energy market. This includes the development of a novel framework that systematically identifies factors of vulnerability — such as in energy, food systems, and trade dependence — and quantitatively ranks countries by their level of vulnerability. By identifying the specific mechanisms by which these countries are vulnerable, we can develop a map of global vulnerability and identify key policy solutions that can insulate countries from current and future shocks.

    Q: I understand that your research deals with the relationship between oil and gas price fluctuation and political stability. What has been the most surprising aspect of this relationship, and what are its implications for global decarbonization?

    A: One surprising aspect is the degree to which citizen grievances regarding price fluctuations can quickly expand to broader democratic demands and destabilization. In Sri Lanka last year and in Egypt during the Arab spring, initial protests around fuel prices and power outages eventually led to broader demands and the loss of power by heads of state. Another surprising aspect is the popularity of fuel subsidies despite the fact that they are economically regressive: They often comprise a large proportion of GDP in poor countries, disproportionately benefit higher-income populations, and leave countries vulnerable to fiscal stress during price spikes.

    Regarding implications for global decarbonization, one project we are pursuing examines the implications of directing financing from fuel subsidies toward investments in renewable energy. Countries that rely on fossil fuels for electricity have been hit especially hard 
by price spikes from the Ukraine-Russia conflict, especially since many were carrying costly fuel subsidies to keep the price of fuel and energy artificially low. Much of the international community is advocating for low-income countries to invest in renewables and reduce their fossil fuel burden, but it’s important to explore how global decarbonization can align with efforts to end energy poverty and other Sustainable Development Goals.

    Q: How does your research impact the Tata Center’s goal of transforming policy research into real-world solutions, and why is this important?

    A: The crisis in Ukraine has shifted the international community’s focus away from other countries in crisis, such as Yemen and Lebanon. By developing a global map of vulnerability, we’re building a large evidence base on which countries have been most impacted by this crisis. Most importantly, by identifying individual channels of vulnerability for each country, we can also identify the most effective policy solutions to insulate vulnerable populations from shocks. Whether that’s advocating for short-term social protection programs or identifying more medium-term policy solutions — like fuel banks or investment in renewables — we hope providing a detailed map of sources of vulnerability can help inform the global response to shocks imposed by the Russia-Ukraine conflict and post-Covid recovery. More

  • in

    Q&A: A high-tech take on Wagner’s “Parsifal” opera

    The world-famous Bayreuth Festival in Germany, annually centered around the works of composer Richard Wagner, launched this summer on July 25 with a production that has been making headlines. Director Jay Scheib, an MIT faculty member, has created a version of Wagner’s celebrated opera “Parsifal” that is set in an apocalyptic future (rather than the original Medieval past), and uses augmented reality headset technology for a portion of the audience, among other visual effects. People using the headsets see hundreds of additional visuals, from fast-moving clouds to arrows being shot at them. The AR portion of the production was developed through a team led by designer and MIT Technical Instructor Joshua Higgason.

    The new “Parsifal” has engendered extensive media attention and discussion among opera followers and the viewing public. Five years in the making, it was developed with the encouragement of Bayreuth Festival general manager Katharina Wagner, Richard Wagner’s great-granddaughter. The production runs until Aug. 27, and can also be streamed on Stage+. Scheib, the Class of 1949 Professor in MIT’s Music and Theater Arts program, recently talked to MIT News about the project from Bayreuth.

    Q: Your production of “Parsifal” led off this year’s entire Bayreuth festival. How’s it going?

    A: From my point of view it’s going quite swimmingly. The leading German opera critics and the audiences have been super-supportive and Bayreuth makes it possible for a work to evolve … Given the complexity of the technical challenge of making an AR project function in an opera house, the bar was so high, it was a difficult challenge, and we’re really happy we found a way forward, a way to make it work, and a way to make it fit into an artistic process. I feel great.

    Q: You offer a new interpretation of “Parsifal,” and a new setting for it. What is it, and why did you choose to interpret it this way?

    A: One of the main themes in “Parsifal” is that the long-time king of this holy grail cult is wounded, and his wound will not heal. [With that in mind], we looked at what the world was like when the opera premiered in the late 19th century, around the time of what was known as the Great African Scramble, when Europe re-drew the map of Africa, largely based on resources, including mineral resources.

