More stories

  • in

    Celebrating a decade of a more sustainable MIT, with a focus on the future

    When MIT’s Office of Sustainability (MITOS) first launched in 2013, it was charged with integrating sustainability across all levels of campus by engaging the collective brainpower of students, staff, faculty, alumni, and partners. At the eighth annual Sustainability Connect, MITOS’s signature event, held nearly a decade later, the room was filled with MIT community members representing 67 different departments, labs, and centers — demonstrating the breadth of engagement across MIT.

    Held on Feb. 14 and hosting more than 100 staff, students, faculty, and researchers, the event was a forum on the future of sustainability leadership at MIT, designed to reflect on the work that had brought MIT to its present moment — focused on a net-zero future by 2026 and elimination of direct campus emissions by 2050 — and to plan forward.

    Director of Sustainability Julie Newman kicked off the day by reflecting on some of the questions that influenced the development of the MITOS framework, including: “How can MIT be a game-changing force for campus sustainability in the 21st century?” and “What are we solving for?” Newman shared that while these questions still drive the work of the office, considerations of the impact of this work have evolved. “We are becoming savvier at asking the follow-up question to these prompts,” she explained. “Are our solutions causing additional issues that we were remiss to ask, such as the impact on marginalized communities, unanticipated human health implications, and new forms of extraction?” Newman then encouraged attendees to think about these types of questions when envisioning and planning for the next decade of sustainability at MIT.

    While the event focused broadly on connecting the sustainability community at MIT, the day’s sessions tracked closely to the climate action plans that guided the office, 2015’s A Plan for Action on Climate Change and the current Fast Forward: MIT’s Climate Action Plan for the Decade. Both plans call for using the campus as a test bed, and at “A Model for Change: Field Reports from Campus as a Test Bed,” panelists Miho Mazereeuw, associate professor of architecture and urbanism, director of the Urban Risk Lab, and MITOS Faculty Fellow; Ken Strzepek, MITOS Faculty Fellow and research scientist at the MIT Center for Global Change Science; and Ippolyti Dellatolas graduate student and MITOS Climate Action Sustainability researcher shared ways in which they utilize the MIT campus as a test bed to design, study, and implement solutions related to flood risk, campus porosity, emissions reductions, and climate policy — efforts that can also inform work beyond MIT. Dellatolas reflected on success in this space. “With a successful campus as a test bed project, there is either output: we achieved these greenhouse gas emissions reductions or we learned something valuable in the process, so even if it fails, we understand why it failed and we can lend that knowledge to the next project,” she explained.

    Later in the morning, an “On the Horizon” panel focused on what key areas of focus, partnerships, and evolutions will propel the campus forward — anchored in the intersectional topics of decarbonization, climate justice, and experiential learning. To kick off the discussion, panelists John Fernández, director of the Environmental Solutions Initiative and professor of architecture; Joe Higgins, vice president for campus services and stewardship; Susy Jones, senior sustainability project manager; and Kate Trimble, senior associate dean for experiential learning shared which elements of their work have shifted in the last five years. Higgins commented on exciting progress being made in the space of renewables, electrification, smart thermostats, offshore wind, and other advances both at MIT and the municipal level. “You take this moment, and you think, these things weren’t in the moment five years ago when we were here on this stage. It brings a sense of abundance and optimism,” he concluded.

    Jones, for her part, shared how thinking about food and nutrition evolved over this period. “We’ve developed a lot of programming around nutrition. In the past few years, this new knowledge around the climate impact of our food system has joined the conversation,” she shared. “I think it’s really important to add that to the many years and decades of work that have been going on around food justice and food access and bring that climate conversation into that piece and acknowledge that, yes, the food system is accountable for about a quarter of global greenhouse gases.”

    Throughout the event, attendees were encouraged to share their questions and ideas for the future. In the closing workshop, “The Future of Sustainability at MIT,” attendees responded to questions such as, “What gives you hope?” and “What are we already doing well at MIT, what could we do more of?” The answers and ideas — which ranged from fusion to community co-design to a continued focus on justice — will inform MITOS’s work going forward, says Newman. “This is an activity we did within our core team, and the answers were so impactful and candid that we thought to bring it to the larger community to learn even more,” she says.

    That larger community was also recognized for their contributions with the first-ever Sustainability Awards, which honored nominated staff and students from departments across MIT for their contributions to building a more sustainable MIT. “This year we had a special opportunity to spotlight some of those individuals and teams leading transformative change at MIT,” explained Newman. “But everyone in the room and everyone working on sustainability at MIT in some way are our partners in this work. Our office could not do what we do without them.” More

  • in

    Taking the long view: The Deep Time Project

    How would we design and build differently if we learned to live at multiple time scales? How would human communities respond to global challenges if the short-term mindset of contemporary life was expanded to encompass new dimensions of past and future — diving into the depths of geological history and projecting forward to imagine the consequences of our actions today?

    These are questions that Cristina Parreño Alonso addresses in her practice as an architect, artist, and senior lecturer in the MIT Department of Architecture. Her field of research, which she has termed “Transtectonics,” explores the cultural and environmental implications of expanded temporal sensibilities in architectural material practice. A building, Parreño argues, is a “material event,” part of a process of construction and deconstruction that is shaped by the past and directly impacts the future — an impact that has become all the more apparent in the epoch of the Anthropocene, in which humans have become the dominant force influencing the physical composition and regulating systems of the planet.

    Parreño’s classes at MIT have included design studios that position architecture in relation to geological processes, and historical surveys of building practices that embrace traces of time and rhythms of maintenance. She recently devised a new class, 4.181 (The Deep Time Project), which launched in fall 2022 with the support of a 2022 Cross Disciplinary Class Grant from the MIT Center for Art, Science and Technology (CAST), in addition to the d’Arbeloff Fund for Excellence in Education.

