More stories

  • in

    Startup turns mining waste into critical metals for the U.S.

    At the heart of the energy transition is a metal transition. Wind farms, solar panels, and electric cars require many times more copper, zinc, and nickel than their gas-powered alternatives. They also require more exotic metals with unique properties, known as rare earth elements, which are essential for the magnets that go into things like wind turbines and EV motors.Today, China dominates the processing of rare earth elements, refining around 60 percent of those materials for the world. With demand for such materials forecasted to skyrocket, the Biden administration has said the situation poses national and economic security threats.Substantial quantities of rare earth metals are sitting unused in the United States and many other parts of the world today. The catch is they’re mixed with vast quantities of toxic mining waste.Phoenix Tailings is scaling up a process for harvesting materials, including rare earth metals and nickel, from mining waste. The company uses water and recyclable solvents to collect oxidized metal, then puts the metal into a heated molten salt mixture and applies electricity.The company, co-founded by MIT alumni, says its pilot production facility in Woburn, Massachusetts, is the only site in the world producing rare earth metals without toxic byproducts or carbon emissions. The process does use electricity, but Phoenix Tailings currently offsets that with renewable energy contracts.The company expects to produce more than 3,000 tons of the metals by 2026, which would have represented about 7 percent of total U.S. production last year.Now, with support from the Department of Energy, Phoenix Tailings is expanding the list of metals it can produce and accelerating plans to build a second production facility.For the founding team, including MIT graduates Tomás Villalón ’14 and Michelle Chao ’14 along with Nick Myers and Anthony Balladon, the work has implications for geopolitics and the planet.“Being able to make your own materials domestically means that you’re not at the behest of a foreign monopoly,” Villalón says. “We’re focused on creating critical materials for the next generation of technologies. More broadly, we want to get these materials in ways that are sustainable in the long term.”Tackling a global problemVillalón got interested in chemistry and materials science after taking Course 3.091 (Introduction to Solid-State Chemistry) during his first year at MIT. In his senior year, he got a chance to work at Boston Metal, another MIT spinoff that uses an electrochemical process to decarbonize steelmaking at scale. The experience got Villalón, who majored in materials science and engineering, thinking about creating more sustainable metallurgical processes.But it took a chance meeting with Myers at a 2018 Bible study for Villalón to act on the idea.“We were discussing some of the major problems in the world when we came to the topic of electrification,” Villalón recalls. “It became a discussion about how the U.S. gets its materials and how we should think about electrifying their production. I was finally like, ‘I’ve been working in the space for a decade, let’s go do something about it.’ Nick agreed, but I thought he just wanted to feel good about himself. Then in July, he randomly called me and said, ‘I’ve got [$7,000]. When do we start?’”Villalón brought in Chao, his former MIT classmate and fellow materials science and engineering major, and Myers brought Balladon, a former co-worker, and the founders started experimenting with new processes for producing rare earth metals.“We went back to the base principles, the thermodynamics I learned with MIT professors Antoine Allanore and Donald Sadoway, and understanding the kinetics of reactions,” Villalón says. “Classes like Course 3.022 (Microstructural Evolution in Materials) and 3.07 (Introduction to Ceramics) were also really useful. I touched on every aspect I studied at MIT.”The founders also received guidance from MIT’s Venture Mentoring Service (VMS) and went through the U.S. National Science Foundation’s I-Corps program. Sadoway served as an advisor for the company.After drafting one version of their system design, the founders bought an experimental quantity of mining waste, known as red sludge, and set up a prototype reactor in Villalón’s backyard. The founders ended up with a small amount of product, but they had to scramble to borrow the scientific equipment needed to determine what exactly it was. It turned out to be a small amount of rare earth concentrate along with pure iron.Today, at the company’s refinery in Woburn, Phoenix Tailings puts mining waste rich in rare earth metals into its mixture and heats it to around 1,300 degrees Fahrenheit. When it applies an electric current to the mixture, pure metal collects on an electrode. The process leaves minimal waste behind.“The key for all of this isn’t just the chemistry, but how everything is linked together, because with rare earths, you have to hit really high purities compared to a conventionally produced metal,” Villalón explains. “As a result, you have to be thinking about the purity of your material the entire way through.”From rare earths to nickel, magnesium, and moreVillalón says the process is economical compared to conventional production methods, produces no toxic byproducts, and is completely carbon free when renewable energy sources are used for electricity.The Woburn facility is currently producing several rare earth elements for customers, including neodymium and dysprosium, which are important in magnets. Customers are using the materials for things likewind turbines, electric cars, and defense applications.The company has also received two grants with the U.S. Department of Energy’s ARPA-E program totaling more than $2 million. Its 2023 grant supports the development of a system to extract nickel and magnesium from mining waste through a process that uses carbonization and recycled carbon dioxide. Both nickel and magnesium are critical materials for clean energy applications like batteries.The most recent grant will help the company adapt its process to produce iron from mining waste without emissions or toxic byproducts. Phoenix Tailings says its process is compatible with a wide array of ore types and waste materials, and the company has plenty of material to work with: Mining and processing mineral ores generates about 1.8 billion tons of waste in the U.S. each year.“We want to take our knowledge from processing the rare earth metals and slowly move it into other segments,” Villalón explains. “We simply have to refine some of these materials here. There’s no way we can’t. So, what does that look like from a regulatory perspective? How do we create approaches that are economical and environmentally compliant not just now, but 30 years from now?” More

