More stories

  • in

    How to make small modular reactors more cost-effective

    When Youyeon Choi was in high school, she discovered she really liked “thinking in geometry.” The shapes, the dimensions … she was into all of it. Today, geometry plays a prominent role in her doctoral work under the guidance of Professor Koroush Shirvan, as she explores ways to increase the competitiveness of small modular reactors (SMRs).Central to the thesis is metallic nuclear fuel in a helical cruciform shape, which improves surface area and lowers heat flux as compared to the traditional cylindrical equivalent.A childhood in a prominent nuclear energy countryHer passion for geometry notwithstanding, Choi admits she was not “really into studying” in middle school. But that changed when she started excelling in technical subjects in her high school years. And because it was the natural sciences that first caught Choi’s eye, she assumed she would major in the subject when she went to university.This focus, too, would change. Growing up in Seoul, Choi was becoming increasingly aware of the critical role nuclear energy played in meeting her native country’s energy needs. Twenty-six reactors provide nearly a third of South Korea’s electricity, according to the World Nuclear Association. The country is also one of the world’s most prominent nuclear energy entities.In such an ecosystem, Choi understood the stakes at play, especially with electricity-guzzling technologies such as AI and electric vehicles on the rise. Her father also discussed energy-related topics with Choi when she was in high school. Being soaked in that atmosphere eventually led Choi to nuclear engineering.

    Youyeon Choi: Making small modular reactors more cost-effective

    Early work in South KoreaExcelling in high school math and science, Choi was a shoo-in for college at Seoul National University. Initially intent on studying nuclear fusion, Choi switched to fission because she saw that the path to fusion was more convoluted and was still in the early stages of exploration.Choi went on to complete her bachelor’s and master’s degrees in nuclear engineering from the university. As part of her master’s thesis, she worked on a multi-physics modeling project involving high-fidelity simulations of reactor physics and thermal hydraulics to analyze reactor cores.South Korea exports its nuclear know-how widely, so work in the field can be immensely rewarding. Indeed, after graduate school, Choi moved to Daejeon, which has the moniker “Science City.” As an intern at the Korea Atomic Energy Research Institute (KAERI), she conducted experimental studies on the passive safety systems of nuclear reactors. Choi then moved to the Korea Institute of Nuclear Nonproliferation and Control, where she worked as a researcher developing nuclear security programs for countries. Given South Korea’s dominance in the field, other countries would tap its knowledge resource to tap their own nuclear energy programs. The focus was on international training programs, an arm of which involved cybersecurity and physical protection.While the work was impactful, Choi found she missed the modeling work she did as part of her master’s thesis. Looking to return to technical research, she applied to the MIT Department of Nuclear Science and Engineering (NSE). “MIT has the best nuclear engineering program in the States, and maybe even the world,” Choi says, explaining her decision to enroll as a doctoral student.Innovative research at MITAt NSE, Choi is working to make SMRs more price competitive as compared to traditional nuclear energy power plants.Due to their smaller size, SMRs are able to serve areas where larger reactors might not work, but they’re more expensive. One way to address costs is to squeeze more electricity out of a unit of fuel — to increase the power density. Choi is doing so by replacing the traditional uranium dioxide ceramic fuel in a cylindrical shape with a metal one in a helical cruciform. Such a replacement potentially offers twin advantages: the metal fuel has high conductivity, which means the fuel will operate even more safely at lower temperatures. And the twisted shape gives more surface area and lower heat flux. The net result is more electricity for the same volume.The project receives funding from a collaboration between Lightbridge Corp., which is exploring how advanced fuel technologies can improve the performance of water-cooled SMRs, and the U.S. Department of Energy Nuclear Energy University Program.With SMR efficiencies in mind, Choi is indulging her love of multi-physics modeling, and focusing on reactor physics, thermal hydraulics, and fuel performance simulation. “The goal of this modeling and simulation is to see if we can really use this fuel in the SMR,” Choi says. “I’m really enjoying doing the simulations because the geometry is really hard to model. Because the shape is twisted, there’s no symmetry at all,” she says. Always up for a challenge, Choi learned the various aspects of physics and a variety of computational tools, including the Monte Carlo code for reactor physics.Being at MIT has a whole roster of advantages, Choi says, and she especially appreciates the respect researchers have for each other. She appreciates being able to discuss projects with Shirvan and his focus on practical applications of research. At the same time, Choi appreciates the “exotic” nature of her project. “Even assessing if this SMR fuel is at all feasible is really hard, but I think it’s all possible because it’s MIT and my PI [principal investigator] is really invested in innovation,” she says.It’s an exciting time to be in nuclear engineering, Choi says. She serves as one of the board members of the student section of the American Nuclear Society and is an NSE representative of the Graduate Student Council for the 2024-25 academic year.Choi is excited about the global momentum toward nuclear as more countries are exploring the energy source and trying to build more nuclear power plants on the path to decarbonization. “I really do believe nuclear energy is going to be a leading carbon-free energy. It’s very important for our collective futures,” Choi says. More