    Learning deep time literacy

    “The course proposes that architects must develop deep-time literacy if we are to become true planetary stewards,” says Parreño. “Rather than attempting to identify solutions, the course is intended to provoke new ways of thinking that lead to greater accountability — a recognition that we, as architects, are intervening in something larger than ourselves, and that the consequences of our actions extend far beyond the timescales of our human lives and civilizations.” The class, which was offered to master’s students in the School of Architecture and Planning and the Harvard Graduate School of Design, culminated in a series of “material essays” that seek to bring deep time into contemporary consciousness. These multimedia projects — which include physical prototypes, text components, sound, and video  — are on display until March 24 at the Wiesner Student Art Gallery.

    “Being part of the exhibition has made me realize the advantages of belonging to a collective that recognizes the urgency of addressing the idea of time at different scales,” says architecture master’s student Christina Battikha, whose material essay “Plastic Time” imagines a future when plastic is integral to the geological structure of the Earth. Envisioned as a jagged plastic “rock,” the sculpture interprets the ubiquitous synthetic material as a natural phenomenon, a human-made product that far outlasts a human lifespan.

    Taking the form of a clay “Rosetta Stone” inscribed with multiple languages, architecture student Tatiana Victorovna Estrina’s material essay explores how the evolution of language impacts the built environment. “My project identifies a gap of imagination in deep time research,” she explains. “The installation became a futuristic exploration of opportunities for the adaptive relationship between the human body and its prosthetic additions of language and architecture.”

    Provocative perspectives

    “Developing the class here at MIT grants us the capacity to hold conversations across disciplines,” says Parreño. “That’s all the more necessary, because deep time literacy requires a very holistic way of thinking; it raises awareness of the fact that we are inherently interconnected, and makes it clear that we can’t afford to operate in compartments.”

    This attention to interdisciplinarity is exemplified by the guest speakers invited to share their ideas with the class, each providing a new way of accessing the deep time paradigm. Among the speakers were Marcia Bjornerud, a structural geologist and educator who argues that a geologist’s temporal perspective can empower us to make decisions for a more sustainable future. Richard Fisher, a senior journalist at the BBC, and Bina Venkataraman, journalist and author of “The Optimist’s Telescope: Thinking Ahead in a Reckless Age,” both shared their experiences of engaging the public in the perils of short-term-ism and the positive effects of taking the long view in daily life. The historian of science Jimena Canales provided a philosophical background to the conundrums of time perception, citing the renowned debate between Albert Einstein and the philosopher Henri Bergson.

    Alongside these large-scale thinkers and academic researchers were practitioners who directly apply planetary perspectives at a local level. Joseph Bagley is Boston’s city architect, investigating the layers of time that constitute the urban fabric. Faries Gray, the sagamore of the Massachusett Tribe at Ponkapoag, advocates for Indigenous ways of knowing that recognize the continuity between human cultures and the living history of the land. Together, these different ways of relating to deep time offer a toolkit for contemplating a concept too large to be held in the human mind.

    Thinking through art

    Parreño’s own way of conceptualizing deep time is informed by her artistic and philosophical inquiry into the paradoxes of time, tectonics, and materiality. Exhibited at the Schusev State Museum of Architecture in Moscow, her installation Tectonics of Wisdom focused on the typology of the library as a way of demonstrating how architecture is intertwined with geological and civilizational history. Carbon to Rock, shown at the 2021 Venice Architecture Biennale, explores new artificial manipulations of the geological timescales of the carbon cycle, rethinking igneous rocks as a resilient material for high-carbon-capture architecture. In addition, Parreño has published several essays on the subject of deep time for journals including Strelka Magazine, Log, and JAE Journal of Architectural Education. Her work as a writer and theorist is complemented by her art installations — or material essays — that serve as a research methodology and a means of communication.

    Likewise, the exhibition component of the Deep Time Project is a way of giving thoughts physical form. Estrina’s installation was initially prompted by the need to communicate the presence of buried nuclear waste to future generations — or even future species. Battikha’s sculpture is a response to the vast buildup of plastic generated by cycles of supply and demand. However, rather than making value judgements or condemning human actions, these works are intended to disrupt conventional patterns of perception, experimenting with longer-term perspectives that have the potential to change ingrained assumptions and daily habits. “There needs to be a paradigm shift before we can effectively address the enormity of the challenges ahead,” says Parreño. “The Deep Time Project is about taking a step back, reframing these problems in ways that will allow us to ask the right questions.” More

  • in

    Energy, war, and the crisis in Ukraine

    Russia’s invasion of Ukraine is having a global impact on many areas of the world today, affecting the balance of power among states and creating a contest between democratic and authoritarian alliances. It is also having a major impact on the global energy supply. European states have scrambled to reorient their consumption away from Russian natural gas, while Russia has used its energy assets as political leverage while finding new economic partners.

    In short, there is also a battle over energy surrounding the invasion, as a panel of experts analyzed at a public MIT event on Friday. The online discussion, “Energy As a Weapon of War,” was the latest Starr Forum, MIT’s prominent event series on foreign policy and international relations.

    The forum’s two featured speakers both discussed energy issues as well as the larger course of the war. Margarita Balmaceda, a professor of diplomacy and international relations at Seton Hall University and an associate of the Harvard Ukrainian Research Institute, listed three key aspects of the energy issue implicated in the invasion.

    In the first place, she noted, European reliance on Russian natural gas is a long-term issue that also existed with the Russian occupation of Crimea in 2014, but is only now being managed differently.