  • in

    Solar-powered desalination system requires no extra batteries

    MIT engineers have built a new desalination system that runs with the rhythms of the sun.The solar-powered system removes salt from water at a pace that closely follows changes in solar energy. As sunlight increases through the day, the system ramps up its desalting process and automatically adjusts to any sudden variation in sunlight, for example by dialing down in response to a passing cloud or revving up as the skies clear.Because the system can quickly react to subtle changes in sunlight, it maximizes the utility of solar energy, producing large quantities of clean water despite variations in sunlight throughout the day. In contrast to other solar-driven desalination designs, the MIT system requires no extra batteries for energy storage, nor a supplemental power supply, such as from the grid.The engineers tested a community-scale prototype on groundwater wells in New Mexico over six months, working in variable weather conditions and water types. The system harnessed on average over 94 percent of the electrical energy generated from the system’s solar panels to produce up to 5,000 liters of water per day despite large swings in weather and available sunlight.“Conventional desalination technologies require steady power and need battery storage to smooth out a variable power source like solar. By continually varying power consumption in sync with the sun, our technology directly and efficiently uses solar power to make water,” says Amos Winter, the Germeshausen Professor of Mechanical Engineering and director of the K. Lisa Yang Global Engineering and Research (GEAR) Center at MIT. “Being able to make drinking water with renewables, without requiring battery storage, is a massive grand challenge. And we’ve done it.”The system is geared toward desalinating brackish groundwater — a salty source of water that is found in underground reservoirs and is more prevalent than fresh groundwater resources. The researchers see brackish groundwater as a huge untapped source of potential drinking water, particularly as reserves of fresh water are stressed in parts of the world. They envision that the new renewable, battery-free system could provide much-needed drinking water at low costs, especially for inland communities where access to seawater and grid power are limited.“The majority of the population actually lives far enough from the coast, that seawater desalination could never reach them. They consequently rely heavily on groundwater, especially in remote, low-income regions. And unfortunately, this groundwater is becoming more and more saline due to climate change,” says Jonathan Bessette, MIT PhD student in mechanical engineering. “This technology could bring sustainable, affordable clean water to underreached places around the world.”The researchers report details the new system in a paper appearing today in Nature Water. The study’s co-authors are Bessette, Winter, and staff engineer Shane Pratt.Pump and flowThe new system builds on a previous design, which Winter and his colleagues, including former MIT postdoc Wei He, reported earlier this year. That system aimed to desalinate water through “flexible batch electrodialysis.”Electrodialysis and reverse osmosis are two of the main methods used to desalinate brackish groundwater. With reverse osmosis, pressure is used to pump salty water through a membrane and filter out salts. Electrodialysis uses an electric field to draw out salt ions as water is pumped through a stack of ion-exchange membranes.Scientists have looked to power both methods with renewable sources. But this has been especially challenging for reverse osmosis systems, which traditionally run at a steady power level that’s incompatible with naturally variable energy sources such as the sun.Winter, He, and their colleagues focused on electrodialysis, seeking ways to make a more flexible, “time-variant” system that would be responsive to variations in renewable, solar power.In their previous design, the team built an electrodialysis system consisting of water pumps, an ion-exchange membrane stack, and a solar panel array. The innovation in this system was a model-based control system that used sensor readings from every part of the system to predict the optimal rate at which to pump water through the stack and the voltage that should be applied to the stack to maximize the amount of salt drawn out of the water.When the team tested this system in the field, it was able to vary its water production with the sun’s natural variations. On average, the system directly used 77 percent of the available electrical energy produced by the solar panels, which the team estimated was 91 percent more than traditionally designed solar-powered electrodialysis systems.Still, the researchers felt they could do better.“We could only calculate every three minutes, and in that time, a cloud could literally come by and block the sun,” Winter says. “The system could be saying, ‘I need to run at this high power.’ But some of that power has suddenly dropped because there’s now less sunlight. So, we had to make up that power with extra batteries.”Solar commandsIn their latest work, the researchers looked to eliminate the need for batteries, by shaving the system’s response time to a fraction of a second. The new system is able to update its desalination rate, three to five times per second. The faster response time enables the system to adjust to changes in sunlight throughout the day, without having to make up any lag in power with additional power supplies.The key to the nimbler desalting is a simpler control strategy, devised by Bessette and Pratt. The new strategy is one of “flow-commanded current control,” in which the system first senses the amount of solar power that is being produced by the system’s solar panels. If the panels are generating more power than the system is using, the controller automatically “commands” the system to dial up its pumping, pushing more water through the electrodialysis stacks. Simultaneously, the system diverts some of the additional solar power by increasing the electrical current delivered to the stack, to drive more salt out of the faster-flowing water.“Let’s say the sun is rising every few seconds,” Winter explains. “So, three times a second, we’re looking at the solar panels and saying, ‘Oh, we have more power — let’s bump up our flow rate and current a little bit.’ When we look again and see there’s still more excess power, we’ll up it again. As we do that, we’re able to closely match our consumed power with available solar power really accurately, throughout the day. And the quicker we loop this, the less battery buffering we need.”The engineers incorporated the new control strategy into a fully automated system that they sized to desalinate brackish groundwater at a daily volume that would be enough to supply a small community of about 3,000 people. They operated the system for six months on several wells at the Brackish Groundwater National Desalination Research Facility in Alamogordo, New Mexico. Throughout the trial, the prototype operated under a wide range of solar conditions, harnessing over 94 percent of the solar panel’s electrical energy, on average, to directly power desalination.“Compared to how you would traditionally design a solar desal system, we cut our required battery capacity by almost 100 percent,” Winter says.The engineers plan to further test and scale up the system in hopes of supplying larger communities, and even whole municipalities, with low-cost, fully sun-driven drinking water.“While this is a major step forward, we’re still working diligently to continue developing lower cost, more sustainable desalination methods,” Bessette says.“Our focus now is on testing, maximizing reliability, and building out a product line that can provide desalinated water using renewables to multiple markets around the world,” Pratt adds.The team will be launching a company based on their technology in the coming months.This research was supported in part by the National Science Foundation, the Julia Burke Foundation, and the MIT Morningside Academy of Design. This work was additionally supported in-kind by Veolia Water Technologies and Solutions and Xylem Goulds.  More