    Cobalt remains [the focus of] dirty mining practices in the Democratic Republic of Congo, and is a requirement for a lot of our electronic objects, in particular batteries. There are also these massive copper deposits discovered under a Buddhist temple in Afghanistan, and lithium under a sacred site in Nevada. We face an intense challenge in climate change, and the predictions are not good. Some of our solutions like electric cars require these materials, so they’re only solutions for some people, while others suffer [where minerals are being mined]. We started thinking about how wounds never heal, and when the prospect of creating a better world opens new wounds in other communities. … That became a theme. It also comes out of the time when we were making it, when Covid happened and George Floyd was murdered, which created an opportunity in the U.S. to start speaking very openly about wounds that have not healed.

    We set it in a largely post-human environment, where we didn’t succeed, and everything has collapsed. In the third act, there’s derelict mining equipment, and the holy water is this energy-giving force, but in fact it’s this lithium-ion pool, which gives us energy and then poisons us. That’s the theme we created.

    Q: What were your goals about integrating the AR technology into the opera, and how did you achieve that?

    A: First, I was working with my collaborator Joshua Higgason. No one had ever really done this before, so we just started researching whether it was possible. And most of the people we talked to said, “Don’t do it. It’s just not going to work.” Having always been a daredevil at heart, I was like, “Oh, come on, we can figure this out.”

    We were diligent in exploring the possibilities. We made multiple trips to Bayreuth and made these milimeter-accurate laser scans of the auditorium and the stage. We built a variety of models to see how to make AR work in a large environment, where 2,000 headsets could respond simultaneously. We built a team of animators and developers and programmers and designers, from Portugal to Cambridge to New York to Hungary, the UK, and a group in Germany. Josh led this team, and they got after it, but it took us the better part of two years to make it possible for an audience, some of whom don’t really use smartphones, to put on an AR headset and have it just work.

    I can’t even believe we did this. But it’s working.

    Q: In opera there’s hopefully a productive tension between tradition and innovation. How do you think about that when it comes to Wagner at Bayreuth?

    A: Innovation is the tradition at Bayreuth. Musically and scenographically. “Parsifal” was composed for this particular opera house, and I’m incredibly respectful of what this event is made for. We are trying to create a balanced and unified experience, between the scenic design and the AR and the lighting and the costume design, and create perfect moments of convergence where you really lose yourself in the environment. I believe wholly in the production and the performers are extraordinary. Truly, truly, truly extraordinary.

    Q: People have been focused on the issue of bringing AR to Bayreuth, but what has Bayreuth brought to you as a director?

    A: Working in Bayreuth has been an incredible experience. The level of intellectual integrity among the technicians is extraordinary. The amount of care and patience and curiosity and expertise in Bayreuth is off the charts. This community of artists is the greatest. … People come here because it’s an incredible meeting of the minds, and for that I’m immensely filled with gratitude every day I come into the rehearsal room. The conductor, Pablo Heras-Casado, and I have been working on this for several years. And the music is still first. We’re setting up technology not to overtake the music, but to support it, and visually amplify it.

    It must be said that Katharina Wagner has been one of the most powerfully supportive artistic directors I have ever worked with. I find it inspiring to witness her tenacity and vision in seeing all of this through, despite the hurdles. It’s been a great collaboration. That’s the essence: great collaboration. More

  • in

    MIT speaker series taps into students’ passion for entrepreneurship and social impact.

    Last summer, leaders of MIT’s Venture Mentoring Service (VMS) noticed a growing trend in entrepreneur applications to the program: An increasing number of aspiring founders were expressing a passion for social impact.

    VMS, which connects students and alumni with teams of mentors, hosts bootcamps, holds expert office hours, and offers an annual Demo Day, did not previously have offerings to help founders focused on this type of impact, so its leaders decided to pilot an Impact Speaker Series.

    The series, which featured experienced early-stage entrepreneurs from the MIT community and took place throughout the year, was a smashing success. In total, more than 1,200 MIT community members registered across eight events, including students at all stages of their education as well as alumni interested in making a positive impact on the world through entrepreneurship.

    “We felt an intense desire from attendees to explore entrepreneurship as a path to solve our most pressing problems,” VMS mentor and series co-Lead Paul Bosco says. “The degree to which students identified with challenges such as climate, health, sustainability, and education, rather than their major, was striking. Our goal was to help them see a path as first-time founders.”