    “If we look at the case of Germany … you can see that the temptation of this reliance in particular on Russian natural gas was not simply something that you could ascribe to one or two corrupt politicians,” said Balmaceda, author of the book “Russian Energy Chains: The Remaking of Technopolitics from Siberia to Ukraine to the European Union.” Instead, she said, “it’s something that went to all levels of economic life,” including industrial consumers of natural gas, regional governments, and other stakeholders. 

    Secondly, Balmaceda observed, many core manufacturing industries, especially in Germany, have been particularly dependent on Russian energy, making the need for alternatives something that has direct effects in key production sectors.

    “In my view, the real story, and the story we have to pay much more attention to, has to do with … industrial users of natural gas,” Balmaceda said. In fact, she noted, gas consumption is a major part of the production cycle in Europe’s chemical, cement, steel, and paper industries, supporting about 8 million jobs.

    Finally, Balmaceda observed, European boycotts of Russian energy may have temporarily stymied Russia, but the regime has subsequently found new markets in China, India, and elsewhere.

    “It’s very important to understand that this story does not end in the European Union and North America, and if we don’t deal with the real energy concerns of global South countries, we will not get very far in trying to reduce Russia’s energy power moving forward,” she said.

    Constanze Steinmuller, director and Fritz Stern Chair of the Center on the United States and Europe at the Brookings Institution, offered some political context as well as her own perspective on paths forward in the war.

    While policymakers in Europe frequently praise the response of the Biden administration in the U.S., in support of Ukraine, “It’s also remarkable how steadfast the European response has been,” Steinmuller said. She added, “It’s something I was very worried about.” She also praised the German government for “decoupling German dependence from Russian gas and oil imports in ways I honestly would not have thought possible.”

    While the alliance supporting Ukraine has been valuable, Steinmuller said, she believes the U.S. and Europe need to give Ukraine even more backing in terms of weaponry in particular. “It is unclear, at this point still, whether Ukraine will have the means to retain full control over its territory.”

    Meanwhile, Russia’s relationship with China, she added, is profoundly consequential for the long-term trajectory of the war. So far, China has been nominally pledging broad support of Russia while publicly de-escalating the nuclear rhetoric arising from the war. However, Steinmuller added, if China decides to “actively support” Russia militarily, “That would be, I think, the worst game-changer of all, and one that … would be the single greatest challenge that I can envision to our ability to help Ukraine win, and to maintain our own security in Europe.”

    The Starr Forum is organized by MIT’s Center for International Studies (CIS). Friday’s event was co-sponsored by MIT’s Security Studies Program and the MIT-Eurasia program, in addition to CIS.

    The event’s moderators were Elizabeth Wood, a professor of history at MIT, author of the 2016 book “Roots of Russia’s War in Ukraine,” and co-director of the MISTI MIT-Eurasia Program; and Carol Saivetz, a senior advisor in MIT’s Security Studies Program and expert on Soviet and Russian foreign policy. Wood and Saivetz have helped host a series of Starr Forum events over the last year scrutinizing several aspects of Russia’s invasion and Ukraine’s defense.  

    Understanding the role of energy in the war “is obviously of critical importance today,” Wood said in her opening remarks. That includes, she noted, “How energy is being used by Russia as a tool of aggression, how Ukraine is suffering from attacks upon its critical infrastructure, and how the alliance of European [states] and the U.S. is responding.” 

    In response to audience questions, the scholars outlined multiple scenarios in which the war could end, either on more favorable terms for Ukraine or in ways that strengthen Russia. One audience member also queried about the extent to which the current war could also be thought of as a “carbon war, or climate war,” in which a move toward clean energy also lessens global dependence on large gas and oil suppliers, such as Russia.

    In response, Balmaceda noted that the ongoing infrastructure development in Ukraine might, in theory, leave it with no choice but to modernize its energy infrastructure (though its own orientation toward fossil fuels represents just a small portion of global demand). Steinmuller added that “Ukraine will need much more than just to reorient its energy [demand]. … It will have to change its role in the global economy,” given its own industrial reliance on coal and other fossil fuels.

    Overall, Balmaceda added, “Regardless of whether Russia wins this conflict or loses, the rottenness within Russia is deep enough to be bad news for all of us for a long time.” For her part, Steinmuller underscored again how vital increased alliance support would be.

    “We should show that we are willing and able to defend not just a country that has been attacked by a great power, but willing to defend ourselves,” Steinmuller said. Otherwise, she added, “If we didn’t do that, we would have set for all the world to see a precedent of giving in to blackmail, including nuclear blackmail, and allowing this to happen without us being willing to see the defense of Ukraine through to the end.” More

  • in

    Decarbonization amid global crises

    A global pandemic. Russia’s invasion of Ukraine. Inflation. The first-ever serious challenge to the peaceful transfer of power in the United States.

    Forced to face a seemingly unending series of once-in-a-generation crises, how can the world continue to focus attention on goals around carbon emissions and climate change? That was the question posed by Philip R. Sharp, the former president of Resources for the Future and a former 10-term member of the U.S. House of Representatives from Indiana, during his MIT Energy Initiative Fall Colloquium address, entitled “The prospects for decarbonization in America: Will global and domestic crises disrupt our plans?”

    Perhaps surprisingly, Sharp sounded an optimistic note in his answer. Despite deep political divisions in the United States, he noted, Congress has passed five major pieces of legislation — under both presidents Donald Trump and Joseph Biden — aimed at accelerating decarbonization efforts. Rather than hampering movement to combat climate change, Sharp said, domestic and global crises have seemed to galvanize support, create new incentives for action, and even unify political rivals around the cause.