  • in

    MIT students combat climate anxiety through extracurricular teams

    Climate anxiety affects nearly half of young people aged 16-25. Students like second-year Rachel Mohammed find hope and inspiration through her involvement in innovative climate solutions, working alongside peers who share her determination. “I’ve met so many people at MIT who are dedicated to finding climate solutions in ways that I had never imagined, dreamed of, or heard of. That is what keeps me going, and I’m doing my part,” she says.Hydrogen-fueled enginesHydrogen offers the potential for zero or near-zero emissions, with the ability to reduce greenhouse gases and pollution by 29 percent. However, the hydrogen industry faces many challenges related to storage solutions and costs.Mohammed leads the hydrogen team on MIT’s Electric Vehicle Team (EVT), which is dedicated to harnessing hydrogen power to build a cleaner, more sustainable future. EVT is one of several student-led build teams at the Edgerton Center focused on innovative climate solutions. Since its founding in 1992, the Edgerton Center has been a hub for MIT students to bring their ideas to life.Hydrogen is mostly used in large vehicles like trucks and planes because it requires a lot of storage space. EVT is building their second iteration of a motorcycle based on what Mohammed calls a “goofy hypothesis” that you can use hydrogen to power a small vehicle. The team employs a hydrogen fuel cell system, which generates electricity by combining hydrogen with oxygen. However, the technology faces challenges, particularly in storage, which EVT is tackling with innovative designs for smaller vehicles.Presenting at the 2024 World Hydrogen Summit reaffirmed Mohammed’s confidence in this project. “I often encounter skepticism, with people saying it’s not practical. Seeing others actively working on similar initiatives made me realize that we can do it too,” Mohammed says.The team’s first successful track test last October allowed them to evaluate the real-world performance of their hydrogen-powered motorcycle, marking a crucial step in proving the feasibility and efficiency of their design.MIT’s Sustainable Engine Team (SET), founded by junior Charles Yong, uses the combustion method to generate energy with hydrogen. This is a promising technology route for high-power-density applications, like aviation, but Yong believes it hasn’t received enough attention. Yong explains, “In the hydrogen power industry, startups choose fuel cell routes instead of combustion because gas turbine industry giants are 50 years ahead. However, these giants are moving very slowly toward hydrogen due to its not-yet-fully-developed infrastructure. Working under the Edgerton Center allows us to take risks and explore advanced tech directions to demonstrate that hydrogen combustion can be readily available.”Both EVT and SET are publishing their research and providing detailed instructions for anyone interested in replicating their results.Running on sunshineThe Solar Electric Vehicle Team powers a car built from scratch with 100 percent solar energy.The team’s single-occupancy car Nimbus won the American Solar Challenge two years in a row. This year, the team pushed boundaries further with Gemini, a multiple-occupancy vehicle that challenges conventional perceptions of solar-powered cars.Senior Andre Greene explains, “the challenge comes from minimizing how much energy you waste because you work with such little energy. It’s like the equivalent power of a toaster.”Gemini looks more like a regular car and less like a “spaceship,” as NBC’s 1st Look affectionately called Nimbus. “It more resembles what a fully solar-powered car could look like versus the single-seaters. You don’t see a lot of single-seater cars on the market, so it’s opening people’s minds,” says rising junior Tessa Uviedo, team captain.All-electric since 2013The MIT Motorsports team switched to an all-electric powertrain in 2013. Captain Eric Zhou takes inspiration from China, the world’s largest market for electric vehicles. “In China, there is a large government push towards electric, but there are also five or six big companies almost as large as Tesla size, building out these electric vehicles. The competition drives the majority of vehicles in China to become electric.”The team is also switching to four-wheel drive and regenerative braking next year, which reduces the amount of energy needed to run. “This is more efficient and better for power consumption because the torque from the motors is applied straight to the tires. It’s more efficient than having a rear motor that must transfer torque to both rear tires. Also, you’re taking advantage of all four tires in terms of producing grip, while you can only rely on the back tires in a rear-wheel-drive car,” Zhou says.Zhou adds that Motorsports wants to help prepare students for the electric vehicle industry. “A large majority of upperclassmen on the team have worked, or are working, at Tesla or Rivian.”Former Motorsports powertrain lead Levi Gershon ’23, SM ’24 recently founded CRABI Robotics — a fully autonomous marine robotic system designed to conduct in-transit cleaning of marine vessels by removing biofouling, increasing vessels’ fuel efficiency.An Indigenous approach to sustainable rocketsFirst Nations Launch, the all-Indigenous student rocket team, recently won the Grand Prize in the 2024 NASA First Nations Launch High-Power Rocket Competition. Using Indigenous methodologies, this team considers the environment in the materials and methods they employ.“The environmental impact is always something that we consider when we’re making design decisions and operational decisions. We’ve thought about things like biodegradable composites and parachutes,” says rising junior Hailey Polson, team captain. “Aerospace has been a very wasteful industry in the past. There are huge leaps and bounds being made with forward progress in regard to reusable rockets, which is definitely lowering the environmental impact.”Collecting climate change data with autonomous boatsArcturus, the recent first-place winner in design at the 16th Annual RoboBoat Competition, is developing autonomous surface vehicles that can greatly aid in marine research. “The ocean is one of our greatest resources to combat climate change; thus, the accessibility of data will help scientists understand climate patterns and predict future trends. This can help people learn how to prepare for potential disasters and how to reduce each of our carbon footprints,” says Arcturus captain and rising junior Amy Shi.“We are hoping to expand our outreach efforts to incorporate more sustainability-related programs. This can include more interactions with local students to introduce them to how engineering can make a positive impact in the climate space or other similar programs,” Shi says.Shi emphasizes that hope is a crucial force in the battle against climate change. “There are great steps being taken every day to combat this seemingly impending doom we call the climate crisis. It’s important to not give up hope, because this hope is what’s driving the leaps and bounds of innovation happening in the climate community. The mainstream media mostly reports on the negatives, but the truth is there is a lot of positive climate news every day. Being more intentional about where you seek your climate news can really help subside this feeling of doom about our planet.” More

  • in

    Seizing solar’s bright future

    Consider the dizzying ascent of solar energy in the United States: In the past decade, solar capacity increased nearly 900 percent, with electricity production eight times greater in 2023 than in 2014. The jump from 2022 to 2023 alone was 51 percent, with a record 32 gigawatts (GW) of solar installations coming online. In the past four years, more solar has been added to the grid than any other form of generation. Installed solar now tops 179 GW, enough to power nearly 33 million homes. The U.S. Department of Energy (DOE) is so bullish on the sun that its decarbonization plans envision solar satisfying 45 percent of the nation’s electricity demands by 2050.But the continued rapid expansion of solar requires advances in technology, notably to improve the efficiency and durability of solar photovoltaic (PV) materials and manufacturing. That’s where Optigon, a three-year-old MIT spinout company, comes in.“Our goal is to build tools for research and industry that can accelerate the energy transition,” says Dane deQuilettes, the company’s co-founder and chief science officer. “The technology we have developed for solar will enable measurements and analysis of materials as they are being made both in lab and on the manufacturing line, dramatically speeding up the optimization of PV.”With roots in MIT’s vibrant solar research community, Optigon is poised for a 2024 rollout of technology it believes will drastically pick up the pace of solar power and other clean energy projects.Beyond siliconSilicon, the material mainstay of most PV, is limited by the laws of physics in the efficiencies it can achieve converting photons from the sun into electrical energy. Silicon-based solar cells can theoretically reach power conversion levels of just 30 percent, and real-world efficiency levels hover in the low 20s. But beyond the physical limitations of silicon, there is another issue at play for many researchers and the solar industry in the United States and elsewhere: China dominates the silicon PV market, from supply chains to manufacturing.Scientists are eagerly pursuing alternative materials, either for enhancing silicon’s solar conversion capacity or for replacing silicon altogether.In the past decade, a family of crystal-structured semiconductors known as perovskites has risen to the fore as a next-generation PV material candidate. Perovskite devices lend themselves to a novel manufacturing process using printing technology that could circumvent the supply chain juggernaut China has built for silicon. Perovskite solar cells can be stacked on each other or layered atop silicon PV, to achieve higher conversion efficiencies. Because perovskite technology is flexible and lightweight, modules can be used on roofs and other structures that cannot support heavier silicon PV, lowering costs and enabling a wider range of building-integrated solar devices.But these new materials require testing, both during R&D and then on assembly lines, where missing or defective optical, electrical, or dimensional properties in the nano-sized crystal structures can negatively impact the end product.“The actual measurement and data analysis processes have been really, really slow, because you have to use a bunch of separate tools that are all very manual,” says Optigon co-founder and chief executive officer Anthony Troupe ’21. “We wanted to come up with tools for automating detection of a material’s properties, for determining whether it could make a good or bad solar cell, and then for optimizing it.”“Our approach packed several non-contact, optical measurements using different types of light sources and detectors into a single system, which together provide a holistic, cross-sectional view of the material,” says Brandon Motes ’21, ME ’22, co-founder and chief technical officer.“This breakthrough in achieving millisecond timescales for data collection and analysis means we can take research-quality tools and actually put them on a full production system, getting extremely detailed information about products being built at massive, gigawatt scale in real-time,” says Troupe.This streamlined system takes measurements “in the snap of the fingers, unlike the traditional tools,” says Joseph Berry, director of the US Manufacturing of Advanced Perovskites Consortium and a senior research scientist at the National Renewable Energy Laboratory. “Optigon’s techniques are high precision and allow high throughput, which means they can be used in a lot of contexts where you want rapid feedback and the ability to develop materials very, very quickly.”According to Berry, Optigon’s technology may give the solar industry not just better materials, but the ability to pump out high-quality PV products at a brisker clip than is currently possible. “If Optigon is successful in deploying their technology, then we can more rapidly develop the materials that we need, manufacturing with the requisite precision again and again,” he says. “This could lead to the next generation of PV modules at a much, much lower cost.”Measuring makes the differenceWith Small Business Innovation Research funding from DOE to commercialize its products and a grant from the Massachusetts Clean Energy Center, Optigon has settled into a space at the climate technology incubator Greentown Labs in Somerville, Massachusetts. Here, the team is preparing for this spring’s launch of its first commercial product, whose genesis lies in MIT’s GridEdge Solar Research Program.Led by Vladimir Bulović, a professor of electrical engineering and the director of MIT.nano, the GridEdge program was established with funding from the Tata Trusts to develop lightweight, flexible, and inexpensive solar cells for distribution to rural communities around the globe. When deQuilettes joined the group in 2017 as a postdoc, he was tasked with directing the program and building the infrastructure to study and make perovskite solar modules.“We were trying to understand once we made the material whether or not it was good,” he recalls. “There were no good commercial metrology [the science of measurements] tools for materials beyond silicon, so we started to build our own.” Recognizing the group’s need for greater expertise on the problem, especially in the areas of electrical, software, and mechanical engineering, deQuilettes put a call out for undergraduate researchers to help build metrology tools for new solar materials.“Forty people inquired, but when I met Brandon and Anthony, something clicked; it was clear we had a complementary skill set,” says deQuilettes. “We started working together, with Anthony coming up with beautiful designs to integrate multiple measurements, and Brandon creating boards to control all of the hardware, including different types of lasers. We started filing multiple patents and that was when we saw it all coming together.”“We knew from the start that metrology could vastly improve not just materials, but production yields,” says Troupe. Adds deQuilettes, “Our goal was getting to the highest performance orders of magnitude faster than it would ordinarily take, so we developed tools that would not just be useful for research labs but for manufacturing lines to give live feedback on quality.”The device Optigon designed for industry is the size of a football, “with sensor packages crammed into a tiny form factor, taking measurements as material flows directly underneath,” says Motes. “We have also thought carefully about ways to make interaction with this tool as seamless and, dare I say, as enjoyable as possible, streaming data to both a dashboard an operator can watch and to a custom database.”Photovoltaics is just the startThe company may have already found its market niche. “A research group paid us to use our in-house prototype because they have such a burning need to get these sorts of measurements,” says Troupe, and according to Motes, “Potential customers ask us if they can buy the system now.” deQuilettes says, “Our hope is that we become the de facto company for doing any sort of characterization metrology in the United States and beyond.”Challenges lie ahead for Optigon: product launches, full-scale manufacturing, technical assistance, and sales. Greentown Labs offers support, as does MIT’s own rich community of solar researchers and entrepreneurs. But the founders are already thinking about next phases.“We are not limiting ourselves to the photovoltaics area,” says deQuilettes. “We’re planning on working in other clean energy materials such as batteries and fuel cells.”That’s because the team wants to make the maximum impact on the climate challenge. “We’ve thought a lot about the potential our tools will have on reducing carbon emissions, and we’ve done a really in-depth analysis looking at how our system can increase production yields of solar panels and other energy technologies, reducing materials and energy wasted in conventional optimization,” deQuilettes says. “If we look across all these sectors, we can expect to offset about 1,000 million metric tons of CO2 [carbon dioxide] per year in the not-too-distant future.”The team has written scale into its business plan. “We want to be the key enabler for bringing these new energy technologies to market,” says Motes. “We envision being deployed on every manufacturing line making these types of materials. It’s our goal to walk around and know that if we see a solar panel deployed, there’s a pretty high likelihood that it will be one we measured at some point.” More