    Now VMS is riding the momentum from the speaker series by rolling out more support services for impact-driven students, including hosting additional events, adding experienced impact entrepreneurs and social enterprise experts to its network of mentors, and connecting with more funders and executives with experience leading organizations focused on impact.

    Ultimately, VMS believes these new efforts will bolster MIT’s broader mission of translating science and innovation from its labs and classrooms into positive advances around the world.

    “Our pivot to strengthen support for founders with a passion for impact is absolutely aligned with the mission of MIT,” Bosco says. “Pursuing research and ideas with a passion for world-changing impact has always been in the DNA of MIT. A new generation of entrepreneurs is challenging us to help them hone their skills and lead organizations to build a better world.”

    Striking a chord

    Each one of VMS’ events had a different theme, from addressing general founder challenges, like first time pre-seed or nondilutive fundraising to building startup ventures in sectors like climate, health care, and education. One panel focused on helping entrepreneurs find their personal paths to success and impact, featuring founders leading impactful companies at different stages of development. Another panel discussion, titled Funding Your Path to Impact and Success, featured investors and directors of programs funding ventures delivering impact.

    “I want to encourage founders to consider driving toward a new ‘unicorn success’ model, where success is not measured in $1-billion-dollar valuations, but is based on world-changing carbon reductions, water cleanliness, lives saved, students inspired, etc.,” Ela Mirowski, a program director with the National Science Foundation, told the audience at one event.

    In total, the events featured 24 expert speakers, early-stage founders, and funders. Impact driven businesses, speakers emphasized, can take many forms. Bosco, who moderated one of the panels, says he’s heard from students and alumni interested in starting for-profit companies focused on profit and impact, what he called “dual bottom lines,” as well as students interested in starting public benefit companies, social enterprises, and traditional nonprofit organizations.

    “VMS is getting better at tapping into the different types of entrepreneurs at different stages of their journeys,” says Akshit Singla SM ’22. “It’s exactly what’s needed, and I know that because there was a huge waitlist for these events.”

    Zahra Kanji, who attended VMS’s most recent event in May and is currently director of MIT Hacking Medicine, sees the speaker series as a natural response to evolving student needs.

    “For students, I think the focus has changed a lot over the years,” Kanji said. “There used to be a lot more interest in entrepreneurship with making money as the final goal, and now it’s turned into more of a triple goal, like a public benefit corporation or something that has more impact. So, hearing key lessons learned from experts is really important — these aren’t answers you can get in a textbook.”

    Listening to the community

    Many of next year’s VMS events will be similar to the events that most resonated with the MIT community this year. VMS will also be adding an event on entrepreneurship in artificial intelligence and computing for impact. VMS is hoping to continue expanding student connections to recent founders, or what Bosco refers to as “near-peer founders,” that can relate more closely with first-time founders navigating the current startup environment.

    “Given that many new entrepreneurs are shifting to focus on impact, we need to evolve,” says VMS mentor Matt Cherian SM ’11. “I’m glad students are starting to think differently, and I’m really glad VMS is making this programming to help people think in this new way.”

    “The most notable aspect of our series was the commitment of students, including undergrads, graduates, and postdocs, pursuing their passion for impact through entrepreneurship,” Bosco says. “Many students we met exploring entrepreneurship for impact have exceptional job offers from top employers, or if they are alums they’re leaving significant positions to pursue a greater purpose in their lives. It is profoundly inspiring and an honor to help each of these founders.” More

  • in

    MIT engineering students take on the heat of Miami

    Think back to the last time you had to wait for a bus. How miserable were you? If you were in Boston, your experience might have included punishing wind and icy sleet — or, more recently, a punch of pollen straight to the sinuses. But in Florida’s Miami-Dade County, where the effects of climate change are both drastic and intensifying, commuters have to contend with an entirely different set of challenges: blistering temperatures and scorching humidity, making long stints waiting in the sun nearly unbearable.

    One of Miami’s most urgent transportation needs is shared by car-clogged Boston: coaxing citizens to use the municipal bus network, rather than the emissions-heavy individual vehicles currently contributing to climate change. But buses can be a tough sell in a sunny city where humidity hovers between 60 and 80 percent year-round. 