    “Almost everybody is dealing with, to some degree, the absolutely profound, churning events that we are amidst now. Most of them are unexpected, and therefore [we’re] not prepared for [them], and they have had a profound shaking of our thinking,” Sharp said. “The conventional wisdom has not held up in almost all of these areas, and therefore it makes it much more difficult for us to think we know how to predict an uncertain future, and [it causes us to] question our own ability as a nation — or anywhere — to actually take on these challenges. And obviously, climate change is one of the most important.”

    However, Sharp continued, these challenges have, in some instances, spurred action. The war in Ukraine, he noted, has upset European energy markets, but it has also highlighted the importance of countries achieving a more energy-independent posture through renewables. “In America,” he added, “we’ve actually seen absolutely stunning … behavior by the United States Congress, of all places.”

    “What we’ve witnessed is, [Congress] put out incredible … sums of money under the previous administration, and then under this administration, to deal with the Covid crisis,” Sharp added later in his talk. “And then the United States government came together — red and blue — to support the Ukrainians against Russia. It saddens me to say, it seems to take a Russian invasion or the Chinese probing us economically to get us moving. But we are moving, and these things are happening.”

    Congressional action

    Sharp cautioned against getting “caught up” in the familiar viewpoint that Congress, in its current incarnation, is fundamentally incapable of passing meaningful legislation. He pointed, in particular, to the passage of five laws over the previous two years:

    The 2020 Energy Act, which has been characterized as a “down payment on fighting climate change.”
    The Infrastructure Investment and Jobs Act (sometimes called the “bipartisan infrastructure bill”), which calls for investments in passenger rail, electric vehicle infrastructure, electric school buses, and other clean-energy measures;
    The CHIPS and Science Act, a $280 billion effort to revitalize the American semiconductor industry, which some analysts say could direct roughly one-quarter of its funding toward accelerating zero-carbon industries and conducting climate research;
    The Inflation Reduction Act (called by some “the largest climate legislation in U.S. history”), which includes tax credits, incentives, and other provisions to help private companies tackle climate change, increase investments in renewable energy, and enhance energy efficiency; and
    The Kigali Amendment to the Montreal Protocol, ratified by the Senate to little fanfare in September, under which the United States agreed to reduce the consumption and production of hydrofluorocarbons (HFCs).
    “It is a big deal,” Sharp said of the dramatic increase in federal climate action. “It is very significant actions that are being taken — more than what we would expect, or I would expect, out of the Congress at any one time.”

    Along with the many billions of dollars of climate-related investments included in the legislation, Sharp said, these new laws will have a number of positive “spillover” effects.

    “This enables state governments, in their policies, to be more aggressive,” Sharp said. “Why? Because it makes it cheaper for some of the investments that they will try to force within their state.” Another “pretty obvious” spillover effect, Sharp said, is that the new laws will enhance U.S. credibility in international negotiations. Finally, he said, these public investments will make the U.S. economy more competitive in international markets for clean-energy technology — particularly as the United States seeks to compete against China in the space.

    “[Competition with China] has become a motivator in American politics, like it or not,” Sharp said. “There is no question that it is causing and bringing together [politicians] across blue [states] and red [states].”

    Holding onto progress

    Even in an uncertain political climate in which Democrats and Republicans seem unable to agree on basic facts, recent funding commitments are likely to survive, no matter which party controls Congress and the presidency, Sharp said. That’s because most of the legislation relies on broadly popular “carrots” that reward investments in decarbonization, rather than less popular “sticks” that create new restrictions or punishments for companies that fail to decarbonize.

    “Politically, the impact of this is very significant,” Sharp said. “It is so much easier in politics to give away tax [credits] than it is to penalize or put requirements onto people. The fact is that these tax credits are more likely to be politically sustained than other forms of government intervention. That, at least, has been the history.”

    Sharp stressed the importance of what he called “civil society” — institutions such as universities, nonprofits, churches, and other organizations that are apart from government and business — in promoting decarbonization efforts. “[Those groups] can act highly independently, and therefore, they can drive for things that others are not willing to do. Now this does not always work to good purposes. Partly, this diversity and this decentralization in civil society … led to deniers and others being able to stop some climate action. But now my view is, this is starting to all move in the right direction, in a very dynamic and a very important way. What we have seen over the last few years is a big uptick in philanthropy related to climate.”

    Looking ahead

    Sharp’s optimism even extended to the role of social media. He suggested that the “Wild West” era of social platforms may be ending, pointing to the celebrities who have recently lost valuable business partnerships for spreading hate speech and disinformation. “We’re now a lot more alert to the dangers,” he said.

    Some in the audience questioned Sharp about specific paths toward decarbonization, but Sharp said that progress will require a number of disparate approaches — some of which will inevitably have a greater impact than others. “The current policy, and the policy embedded in this [new] legislation … is all about doing both,” he said. “It’s all about advancing [current] technologies into the marketplace, and at the same time driving for breakthroughs.”

    Above all, Sharp stressed the need for continued collective action around climate change. “The fact is, we’re all contributors to some degree,” he said. “But we also all can do something. In my view, this is clearly not a time for hand-wringing. This is a time for action. People have to roll up their sleeves, and go to work, and not roll them down anytime soon.” More

  • in

    Mining for the clean energy transition

    In a world powered increasingly by clean energy, drilling for oil and gas will gradually give way to digging for metals and minerals. Today, the “critical minerals” used to make electric cars, solar panels, wind turbines, and grid-scale battery storage are facing soaring demand — and some acute bottlenecks as miners race to catch up.