  • in

    Offering clean energy around the clock

    As remarkable as the rise of solar and wind farms has been over the last 20 years, achieving complete decarbonization is going to require a host of complementary technologies. That’s because renewables offer only intermittent power. They also can’t directly provide the high temperatures necessary for many industrial processes.

    Now, 247Solar is building high-temperature concentrated solar power systems that use overnight thermal energy storage to provide round-the-clock power and industrial-grade heat.

    The company’s modular systems can be used as standalone microgrids for communities or to provide power in remote places like mines and farms. They can also be used in conjunction with wind and conventional solar farms, giving customers 24/7 power from renewables and allowing them to offset use of the grid.

    “One of my motivations for working on this system was trying to solve the problem of intermittency,” 247Solar CEO Bruce Anderson ’69, SM ’73 says. “I just couldn’t see how we could get to zero emissions with solar photovoltaics (PV) and wind. Even with PV, wind, and batteries, we can’t get there, because there’s always bad weather, and current batteries aren’t economical over long periods. You have to have a solution that operates 24 hours a day.”

    The company’s system is inspired by the design of a high-temperature heat exchanger by the late MIT Professor Emeritus David Gordon Wilson, who co-founded the company with Anderson. The company integrates that heat exchanger into what Anderson describes as a conventional, jet-engine-like turbine, enabling the turbine to produce power by circulating ambient pressure hot air with no combustion or emissions — what the company calls a first in the industry.

    Here’s how the system works: Each 247Solar system uses a field of sun-tracking mirrors called heliostats to reflect sunlight to the top of a central tower. The tower features a proprietary solar receiver that heats air to around 1,000 Celsius at atmospheric pressure. The air is then used to drive 247Solar’s turbines and generate 400 kilowatts of electricity and 600 kilowatts of heat. Some of the hot air is also routed through a long-duration thermal energy storage system, where it heats solid materials that retain the heat. The stored heat is then used to drive the turbines when the sun stops shining.

    “We offer round-the-clock electricity, but we also offer a combined heat and power option, with the ability to take heat up to 970 Celsius for use in industrial processes,” Anderson says. “It’s a very flexible system.”

    The company’s first deployment will be with a large utility in India. If that goes well, 247Solar hopes to scale up rapidly with other utilities, corporations, and communities around the globe.

    A new approach to concentrated solar

    Anderson kept in touch with his MIT network after graduating in 1973. He served as the director of MIT’s Industrial Liaison Program (ILP) between 1996 and 2000 and was elected as an alumni member of the MIT Corporation in 2013. The ILP connects companies with MIT’s network of students, faculty, and alumni to facilitate innovation, and the experience changed the course of Anderson’s career.

    “That was an extremely fascinating job, and from it two things happened,” Anderson says. “One is that I realized I was really an entrepreneur and was not well-suited to the university environment, and the other is that I was reminded of the countless amazing innovations coming out of MIT.”

    After leaving as director, Anderson began a startup incubator where he worked with MIT professors to start companies. Eventually, one of those professors was Wilson, who had invented the new heat exchanger and a ceramic turbine. Anderson and Wilson ended up putting together a small team to commercialize the technology in the early 2000s.

    Anderson had done his MIT master’s thesis on solar energy in the 1970s, and the team realized the heat exchanger made possible a novel approach to concentrated solar power. In 2010, they received a $6 million development grant from the U.S. Department of Energy. But their first solar receiver was damaged during shipping to a national laboratory for testing, and the company ran out of money.

    It wasn’t until 2015 that Anderson was able to raise money to get the company back off the ground. By that time, a new high-temperature metal alloy had been developed that Anderson swapped out for Wilson’s ceramic heat exchanger.

    The Covid-19 pandemic further slowed 247’s plans to build a demonstration facility at its test site in Arizona, but strong customer interest has kept the company busy. Concentrated solar power doesn’t work everywhere — Arizona’s clear sunshine is a better fit than Florida’s hazy skies, for example — but Anderson is currently in talks with communities in parts of the U.S., India, Africa, and Australia where the technology would be a good fit.

    These days, the company is increasingly proposing combining its systems with traditional solar PV, which lets customers reap the benefits of low-cost solar electricity during the day while using 247’s energy at night.