    Enter MIT’s Department of Electrical Engineering and Computer Science (EECS) and the MIT Priscilla King Gray (PKG) Public Service Center. The result of close collaboration between the two organizations, class 6.900 (Engineering For Impact) challenges EECS students to apply their engineering savvy to real-world problems beyond the MIT campus.

    This spring semester, the real-world problem was heat. 

    Miami-Dade County Department of Transportation and Public Works Chief Innovation Officer Carlos Cruz-Casas explains: “We often talk about the city we want to live in, about how the proper mix of public transportation, on-demand transit, and other mobility solutions, such as e-bikes and e-scooters, could help our community live a car-light life. However, none of this will be achievable if the riders are not comfortable when doing so.” 

    “When people think of South Florida and climate change, they often think of sea level rise,” says Juan Felipe Visser, deputy director of equity and engagement within the Office of the Mayor in Miami-Dade. “But heat really is the silent killer. So the focus of this class, on heat at bus stops, is very apt.” With little tree cover to give relief at some of the hottest stops, Miami-Dade commuters cluster in tiny patches of shade behind bus stops, sometimes giving up when the heat becomes unbearable. 

    A more conventional electrical engineering course might use temperature monitoring as an abstract example, building sample monitors in isolation and grading them as a merely academic exercise. But Professor Joel Volman, EECS faculty head of electrical engineering, and Joe Steinmeyer, senior lecturer in EECS, had something more impactful in mind.

    “Miami-Dade has a large population of people who are living in poverty, undocumented, or who are otherwise marginalized,” says Voldman. “Waiting, sometimes for a very long time, in scorching heat for the bus is just one aspect of how a city population can be underserved, but by measuring patterns in how many people are waiting for a bus, how long they wait, and in what conditions, we can begin to see where services are not keeping up with demand.”

    Only after that gap is quantified can the work of city and transportation planners begin, Cruz-Casas explains: “We needed to quantify the time riders are exposed to extreme heat and prioritize improvements, including on-time performance improvements, increasing service frequency, or looking to enhance the tree canopy near the bus stop.” 

    Quantifying that time — and the subjective experience of the wait — proved tricky, however. With over 7,500 bus stops along 101 bus routes, Miami-Dade’s transportation network presents a considerable data-collection challenge. A network of physical temperature monitors could be useful, but only if it were carefully calibrated to meet the budgetary, environmental, privacy, and implementation requirements of the city. But how do you work with city officials — not to mention all of bus-riding Miami — from over 2,000 miles away? 

    This is where the PKG Center comes in. “We are a hub and a connector and facilitator of best practices,” explains Jill Bassett, associate dean and director of the center, who worked with Voldman and Steinmeyer to find a municipal partner organization for the course. “We bring knowledge of current pedagogy around community-engaged learning, which includes: help with framing a partnership that centers community-identified concerns and is mutually beneficial; identifying and learning from a community partner; talking through ways to build in opportunities for student learners to reflect on power dynamics, reciprocity, systems thinking, long-term planning, continuity, ethics, all the types of things that come up with this kind of shared project.”

    Through a series of brainstorming conversations, Bassett helped Voldman and Steinmeyer structure a well-defined project plan, as Cruz-Casas weighed in on the county’s needed technical specifications (including affordability, privacy protection, and implementability).

    “This course brings together a lot of subject area experts,” says Voldman. “We brought in guest lecturers, including Abby Berenson from the Sloan Leadership Center, to talk about working in teams; engineers from BOSE to talk about product design, certification, and environmental resistance; the co-founder and head of engineering from MIT spinout Butlr to talk about their low-power occupancy sensor; Tony Hu from MIT IDM [Integrated Design and Management] to talk about industrial design; and Katrina LaCurts from EECS to talk about communications and networking.”

    With the support of two generous donations and a gift of software from Altium, 6.900 developed into a hands-on exercise in hardware/software product development with a tangible goal in sight: build a better bus monitor.

    The challenges involved in this undertaking became apparent as soon as the 6.900 students began designing their monitors. “The most challenging requirement to meet was that the monitor be able to count how many people were waiting — and for how long they’d been standing there — while still maintaining privacy,” says Fabian Velazquez ’23 a recent EECS graduate. The task was complicated by commuters’ natural tendency to stand where the shade goes — whether beneath a tree or awning or snaking against a nearby wall in a line — rather than directly next to the bus sign or inside the bus shelter. “Accurately measuring people count with a camera — the most straightforward choice — is already quite difficult since you have to incorporate machine learning to identify which objects in frame are people. Maintaining privacy added an extra layer of constraint … since there is no guarantee the collected data wouldn’t be vulnerable.”