    According to a report from the International Energy Agency, by 2040, the worldwide demand for copper is expected to roughly double; demand for nickel and cobalt will grow at least sixfold; and the world’s hunger for lithium could reach 40 times what we use today.

    “Society is looking to the clean energy transition as a way to solve the environmental and social harms of climate change,” says Scott Odell, a visiting scientist at the MIT Environmental Solutions Initiative (ESI), where he helps run the ESI Mining, Environment, and Society Program, who is also a visiting assistant professor at George Washington University. “Yet mining the materials needed for that transition would also cause social and environmental impacts. So we need to look for ways to reduce our demand for minerals, while also improving current mining practices to minimize social and environmental impacts.”

    ESI recently hosted the inaugural MIT Conference on Mining, Environment, and Society to discuss how the clean energy transition may affect mining and the people and environments in mining areas. The conference convened representatives of mining companies, environmental and human rights groups, policymakers, and social and natural scientists to identify key concerns and possible collaborative solutions.

    “We can’t replace an abusive fossil fuel industry with an abusive mining industry that expands as we move through the energy transition,” said Jim Wormington, a senior researcher at Human Rights Watch, in a panel on the first day of the conference. “There’s a recognition from governments, civil society, and companies that this transition potentially has a really significant human rights and social cost, both in terms of emissions […] but also for communities and workers who are on the front lines of mining.”

    That focus on communities and workers was consistent throughout the three-day conference, as participants outlined the economic and social dimensions of standing up large numbers of new mines. Corporate mines can bring large influxes of government revenue and local investment, but the income is volatile and can leave policymakers and communities stranded when production declines or mineral prices fall. On the other hand, “artisanal” mining operations are an important source of critical minerals, but are hard to regulate and subject to abuses from brokers. And large reserves of minerals are found in conservation areas, regions with fragile ecosystems and experiencing water shortages that can be exacerbated by mining, in particular on Indigenous-controlled lands and other places where mine openings are deeply fraught.

    “One of the real triggers of conflict is a dissatisfaction with the current model of resource extraction,” said Jocelyn Fraser of the University of British Columbia in a panel discussion. “One that’s failed to support the long-term sustainable development of regions that host mining operations, and yet imposes significant local social and environmental impacts.”

    All these challenges point toward solutions in policy and in mining companies’ relationships with the communities where they work. Participants highlighted newer models of mining governance that can create better incentives for the ways mines operate — from full community ownership of mines to recognizing community rights to the benefits of mining to end-of-life planning for mines at the time they open.

    Many of the conference speakers also shared technological innovations that may help reduce mining challenges. Some operations are investing in desalination as alternative water sources in water-scarce regions; low-carbon alternatives are emerging to many of the fossil fuel-powered heavy machines that are mainstays of the industry; and work is being done to reclaim valuable minerals from mine tailings, helping to minimize both waste and the need to open new extraction sites.

    Increasingly, the mining industry itself is recognizing that reforms will allow it to thrive in a rapid clean-energy transition. “Decarbonization is really a profitability imperative,” said Kareemah Mohammed, managing director for sustainability services at the technology consultancy Accenture, on the conference’s second day. “It’s about securing a low-cost and steady supply of either minerals or metals, but it’s also doing so in an optimal way.”

    The three-day conference attracted over 350 attendees, from large mining companies, industry groups, consultancies, multilateral institutions, universities, nongovernmental organizations (NGOs), government, and more. It was held entirely virtually, a choice that helped make the conference not only truly international — participants joined from over 27 countries on six continents — but also accessible to members of nonprofits and professionals in the developing world.

    “Many people are concerned about the environmental and social challenges of supplying the clean energy revolution, and we’d heard repeatedly that there wasn’t a forum for government, industry, academia, NGOs, and communities to all sit at the same table and explore collaborative solutions,” says Christopher Noble, ESI’s director of corporate engagement. “Convening, and researching best practices, are roles that universities can play. The conversations at this conference have generated valuable ideas and consensus to pursue three parallel programs: best-in-class models for community engagement, improving ESG metrics and their use, and civil-society contributions to government/industry relations. We are developing these programs to keep the momentum going.”

    The MIT Conference on Mining, Environment, and Society was funded, in part, by Accenture, as part of the MIT/Accenture Convergence Initiative. Additional funding was provided by the Inter-American Development Bank. More

  • in

    Using game engines and “twins” to co-create stories of climate futures

    Imagine entering a 3D virtual story world that’s a digital twin of an existing physical space but also doubles as a vessel to dream up speculative climate stories and collective designs. Then, those imagined worlds are translated back into concrete plans for our physical spaces.

    Five multidisciplinary teams recently convened at MIT — virtually — for the inaugural WORLDING workshop. In a weeklong series of research and development gatherings, the teams met with MIT scientists, staff, fellows, students and graduates as well as other leading figures in the field. The theme of the gathering was “story, space, climate, and game engines.”

    “WORLDING illustrates the emergence of an entirely new field that fuses urban planning, climate science, real-time 3D engines, nonfiction storytelling, and speculative fiction,” says Katerina Cizek, lead designer of the workshop at Co-Creation Studio, MIT Open Documentary Lab. “And co-creation is at the core of this field that allows for collective, democratic, scientific and artistic processes.” The research workshop was organized by the studio in partnership with Unity Software.

    The WORLDING teams met with MIT scholars to discuss diverse domains, from the decolonization of board games, to urban planning as acts of democracy, to behind the scenes of a flagship MIT Climate Challenge project.

    “Climate is really a whole-world initiative,” said Noelle Selin, an MIT atmospheric chemistry professor, in a talk at WORLDING. Selin co-leads an MIT initiative that is digitally twinning the Earth to harness enormous volumes of data for improved climate projections and put these models into the hands of diverse communities and stakeholders.