    “That way we can get at least 24, if not more, hours of energy from a sunny day,” Anderson says. “We’re really moving toward these hybrid systems, which work like a Prius: Sometimes you’re using one source of energy, sometimes you’re using the other.”

    The company also sells its HeatStorE thermal batteries as standalone systems. Instead of being heated by the solar system, the thermal storage is heated by circulating air through an electric coil that’s been heated by electricity, either from the grid, standalone PV, or wind. The heat can be stored for nine hours or more on a single charge and then dispatched as electricity plus industrial process heat at 250 Celsius, or as heat only, up to 970 Celsius.

    Anderson says 247’s thermal battery is about one-seventh the cost of lithium-ion batteries per kilowatt hour produced.

    Scaling a new model

    The company is keeping its system flexible for whatever path customers want to take to complete decarbonization.

    In addition to 247’s India project, the company is in advanced talks with off-grid communities in the Unites States and Egypt, mining operators around the world, and the government of a small country in Africa. Anderson says the company’s next customer will likely be an off-grid community in the U.S. that currently relies on diesel generators for power.

    The company has also partnered with a financial company that will allow it to access capital to fund its own projects and sell clean energy directly to customers, which Anderson says will help 247 grow faster than relying solely on selling entire systems to each customer.

    As it works to scale up its deployments, Anderson believes 247 offers a solution to help customers respond to increasing pressure from governments as well as community members.

    “Emerging economies in places like Africa don’t have any alternative to fossil fuels if they want 24/7 electricity,” Anderson says. “Our owning and operating costs are less than half that of diesel gen-sets. Customers today really want to stop producing emissions if they can, so you’ve got villages, mines, industries, and entire countries where the people inside are saying, ‘We can’t burn diesel anymore.’” More

  • in

    Making the clean energy transition work for everyone

    The clean energy transition is already underway, but how do we make sure it happens in a manner that is affordable, sustainable, and fair for everyone?

    That was the overarching question at this year’s MIT Energy Conference, which took place March 11 and 12 in Boston and was titled “Short and Long: A Balanced Approach to the Energy Transition.”

    Each year, the student-run conference brings together leaders in the energy sector to discuss the progress and challenges they see in their work toward a greener future. Participants come from research, industry, government, academia, and the investment community to network and exchange ideas over two whirlwind days of keynote talks, fireside chats, and panel discussions.

    Several participants noted that clean energy technologies are already cost-competitive with fossil fuels, but changing the way the world works requires more than just technology.

    “None of this is easy, but I think developing innovative new technologies is really easy compared to the things we’re talking about here, which is how to blend social justice, soft engineering, and systems thinking that puts people first,” Daniel Kammen, a distinguished professor of energy at the University of California at Berkeley, said in a keynote talk. “While clean energy has a long way to go, it is more than ready to transition us from fossil fuels.”

    The event also featured a keynote discussion between MIT President Sally Kornbluth and MIT’s Kyocera Professor of Ceramics Yet-Ming Chiang, in which Kornbluth discussed her first year at MIT as well as a recently announced, campus-wide effort to solve critical climate problems known as the Climate Project at MIT.

    “The reason I wanted to come to MIT was I saw that MIT has the potential to solve the world’s biggest problems, and first among those for me was the climate crisis,” Kornbluth said. “I’m excited about where we are, I’m excited about the enthusiasm of the community, and I think we’ll be able to make really impactful discoveries through this project.”

    Fostering new technologies

    Several panels convened experts in new or emerging technology fields to discuss what it will take for their solutions to contribute to deep decarbonization.

    “The fun thing and challenging thing about first-of-a-kind technologies is they’re all kind of different,” said Jonah Wagner, principal assistant director for industrial innovation and clean energy in the U.S. Office of Science and Technology Policy. “You can map their growth against specific challenges you expect to see, but every single technology is going to face their own challenges, and every single one will have to defy an engineering barrier to get off the ground.”

    Among the emerging technologies discussed was next-generation geothermal energy, which uses new techniques to extract heat from the Earth’s crust in new places.

    A promising aspect of the technology is that it can leverage existing infrastructure and expertise from the oil and gas industry. Many newly developed techniques for geothermal production, for instance, use the same drills and rigs as those used for hydraulic fracturing.

    “The fact that we have a robust ecosystem of oil and gas labor and technology in the U.S. makes innovation in geothermal much more accessible compared to some of the challenges we’re seeing in nuclear or direct-air capture, where some of the supply chains are disaggregated around the world,” said Gabrial Malek, chief of staff at the geothermal company Fervo Energy.

    Another technology generating excitement — if not net energy quite yet — is fusion, the process of combining, or fusing, light atoms together to form heavier ones for a net energy gain, in the same process that powers the sun. MIT spinout Commonwealth Fusion Systems (CFS) has already validated many aspects of its approach for achieving fusion power, and the company’s unique partnership with MIT was discussed in a panel on the industry’s progress.

    “We’re standing on the shoulders of decades of research from the scientific community, and we want to maintain those ties even as we continue developing our technology,” CFS Chief Science Officer Brandon Sorbom PhD ’17 said, noting that CFS is one of the largest company sponsors of research at MIT and collaborates with institutions around the world. “Engaging with the community is a really valuable lever to get new ideas and to sanity check our own ideas.”

    Sorbom said that as CFS advances fusion energy, the company is thinking about how it can replicate its processes to lower costs and maximize the technology’s impact around the planet.

    “For fusion to work, it has to work for everyone,” Sorbom said. “I think the affordability piece is really important. We can’t just build this technological jewel that only one class of nations can afford. It has to be a technology that can be deployed throughout the entire world.”

    The event also gave students — many from MIT — a chance to learn more about careers in energy and featured a startup showcase, in which dozens of companies displayed their energy and sustainability solutions.

    “More than 700 people are here from every corner of the energy industry, so there are so many folks to connect with and help me push my vision into reality,” says GreenLIB CEO Fred Rostami, whose company recycles lithium-ion batteries. “The good thing about the energy transition is that a lot of these technologies and industries overlap, so I think we can enable this transition by working together at events like this.”

    A focused climate strategy

    Kornbluth noted that when she came to MIT, a large percentage of students and faculty were already working on climate-related technologies. With the Climate Project at MIT, she wanted to help ensure the whole of those efforts is greater than the sum of its parts.

    The project is organized around six distinct missions, including decarbonizing energy and industry, empowering frontline communities, and building healthy, resilient cities. Kornbluth says the mission areas will help MIT community members collaborate around multidisciplinary challenges. Her team, which includes a committee of faculty advisors, has begun to search for the leads of each mission area, and Kornbluth said she is planning to appoint a vice president for climate at the Institute.

    “I want someone who has the purview of the whole Institute and will report directly to me to help make sure this project stays on track,” Kornbluth explained.

    In his conversation about the initiative with Kornbluth, Yet-Ming Chiang said projects will be funded based on their potential to reduce emissions and make the planet more sustainable at scale.

    “Projects should be very high risk, with very high impact,” Chiang explained. “They should have a chance to prove themselves, and those efforts should not be limited by resources, only by time.”

    In discussing her vision of the climate project, Kornbluth alluded to the “short and long” theme of the conference.