    As the groups weighed various privacy-preserving options, including lidar, radar, and thermal imaging, the class realized that Wi-Fi “sniffers,” which count the number of Wi-Fi enabled signals in the immediate area, were their best option to count waiting passengers. “We were all excited and ready for this amazing, answer-to-all-our-problems radar sensor to count people,” says Velasquez. “That component was extremely complex, however, and the complexity would have ultimately made my team use a lot of time and resources to integrate with our system. We also had a short time-to-market for this system we developed. We made the trade-off of complexity for robustness.” 

    The weather also posed its own set of challenges. “Environmental conditions were big factors on the structure and design of our devices,” says Yong Yan (Crystal) Liang, a rising junior majoring in EECS. “We incorporated humidity and temperature sensors into our data to show the weather at individual stops. Additionally, we also considered how our enclosure may be affected by extreme heat or potential hurricanes.”

    The heat variable proved problematic in multiple ways. “People detection was especially difficult, for in the Miami heat, thermal cameras may not be able to distinguish human body temperature from the surrounding air temperature, and the glare of the sun off of other surfaces in the area makes most forms of imaging very buggy,” says Katherine Mohr ’23. “My team had considered using mmWave sensors to get around these constraints, but we found the processing to be too difficult, and (like the rest of the class), we decided to only move forward with Wi-Fi/BLE [Bluetooth Low Energy] sniffers.”

    The most valuable component of the new class may well have been the students’ exposure to real-world hardware/software engineering product development, where limitations on time and budget always exist, and where client requests must be carefully considered.  “Having an actual client to work with forced us to learn how to turn their wants into more specific technical specifications,” says Mohr. “We chose deliverables each week to complete by Friday, prioritizing tasks which would get us to a minimum viable product, as well as tasks that would require extra manufacturing time, like designing the printed-circuit board and enclosure.”

    Play video

    Joel Voldman, who co-designed 6.900 (Engineering For Impact) with Joe Steinmeyer and MIT’s Priscilla King Gray (PKG) Public Service Center, describes how the course allowed students help develop systems for the public good. Voldman is the winner of the 2023 Teaching with Digital Technology Award, which is co-sponsored by MIT Open Learning and the Office of the Vice Chancellor. Video: MIT Open Learning

    Crystal Liang counted her conversations with city representatives as among her most valuable 6.900 experiences. “We generated a lot of questions and were able to communicate with the community leaders of this project from Miami-Dade, who made time to answer all of them and gave us ideas from the goals they were trying to achieve,” she reports. “This project gave me a new perspective on problem-solving because it taught me to see things from the community members’ point of view.” Some of those community leaders, including Marta Viciedo, co-founder of Transit Alliance Miami, joined the class’s final session on May 16 to review the students’ proposed solutions. 

    The students’ thoughtful approach paid off when it was time to present the heat monitors to the class’s client. In a group conference call with Miami-Dade officials toward the end of the semester, the student teams shared their findings and the prototypes they’d created, along with videos of the devices at work. Juan Felipe Visser was among those in attendance. “This is a lot of work,” he told the students following their presentation. “So first of all, thank you for doing that, and for presenting to us. I love the concept. I took the bus this morning, as I do every morning, and was battered by the sun and the heat. So I personally appreciated the focus.” 

    Cruz-Casas agreed: “I am pleasantly surprised by the diverse approach the students are taking. We presented a challenge, and they have responded to it and managed to think beyond the problem at hand. I’m very optimistic about how the outcomes of this project will have a long-lasting impact for our community. At a minimum, I’m thinking that the more awareness we raise about this topic, the more opportunities we have to have the brightest minds seeking for a solution.”

    The creators of 6.900 agree, and hope that their class helps more MIT engineers to broaden their perspective on the meaning and application of their work. 

    “We are really excited about students applying their skills within a real-world, complex environment that will impact real people,” says Bassett. “We are excited that they are learning that it’s not just the design of technology that matters, but that climate; environment and built environment; and issues around socioeconomics, race, and equity, all come into play. There are layers and layers to the creation and deployment of technology in a demographically diverse multilingual community that is at the epicenter of climate change.” More