    “Digital twinning” is a growth market for the game engine industry, in verticals such as manufacturing, architecture, finance, and medicine. “Digital twinning gives teams the power to ideate,” said Elizabeth Baron, a senior manager of enterprise solutions at Unity in her talk at WORLDING. “You can look at many things that maybe aren’t even possible to produce. But you’re the resource. Impact is very low, but the creativity aspect is very high.”

    That’s where the story and media experts come in. “Now, more than ever, we need to forge shared narratives about the world that we live in today and the world that we want to build for the future. Technology can help us visualize and communicate those worlds,” says Marina Psaros MCP ’06, head of sustainability at Unity, lead on WORLDING at Unity, and a graduate of the MIT Department of Urban Studies and Planning.

    In his talk on the short history of WORLDING, media scholar William Uricchio, MIT professor of comparative media studies and founder of the Open Documentary Lab, suggested that story and space come together in these projects that create new ways of knowing. “Story is always a representation,” he says. “It’s got a fixity and coherence to it, and play is — and, I would argue, worlds are —  all about simulation. Simulation in the case of digital twinning is capable of generating countless stories. It’s play as a story-generator, but in the service of envisioning a pluralistic and malleable future.”

    Fixed dominant narratives and game mechanics that underpin board games have been historically violent and unjust, says MIT Game Lab scholar Mikael Jakkobson, who shared findings for his upcoming book on the subject with the cohort. He argues that board games are built on underlying ideas of  “exploration, expansion, exploitation, and extermination. And, as it happens, those are also good ways of thinking about the mechanics of Western colonialism.”

    To counter these hegemonic mechanics and come up with new systems, community is vital, and urban planning is a discipline that plays a huge role in the translation of space, story, and democracy. Ceasar MacDowell, an MIT professor of the practice of civic design, told the WORLDING cohort that urban planning needs to expand its notion of authorship. He is working on systems (from his current position at the Media Lab) that not only engage the community in conversations but also prompt “the people who have been in conversations to actually make sense of them, do the meaning-making themselves, not to have external people interpret them.” These become dynamic layers of both representation and simulation that are not, as Uricchio suggests, fixed. 

    USAID Chief Climate Officer Gillian Calwell visited the group with both sharp warnings and warm enthusiasm: “When it comes to climate, this world isn’t working so well for us; we better start envisioning the new ones, and fast … We don’t have time to convince people that this is happening anymore. Nor do we need to. I think most of the world is having the hands-on, up-close-and-personal experience with the fact that these impacts are coming faster and more furiously than even the scientists had predicted. But one thing we do need help with on a more hopeful note is visualizing how the world could be different.”

    The WORLDING workshop is designed and inspired by the ideas and practices charted in the Co-Creation Studio’s new MIT Press book, “Collective Wisdom: Co-Creation Media for Equity and Justice,” which insists that “No one person, organization, or discipline can determine all the answers alone.”

    The five multidisciplinary teams in this first WORLDING cohort were diverse in approach, technology, and geography. For example, one is an Indigenous-led, land-based, site-specific digital installation that seeks to envision a future in which, once again, the great herds of buffalo walk freely. Another team is creating 3D-modeled biome kits of the water systems in the drought-stricken American West, animated by interviews and data from the communities living there. Yet another team is digitally twinning and then re-imagining a sustainable future in the year 2180 for a multi-player virtual reality game in a Yawanawà Shukuvena Village in the rainforests of Brazil.

    “While our workshop design was focused on developing and researching these incredible, interdisciplinary projects, we also hope that WORLDING can set an example for similar initiatives across global sectors where distances and varied expertise are not limitations but opportunities to learn from one another,” says Srushti Kamat, WORLDING producer and MIT creative media studies/writing grad.

    Most of the talks and presentations from the WORLDING workshop are available as archived videos at cocreationstudio.mit.edu/worlding-videos. More

  • in

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference

    As the 2022 United Nations climate change conference, known as COP27, stretched into its final hours on Saturday, Nov. 19, it was uncertain what kind of agreement might emerge from two weeks of intensive international negotiations.

    In the end, COP27 produced mixed results: on the one hand, a historic agreement for wealthy countries to compensate low-income countries for “loss and damage,” but on the other, limited progress on new plans for reducing the greenhouse gas emissions that are warming the planet.

    “We need to drastically reduce emissions now — and this is an issue this COP did not address,” said U.N. Secretary-General António Guterres in a statement at the conclusion of COP27. “A fund for loss and damage is essential — but it’s not an answer if the climate crisis washes a small island state off the map — or turns an entire African country to desert.”

    Throughout the two weeks of the conference, a delegation of MIT students, faculty, and staff was at the Sharm El-Sheikh International Convention Center to observe the negotiations, conduct and share research, participate in panel discussions, and forge new connections with researchers, policymakers, and advocates from around the world.

    Loss and damage

    A key issue coming in to COP27 (COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held for the 27th time) was loss and damage: a term used by the U.N. to refer to harms caused by climate change — either through acute catastrophes like extreme weather events or slower-moving impacts like sea level rise — to which communities and countries are unable to adapt. 

    Ultimately, a deal on loss and damage proved to be COP27’s most prominent accomplishment. Negotiators reached an eleventh-hour agreement to “establish new funding arrangements for assisting developing countries that are particularly vulnerable to the adverse effects of climate change.” 

    “Providing financial assistance to developing countries so they can better respond to climate-related loss and damage is not only a moral issue, but also a pragmatic one,” said Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research, who attended COP27 and participated in side events. “Future emissions growth will be squarely centered in the developing world, and offering support through different channels is key to building the trust needed for more robust global cooperation on mitigation.”