    “It’s about balancing research and commercialization,” Kornbluth said. “The climate project has a very variable timeframe, and I think universities are the sector that can think about the things that might be 30 years out. We have to think about the incentives across the entire innovation pipeline and how we can keep an eye on the long term while making sure the short-term things get out rapidly.” More

  • in

    Cutting carbon emissions on the US power grid

    To help curb climate change, the United States is working to reduce carbon emissions from all sectors of the energy economy. Much of the current effort involves electrification — switching to electric cars for transportation, electric heat pumps for home heating, and so on. But in the United States, the electric power sector already generates about a quarter of all carbon emissions. “Unless we decarbonize our electric power grids, we’ll just be shifting carbon emissions from one source to another,” says Amanda Farnsworth, a PhD candidate in chemical engineering and research assistant at the MIT Energy Initiative (MITEI).

    But decarbonizing the nation’s electric power grids will be challenging. The availability of renewable energy resources such as solar and wind varies in different regions of the country. Likewise, patterns of energy demand differ from region to region. As a result, the least-cost pathway to a decarbonized grid will differ from one region to another.

    Over the past two years, Farnsworth and Emre Gençer, a principal research scientist at MITEI, developed a power system model that would allow them to investigate the importance of regional differences — and would enable experts and laypeople alike to explore their own regions and make informed decisions about the best way to decarbonize. “With this modeling capability you can really understand regional resources and patterns of demand, and use them to do a ‘bespoke’ analysis of the least-cost approach to decarbonizing the grid in your particular region,” says Gençer.

    To demonstrate the model’s capabilities, Gençer and Farnsworth performed a series of case studies. Their analyses confirmed that strategies must be designed for specific regions and that all the costs and carbon emissions associated with manufacturing and installing solar and wind generators must be included for accurate accounting. But the analyses also yielded some unexpected insights, including a correlation between a region’s wind energy and the ease of decarbonizing, and the important role of nuclear power in decarbonizing the California grid.

    A novel model

    For many decades, researchers have been developing “capacity expansion models” to help electric utility planners tackle the problem of designing power grids that are efficient, reliable, and low-cost. More recently, many of those models also factor in the goal of reducing or eliminating carbon emissions. While those models can provide interesting insights relating to decarbonization, Gençer and Farnsworth believe they leave some gaps that need to be addressed.

    For example, most focus on conditions and needs in a single U.S. region without highlighting the unique peculiarities of their chosen area of focus. Hardly any consider the carbon emitted in fabricating and installing such “zero-carbon” technologies as wind turbines and solar panels. And finally, most of the models are challenging to use. Even experts in the field must search out and assemble various complex datasets in order to perform a study of interest.

    Gençer and Farnsworth’s capacity expansion model — called Ideal Grid, or IG — addresses those and other shortcomings. IG is built within the framework of MITEI’s Sustainable Energy System Analysis Modeling Environment (SESAME), an energy system modeling platform that Gençer and his colleagues at MITEI have been developing since 2017. SESAME models the levels of greenhouse gas emissions from multiple, interacting energy sectors in future scenarios.

    Importantly, SESAME includes both techno-economic analyses and life-cycle assessments of various electricity generation and storage technologies. It thus considers costs and emissions incurred at each stage of the life cycle (manufacture, installation, operation, and retirement) for all generators. Most capacity expansion models only account for emissions from operation of fossil fuel-powered generators. As Farnsworth notes, “While this is a good approximation for our current grid, emissions from the full life cycle of all generating technologies become non-negligible as we transition to a highly renewable grid.”

    Through its connection with SESAME, the IG model has access to data on costs and emissions associated with many technologies critical to power grid operation. To explore regional differences in the cost-optimized decarbonization strategies, the IG model also includes conditions within each region, notably details on demand profiles and resource availability.

    In one recent study, Gençer and Farnsworth selected nine of the standard North American Electric Reliability Corporation (NERC) regions. For each region, they incorporated hourly electricity demand into the IG model. Farnsworth also gathered meteorological data for the nine U.S. regions for seven years — 2007 to 2013 — and calculated hourly power output profiles for the renewable energy sources, including solar and wind, taking into account the geography-limited maximum capacity of each technology.

    The availability of wind and solar resources differs widely from region to region. To permit a quick comparison, the researchers use a measure called “annual capacity factor,” which is the ratio between the electricity produced by a generating unit in a year and the electricity that could have been produced if that unit operated continuously at full power for that year. Values for the capacity factors in the nine U.S. regions vary between 20 percent and 30 percent for solar power and for between 25 percent and 45 percent for wind.

    Calculating optimized grids for different regions

    For their first case study, Gençer and Farnsworth used the IG model to calculate cost-optimized regional grids to meet defined caps on carbon dioxide (CO2) emissions. The analyses were based on cost and emissions data for 10 technologies: nuclear, wind, solar, three types of natural gas, three types of coal, and energy storage using lithium-ion batteries. Hydroelectric was not considered in this study because there was no comprehensive study outlining potential expansion sites with their respective costs and expected power output levels.

    To make region-to-region comparisons easy, the researchers used several simplifying assumptions. Their focus was on electricity generation, so the model calculations assume the same transmission and distribution costs and efficiencies for all regions. Also, the calculations did not consider the generator fleet currently in place. The goal was to investigate what happens if each region were to start from scratch and generate an “ideal” grid.

    To begin, Gençer and Farnsworth calculated the most economic combination of technologies for each region if it limits its total carbon emissions to 100, 50, and 25 grams of CO2 per kilowatt-hour (kWh) generated. For context, the current U.S. average emissions intensity is 386 grams of CO2 emissions per kWh.

    Given the wide variation in regional demand, the researchers needed to use a new metric to normalize their results and permit a one-to-one comparison between regions. Accordingly, the model calculates the required generating capacity divided by the average demand for each region. The required capacity accounts for both the variation in demand and the inability of generating systems — particularly solar and wind — to operate at full capacity all of the time.

    The analysis was based on regional demand data for 2021 — the most recent data available. And for each region, the model calculated the cost-optimized power grid seven times, using weather data from seven years. This discussion focuses on mean values for cost and total capacity installed and also total values for coal and for natural gas, although the analysis considered three separate technologies for each fuel.

    The results of the analyses confirm that there’s a wide variation in the cost-optimized system from one region to another. Most notable is that some regions require a lot of energy storage while others don’t require any at all. The availability of wind resources turns out to play an important role, while the use of nuclear is limited: the carbon intensity of nuclear (including uranium mining and transportation) is lower than that of either solar or wind, but nuclear is the most expensive technology option, so it’s added only when necessary. Finally, the change in the CO2 emissions cap brings some interesting responses.

    Under the most lenient limit on emissions — 100 grams of CO2 per kWh — there’s no coal in the mix anywhere. It’s the first to go, in general being replaced by the lower-carbon-emitting natural gas. Texas, Central, and North Central — the regions with the most wind — don’t need energy storage, while the other six regions do. The regions with the least wind — California and the Southwest — have the highest energy storage requirements. Unlike the other regions modeled, California begins installing nuclear, even at the most lenient limit.

    As the model plays out, under the moderate cap — 50 grams of CO2 per kWh — most regions bring in nuclear power. California and the Southeast — regions with low wind capacity factors — rely on nuclear the most. In contrast, wind-rich Texas, Central, and North Central don’t incorporate nuclear yet but instead add energy storage — a less-expensive option — to their mix. There’s still a bit of natural gas everywhere, in spite of its CO2 emissions.

    Under the most restrictive cap — 25 grams of CO2 per kWh — nuclear is in the mix everywhere. The highest use of nuclear is again correlated with low wind capacity factor. Central and North Central depend on nuclear the least. All regions continue to rely on a little natural gas to keep prices from skyrocketing due to the necessary but costly nuclear component. With nuclear in the mix, the need for storage declines in most regions.

    Results of the cost analysis are also interesting. Texas, Central, and North Central all have abundant wind resources, and they can delay incorporating the costly nuclear option, so the cost of their optimized system tends to be lower than costs for the other regions. In addition, their total capacity deployment — including all sources — tends to be lower than for the other regions. California and the Southwest both rely heavily on solar, and in both regions, costs and total deployment are relatively high.

    Lessons learned

    One unexpected result is the benefit of combining solar and wind resources. The problem with relying on solar alone is obvious: “Solar energy is available only five or six hours a day, so you need to build a lot of other generating sources and abundant storage capacity,” says Gençer. But an analysis of unit-by-unit operations at an hourly resolution yielded a less-intuitive trend: While solar installations only produce power in the midday hours, wind turbines generate the most power in the nighttime hours. As a result, solar and wind power are complementary. Having both resources available is far more valuable than having either one or the other. And having both impacts the need for storage, says Gençer: “Storage really plays a role either when you’re targeting a very low carbon intensity or where your resources are mostly solar and they’re not complemented by wind.”

    Gençer notes that the target for the U.S. electricity grid is to reach net zero by 2035. But the analysis showed that reaching just 100 grams of CO2 per kWh would require at least 50 percent of system capacity to be wind and solar. “And we’re nowhere near that yet,” he says.

    Indeed, Gençer and Farnsworth’s analysis doesn’t even include a zero emissions case. Why not? As Gençer says, “We cannot reach zero.” Wind and solar are usually considered to be net zero, but that’s not true. Wind, solar, and even storage have embedded carbon emissions due to materials, manufacturing, and so on. “To go to true net zero, you’d need negative emission technologies,” explains Gençer, referring to techniques that remove carbon from the air or ocean. That observation confirms the importance of performing life-cycle assessments.

    Farnsworth voices another concern: Coal quickly disappears in all regions because natural gas is an easy substitute for coal and has lower carbon emissions. “People say they’ve decreased their carbon emissions by a lot, but most have done it by transitioning from coal to natural gas power plants,” says Farnsworth. “But with that pathway for decarbonization, you hit a wall. Once you’ve transitioned from coal to natural gas, you’ve got to do something else. You need a new strategy — a new trajectory to actually reach your decarbonization target, which most likely will involve replacing the newly installed natural gas plants.”

    Gençer makes one final point: The availability of cheap nuclear — whether fission or fusion — would completely change the picture. When the tighter caps require the use of nuclear, the cost of electricity goes up. “The impact is quite significant,” says Gençer. “When we go from 100 grams down to 25 grams of CO2 per kWh, we see a 20 percent to 30 percent increase in the cost of electricity.” If it were available, a less-expensive nuclear option would likely be included in the technology mix under more lenient caps, significantly reducing the cost of decarbonizing power grids in all regions.

    The special case of California

    In another analysis, Gençer and Farnsworth took a closer look at California. In California, about 10 percent of total demand is now met with nuclear power. Yet current power plants are scheduled for retirement very soon, and a 1976 law forbids the construction of new nuclear plants. (The state recently extended the lifetime of one nuclear plant to prevent the grid from becoming unstable.) “California is very motivated to decarbonize their grid,” says Farnsworth. “So how difficult will that be without nuclear power?”

    To find out, the researchers performed a series of analyses to investigate the challenge of decarbonizing in California with nuclear power versus without it. At 200 grams of CO2 per kWh — about a 50 percent reduction — the optimized mix and cost look the same with and without nuclear. Nuclear doesn’t appear due to its high cost. At 100 grams of CO2 per kWh — about a 75 percent reduction — nuclear does appear in the cost-optimized system, reducing the total system capacity while having little impact on the cost.

    But at 50 grams of CO2 per kWh, the ban on nuclear makes a significant difference. “Without nuclear, there’s about a 45 percent increase in total system size, which is really quite substantial,” says Farnsworth. “It’s a vastly different system, and it’s more expensive.” Indeed, the cost of electricity would increase by 7 percent.

    Going one step further, the researchers performed an analysis to determine the most decarbonized system possible in California. Without nuclear, the state could reach 40 grams of CO2 per kWh. “But when you allow for nuclear, you can get all the way down to 16 grams of CO2 per kWh,” says Farnsworth. “We found that California needs nuclear more than any other region due to its poor wind resources.”

    Impacts of a carbon tax

    One more case study examined a policy approach to incentivizing decarbonization. Instead of imposing a ceiling on carbon emissions, this strategy would tax every ton of carbon that’s emitted. Proposed taxes range from zero to $100 per ton.

    To investigate the effectiveness of different levels of carbon tax, Farnsworth and Gençer used the IG model to calculate the minimum-cost system for each region, assuming a certain cost for emitting each ton of carbon. The analyses show that a low carbon tax — just $10 per ton — significantly reduces emissions in all regions by phasing out all coal generation. In the Northwest region, for example, a carbon tax of $10 per ton decreases system emissions by 65 percent while increasing system cost by just 2.8 percent (relative to an untaxed system).

    After coal has been phased out of all regions, every increase in the carbon tax brings a slow but steady linear decrease in emissions and a linear increase in cost. But the rates of those changes vary from region to region. For example, the rate of decrease in emissions for each added tax dollar is far lower in the Central region than in the Northwest, largely due to the Central region’s already low emissions intensity without a carbon tax. Indeed, the Central region without a carbon tax has a lower emissions intensity than the Northwest region with a tax of $100 per ton.

    As Farnsworth summarizes, “A low carbon tax — just $10 per ton — is very effective in quickly incentivizing the replacement of coal with natural gas. After that, it really just incentivizes the replacement of natural gas technologies with more renewables and more energy storage.” She concludes, “If you’re looking to get rid of coal, I would recommend a carbon tax.”

    Future extensions of IG

    The researchers have already added hydroelectric to the generating options in the IG model, and they are now planning further extensions. For example, they will include additional regions for analysis, add other long-term energy storage options, and make changes that allow analyses to take into account the generating infrastructure that already exists. Also, they will use the model to examine the cost and value of interregional transmission to take advantage of the diversity of available renewable resources.

    Farnsworth emphasizes that the analyses reported here are just samples of what’s possible using the IG model. The model is a web-based tool that includes embedded data covering the whole United States, and the output from an analysis includes an easy-to-understand display of the required installations, hourly operation, and overall techno-economic analysis and life-cycle assessment results. “The user is able to go in and explore a vast number of scenarios with no data collection or pre-processing,” she says. “There’s no barrier to begin using the tool. You can just hop on and start exploring your options so you can make an informed decision about the best path forward.”

    This work was supported by the International Energy Agency Gas and Oil Technology Collaboration Program and the MIT Energy Initiative Low-Carbon Energy Centers.

    This article appears in the Winter 2024 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Power when the sun doesn’t shine

    In 2016, at the huge Houston energy conference CERAWeek, MIT materials scientist Yet-Ming Chiang found himself talking to a Tesla executive about a thorny problem: how to store the output of solar panels and wind turbines for long durations.        