    Youssef Shaker, a graduate student in the MIT Technology and Policy Program and a research assistant with the MIT Energy Initiative, attended the second week of the conference, where he followed the negotiations over loss and damage closely. 

    “While the creation of a fund is certainly an achievement,” Shaker said, “significant questions remain to be answered, such as the size of the funding available as well as which countries receive access to it.” A loss-and-damage fund that is not adequately funded, Shaker noted, “would not be an impactful outcome.” 

    The agreement on loss and damage created a new committee, made up of 24 country representatives, to “operationalize” the new funding arrangements, including identifying funding sources. The committee is tasked with delivering a set of recommendations at COP28, which will take place next year in Dubai.

    Advising the U.N. on net zero

    Though the decisions reached at COP27 did not include major new commitments on reducing emissions from the combustion of fossil fuels, the transition to a clean global energy system was nevertheless a key topic of conversation throughout the conference.

    The Council of Engineers for the Energy Transition (CEET), an independent, international body of engineers and energy systems experts formed to provide advice to the U.N. on achieving net-zero emissions globally by 2050, convened for the first time at COP27. Jessika Trancik, a professor in the MIT Institute for Data, Systems, and Society and a member of CEET, spoke on a U.N.-sponsored panel on solutions for the transition to clean energy.

    Trancik noted that the energy transition will look different in different regions of the world. “As engineers, we need to understand those local contexts and design solutions around those local contexts — that’s absolutely essential to support a rapid and equitable energy transition.”

    At the same time, Trancik noted that there is now a set of “low-cost, ready-to-scale tools” available to every region — tools that resulted from a globally competitive process of innovation, stimulated by public policies in different countries, that dramatically drove down the costs of technologies like solar energy and lithium-ion batteries. The key, Trancik said, is for regional transition strategies to “tap into global processes of innovation.”

    Reinventing climate adaptation

    Elfatih Eltahir, the H. M. King Bhumibol Professor of Hydrology and Climate, traveled to COP27 to present plans for the Jameel Observatory Climate Resilience Early Warning System (CREWSnet), one of the five projects selected in April 2022 as a flagship in MIT’s Climate Grand Challenges initiative. CREWSnet focuses on climate adaptation, the term for adapting to climate impacts that are unavoidable.

    The aim of CREWSnet, Eltahir told the audience during a panel discussion, is “nothing short of reinventing the process of climate change adaptation,” so that it is proactive rather than reactive; community-led; data-driven and evidence-based; and so that it integrates different climate risks, from heat waves to sea level rise, rather than treating them individually.

    “However, it’s easy to talk about these changes,” said Eltahir. “The real challenge, which we are now just launching and engaging in, is to demonstrate that on the ground.” Eltahir said that early demonstrations will happen in a couple of key locations, including southwest Bangladesh, where multiple climate risks — rising sea levels, increasing soil salinity, and intensifying heat waves and cyclones — are combining to threaten the area’s agricultural production.

    Building on COP26

    Some members of MIT’s delegation attended COP27 to advance efforts that had been formally announced at last year’s U.N. climate conference, COP26, in Glasgow, Scotland.

    At an official U.N. side event co-organized by MIT on Nov. 11, Greg Sixt, the director of the Food and Climate Systems Transformation (FACT) Alliance led by the Abdul Latif Jameel Water and Food Systems Lab, provided an update on the alliance’s work since its launch at COP26.

    Food systems are a major source of greenhouse gas emissions — and are increasingly vulnerable to climate impacts. The FACT Alliance works to better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders to make food systems (which include food production, consumption, and waste) more sustainable and resilient. 

    Sixt told the audience that the FACT Alliance now counts over 20 research and stakeholder institutions around the world among its members, but also collaborates with other institutions in an “open network model” to advance work in key areas — such as a new research project exploring how climate scenarios could affect global food supply chains.

    Marcela Angel, research program director for the Environmental Solutions Initiative (ESI), helped convene a meeting at COP27 of the Afro-InterAmerican Forum on Climate Change, which also launched at COP26. The forum works with Afro-descendant leaders across the Americas to address significant environmental issues, including climate risks and biodiversity loss. 

    At the event — convened with the Colombian government and the nonprofit Conservation International — ESI brought together leaders from six countries in the Americas and presented recent work that estimates that there are over 178 million individuals who identify as Afro-descendant living in the Americas, in lands of global environmental importance. 

    “There is a significant overlap between biodiversity hot spots, protected areas, and areas of high Afro-descendant presence,” said Angel. “But the role and climate contributions of these communities is understudied, and often made invisible.”    

    Limiting methane emissions

    Methane is a short-lived but potent greenhouse gas: When released into the atmosphere, it immediately traps about 120 times more heat than carbon dioxide does. More than 150 countries have now signed the Global Methane Pledge, launched at COP26, which aims to reduce methane emissions by at least 30 percent by 2030 compared to 2020 levels.

    Sergey Paltsev, the deputy director of the Joint Program on the Science and Policy of Global Change and a senior research scientist at the MIT Energy Initiative, gave the keynote address at a Nov. 17 event on methane, where he noted the importance of methane reductions from the oil and gas sector to meeting the 2030 goal.

    “The oil and gas sector is where methane emissions reductions could be achieved the fastest,” said Paltsev. “We also need to employ an integrated approach to address methane emissions in all sectors and all regions of the world because methane emissions reductions provide a near-term pathway to avoiding dangerous tipping points in the global climate system.”