    Chiang, the Kyocera Professor of Materials Science and Engineering, and Mateo Jaramillo, a vice president at Tesla, knew that utilities lacked a cost-effective way to store renewable energy to cover peak levels of demand and to bridge the gaps during windless and cloudy days. They also knew that the scarcity of raw materials used in conventional energy storage devices needed to be addressed if renewables were ever going to displace fossil fuels on the grid at scale.

    Energy storage technologies can facilitate access to renewable energy sources, boost the stability and reliability of power grids, and ultimately accelerate grid decarbonization. The global market for these systems — essentially large batteries — is expected to grow tremendously in the coming years. A study by the nonprofit LDES (Long Duration Energy Storage) Council pegs the long-duration energy storage market at between 80 and 140 terawatt-hours by 2040. “That’s a really big number,” Chiang notes. “Every 10 people on the planet will need access to the equivalent of one EV [electric vehicle] battery to support their energy needs.”

    In 2017, one year after they met in Houston, Chiang and Jaramillo joined forces to co-found Form Energy in Somerville, Massachusetts, with MIT graduates Marco Ferrara SM ’06, PhD ’08 and William Woodford PhD ’13, and energy storage veteran Ted Wiley.

    “There is a burgeoning market for electrical energy storage because we want to achieve decarbonization as fast and as cost-effectively as possible,” says Ferrara, Form’s senior vice president in charge of software and analytics.

    Investors agreed. Over the next six years, Form Energy would raise more than $800 million in venture capital.

    Bridging gaps

    The simplest battery consists of an anode, a cathode, and an electrolyte. During discharge, with the help of the electrolyte, electrons flow from the negative anode to the positive cathode. During charge, external voltage reverses the process. The anode becomes the positive terminal, the cathode becomes the negative terminal, and electrons move back to where they started. Materials used for the anode, cathode, and electrolyte determine the battery’s weight, power, and cost “entitlement,” which is the total cost at the component level.

    During the 1980s and 1990s, the use of lithium revolutionized batteries, making them smaller, lighter, and able to hold a charge for longer. The storage devices Form Energy has devised are rechargeable batteries based on iron, which has several advantages over lithium. A big one is cost.

    Chiang once declared to the MIT Club of Northern California, “I love lithium-ion.” Two of the four MIT spinoffs Chiang founded center on innovative lithium-ion batteries. But at hundreds of dollars a kilowatt-hour (kWh) and with a storage capacity typically measured in hours, lithium-ion was ill-suited for the use he now had in mind.

    The approach Chiang envisioned had to be cost-effective enough to boost the attractiveness of renewables. Making solar and wind energy reliable enough for millions of customers meant storing it long enough to fill the gaps created by extreme weather conditions, grid outages, and when there is a lull in the wind or a few days of clouds.

    To be competitive with legacy power plants, Chiang’s method had to come in at around $20 per kilowatt-hour of stored energy — one-tenth the cost of lithium-ion battery storage.

    But how to transition from expensive batteries that store and discharge over a couple of hours to some as-yet-undefined, cheap, longer-duration technology?

    “One big ball of iron”

    That’s where Ferrara comes in. Ferrara has a PhD in nuclear engineering from MIT and a PhD in electrical engineering and computer science from the University of L’Aquila in his native Italy. In 2017, as a research affiliate at the MIT Department of Materials Science and Engineering, he worked with Chiang to model the grid’s need to manage renewables’ intermittency.

    How intermittent depends on where you are. In the United States, for instance, there’s the windy Great Plains; the sun-drenched, relatively low-wind deserts of Arizona, New Mexico, and Nevada; and the often-cloudy Pacific Northwest.

    Ferrara, in collaboration with Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society and her MIT team, modeled four representative locations in the United States and concluded that energy storage with capacity costs below roughly $20/kWh and discharge durations of multiple days would allow a wind-solar mix to provide cost-competitive, firm electricity in resource-abundant locations.

    Now that they had a time frame, they turned their attention to materials. At the price point Form Energy was aiming for, lithium was out of the question. Chiang looked at plentiful and cheap sulfur. But a sulfur, sodium, water, and air battery had technical challenges.

    Thomas Edison once used iron as an electrode, and iron-air batteries were first studied in the 1960s. They were too heavy to make good transportation batteries. But this time, Chiang and team were looking at a battery that sat on the ground, so weight didn’t matter. Their priorities were cost and availability.

    “Iron is produced, mined, and processed on every continent,” Chiang says. “The Earth is one big ball of iron. We wouldn’t ever have to worry about even the most ambitious projections of how much storage that the world might use by mid-century.” If Form ever moves into the residential market, “it’ll be the safest battery you’ve ever parked at your house,” Chiang laughs. “Just iron, air, and water.”

    Scientists call it reversible rusting. While discharging, the battery takes in oxygen and converts iron to rust. Applying an electrical current converts the rusty pellets back to iron, and the battery “breathes out” oxygen as it charges. “In chemical terms, you have iron, and it becomes iron hydroxide,” Chiang says. “That means electrons were extracted. You get those electrons to go through the external circuit, and now you have a battery.”

    Form Energy’s battery modules are approximately the size of a washer-and-dryer unit. They are stacked in 40-foot containers, and several containers are electrically connected with power conversion systems to build storage plants that can cover several acres.

    The right place at the right time

    The modules don’t look or act like anything utilities have contracted for before.

    That’s one of Form’s key challenges. “There is not widespread knowledge of needing these new tools for decarbonized grids,” Ferrara says. “That’s not the way utilities have typically planned. They’re looking at all the tools in the toolkit that exist today, which may not contemplate a multi-day energy storage asset.”

    Form Energy’s customers are largely traditional power companies seeking to expand their portfolios of renewable electricity. Some are in the process of decommissioning coal plants and shifting to renewables.

    Ferrara’s research pinpointing the need for very low-cost multi-day storage provides key data for power suppliers seeking to determine the most cost-effective way to integrate more renewable energy.

    Using the same modeling techniques, Ferrara and team show potential customers how the technology fits in with their existing system, how it competes with other technologies, and how, in some cases, it can operate synergistically with other storage technologies.

    “They may need a portfolio of storage technologies to fully balance renewables on different timescales of intermittency,” he says. But other than the technology developed at Form, “there isn’t much out there, certainly not within the cost entitlement of what we’re bringing to market.”  Thanks to Chiang and Jaramillo’s chance encounter in Houston, Form has a several-year lead on other companies working to address this challenge. 

    In June 2023, Form Energy closed its biggest deal to date for a single project: Georgia Power’s order for a 15-megawatt/1,500-megawatt-hour system. That order brings Form’s total amount of energy storage under contracts with utility customers to 40 megawatts/4 gigawatt-hours. To meet the demand, Form is building a new commercial-scale battery manufacturing facility in West Virginia.

    The fact that Form Energy is creating jobs in an area that lost more than 10,000 steel jobs over the past decade is not lost on Chiang. “And these new jobs are in clean tech. It’s super exciting to me personally to be doing something that benefits communities outside of our traditional technology centers.

    “This is the right time for so many reasons,” Chiang says. He says he and his Form Energy co-founders feel “tremendous urgency to get these batteries out into the world.”

    This article appears in the Winter 2024 issue of Energy Futures, the magazine of the MIT Energy Initiative. More