    “Keep fighting relentlessly”

    Arina Khotimsky, a senior majoring in materials science and engineering and a co-president of the MIT Energy and Climate Club, attended the first week of COP27. She reflected on the experience in a social media post after returning home. 

    “COP will always have its haters. Is there greenwashing? Of course! Is everyone who should have a say in this process in the room? Not even close,” wrote Khotimsky. “So what does it take for COP to matter? It takes everyone who attended to not only put ‘climate’ on front-page news for two weeks, but to return home and keep fighting relentlessly against climate change. I know that I will.” More

  • in

    MIT Policy Hackathon produces new solutions for technology policy challenges

    Almost three years ago, the Covid-19 pandemic changed the world. Many are still looking to uncover a “new normal.”

    “Instead of going back to normal, [there’s a new generation that] wants to build back something different, something better,” says Jorge Sandoval, a second-year graduate student in MIT’s Technology and Policy Program (TPP) at the Institute for Data, Systems and Society (IDSS). “How do we communicate this mindset to others, that the world cannot be the same as before?”

    This was the inspiration behind “A New (Re)generation,” this year’s theme for the IDSS-student-run MIT Policy Hackathon, which Sandoval helped to organize as the event chair. The Policy Hackathon is a weekend-long, interdisciplinary competition that brings together participants from around the globe to explore potential solutions to some of society’s greatest challenges. 

    Unlike other competitions of its kind, Sandoval says MIT’s event emphasizes a humanistic approach. “The idea of our hackathon is to promote applications of technology that are humanistic or human-centered,” he says. “We take the opportunity to examine aspects of technology in the spaces where they tend to interact with society and people, an opportunity most technical competitions don’t offer because their primary focus is on the technology.”

    The competition started with 50 teams spread across four challenge categories. This year’s categories included Internet and Cybersecurity, Environmental Justice, Logistics, and Housing and City Planning. While some people come into the challenge with friends, Sandoval said most teams form organically during an online networking meeting hosted by MIT.

    “We encourage people to pair up with others outside of their country and to form teams of different diverse backgrounds and ages,” Sandoval says. “We try to give people who are often not invited to the decision-making table the opportunity to be a policymaker, bringing in those with backgrounds in not only law, policy, or politics, but also medicine, and people who have careers in engineering or experience working in nonprofits.”

    Once an in-person event, the Policy Hackathon has gone through its own regeneration process these past three years, according to Sandoval. After going entirely online during the pandemic’s height, last year they successfully hosted the first hybrid version of the event, which served as their model again this year.

    “The hybrid version of the event gives us the opportunity to allow people to connect in a way that is lost if it is only online, while also keeping the wide range of accessibility, allowing people to join from anywhere in the world, regardless of nationality or income, to provide their input,” Sandoval says.

    For Swetha Tadisina, an undergraduate computer science major at Lafayette College and participant in the internet and cybersecurity category, the hackathon was a unique opportunity to meet and work with people much more advanced in their careers. “I was surprised how such a diverse team that had never met before was able to work so efficiently and creatively,” Tadisina says.

    Erika Spangler, a public high school teacher from Massachusetts and member of the environmental justice category’s winning team, says that while each member of “Team Slime Mold” came to the table with a different set of skills, they managed to be in sync from the start — even working across the nine-and-a-half-hour time difference the four-person team faced when working with policy advocate Shruti Nandy from Calcutta, India.

    “We divided the project into data, policy, and research and trusted each other’s expertise,” Spangler says, “Despite having separate areas of focus, we made sure to have regular check-ins to problem-solve and cross-pollinate ideas.”

    During the 48-hour period, her team proposed the creation of an algorithm to identify high-quality brownfields that could be cleaned up and used as sites for building renewable energy. Their corresponding policy sought to mandate additional requirements for renewable energy businesses seeking tax credits from the Inflation Reduction Act.

    “Their policy memo had the most in-depth technical assessment, including deep dives in a few key cities to show the impact of their proposed approach for site selection at a very granular level,” says Amanda Levin, director of policy analysis for the Natural Resources Defense Council (NRDC). Levin acted as both a judge and challenge provider for the environmental justice category.

    “They also presented their policy recommendations in the memo in a well-thought-out way, clearly noting the relevant actor,” she adds. This clarity around what can be done, and who would be responsible for those actions, is highly valuable for those in policy.”

    Levin says the NRDC, one of the largest environmental nonprofits in the United States, provided five “challenge questions,” making it clear that teams did not need to address all of them. She notes that this gave teams significant leeway, bringing a wide variety of recommendations to the table. 

    “As a challenge partner, the work put together by all the teams is already being used to help inform discussions about the implementation of the Inflation Reduction Act,” Levin says. “Being able to tap into the collective intelligence of the hackathon helped uncover new perspectives and policy solutions that can help make an impact in addressing the important policy challenges we face today.”

    While having partners with experience in data science and policy definitely helped, fellow Team Slime Mold member Sara Sheffels, a PhD candidate in MIT’s biomaterials program, says she was surprised how much her experiences outside of science and policy were relevant to the challenge: “My experience organizing MIT’s Graduate Student Union shaped my ideas about more meaningful community involvement in renewables projects on brownfields. It is not meaningful to merely educate people about the importance of renewables or ask them to sign off on a pre-planned project without addressing their other needs.”

    “I wanted to test my limits, gain exposure, and expand my world,” Tadisina adds. “The exposure, friendships, and experiences you gain in such a short period of time are incredible.”

    For Willy R. Vasquez, an electrical and computer engineering PhD student at the University of Texas, the hackathon is not to be missed. “If you’re interested in the intersection of tech, society, and policy, then this is a must-do experience.” More