  • in

    Minimizing the carbon footprint of bridges and other structures

    Awed as a young child by the majesty of the Golden Gate Bridge in San Francisco, civil engineer and MIT Morningside Academy for Design (MAD) Fellow Zane Schemmer has retained his fascination with bridges: what they look like, why they work, and how they’re designed and built.He weighed the choice between architecture and engineering when heading off to college, but, motivated by the why and how of structural engineering, selected the latter. Now he incorporates design as an iterative process in the writing of algorithms that perfectly balance the forces involved in discrete portions of a structure to create an overall design that optimizes function, minimizes carbon footprint, and still produces a manufacturable result.While this may sound like an obvious goal in structural design, it’s not. It’s new. It’s a more holistic way of looking at the design process that can optimize even down to the materials, angles, and number of elements in the nodes or joints that connect the larger components of a building, bridge, tower, etc.According to Schemmer, there hasn’t been much progress on optimizing structural design to minimize embodied carbon, and the work that exists often results in designs that are “too complex to be built in real life,” he says. The embodied carbon of a structure is the total carbon dioxide emissions of its life cycle: from the extraction or manufacture of its materials to their transport and use and through the demolition of the structure and disposal of the materials. Schemmer, who works with Josephine V. Carstensen, the Gilbert W. Winslow Career Development Associate Professor of Civil and Environmental Engineering at MIT, is focusing on the portion of that cycle that runs through construction.In September, at the IASS 2024 symposium “Redefining the Art of Structural Design in Zurich,” Schemmer and Carstensen presented their work on Discrete Topology Optimization algorithms that are able to minimize the embodied carbon in a bridge or other structure by up to 20 percent. This comes through materials selection that considers not only a material’s appearance and its ability to get the job done, but also the ease of procurement, its proximity to the building site, and the carbon embodied in its manufacture and transport.“The real novelty of our algorithm is its ability to consider multiple materials in a highly constrained solution space to produce manufacturable designs with a user-specified force flow,” Schemmer says. “Real-life problems are complex and often have many constraints associated with them. In traditional formulations, it can be difficult to have a long list of complicated constraints. Our goal is to incorporate these constraints to make it easier to take our designs out of the computer and create them in real life.”Take, for instance, a steel tower, which could be a “super lightweight, efficient design solution,” Schemmer explains. Because steel is so strong, you don’t need as much of it compared to concrete or timber to build a big building. But steel is also very carbon-intensive to produce and transport. Shipping it across the country or especially from a different continent can sharply increase its embodied carbon price tag. Schemmer’s topology optimization will replace some of the steel with timber elements or decrease the amount of steel in other elements to create a hybrid structure that will function effectively and minimize the carbon footprint. “This is why using the same steel in two different parts of the world can lead to two different optimized designs,” he explains.Schemmer, who grew up in the mountains of Utah, earned a BS and MS in civil and environmental engineering from University of California at Berkeley, where his graduate work focused on seismic design. He describes that education as providing a “very traditional, super-strong engineering background that tackled some of the toughest engineering problems,” along with knowledge of structural engineering’s traditions and current methods.But at MIT, he says, a lot of the work he sees “looks at removing the constraints of current societal conventions of doing things, and asks how could we do things if it was in a more ideal form; what are we looking at then? Which I think is really cool,” he says. “But I think sometimes too, there’s a jump between the most-perfect version of something and where we are now, that there needs to be a bridge between those two. And I feel like my education helps me see that bridge.”The bridge he’s referring to is the topology optimization algorithms that make good designs better in terms of decreased global warming potential.“That’s where the optimization algorithm comes in,” Schemmer says. “In contrast to a standard structure designed in the past, the algorithm can take the same design space and come up with a much more efficient material usage that still meets all the structural requirements, be up to code, and have everything we want from a safety standpoint.”That’s also where the MAD Design Fellowship comes in. The program provides yearlong fellowships with full financial support to graduate students from all across the Institute who network with each other, with the MAD faculty, and with outside speakers who use design in new ways in a surprising variety of fields. This helps the fellows gain a better understanding of how to use iterative design in their own work.“Usually people think of their own work like, ‘Oh, I had this background. I’ve been looking at this one way for a very long time.’ And when you look at it from an outside perspective, I think it opens your mind to be like, ‘Oh my God. I never would have thought about doing this that way. Maybe I should try that.’ And then we can move to new ideas, new inspiration for better work,” Schemmer says.He chose civil and structural engineering over architecture some seven years ago, but says that “100 years ago, I don’t think architecture and structural engineering were two separate professions. I think there was an understanding of how things looked and how things worked, and it was merged together. Maybe from an efficiency standpoint, it’s better to have things done separately. But I think there’s something to be said for having knowledge about how the whole system works, potentially more intermingling between the free-form architectural design and the mathematical design of a civil engineer. Merging it back together, I think, has a lot of benefits.”Which brings us back to the Golden Gate Bridge, Schemmer’s longtime favorite. You can still hear that excited 3-year-old in his voice when he talks about it.“It’s so iconic,” he says. “It’s connecting these two spits of land that just rise straight up out of the ocean. There’s this fog that comes in and out a lot of days. It’s a really magical place, from the size of the cable strands and everything. It’s just, ‘Wow.’ People built this over 100 years ago, before the existence of a lot of the computational tools that we have now. So, all the math, everything in the design, was all done by hand and from the mind. Nothing was computerized, which I think is crazy to think about.”As Schemmer continues work on his doctoral degree at MIT, the MAD fellowship will expose him to many more awe-inspiring ideas in other fields, leading him to incorporate some of these in some way with his engineering knowledge to design better ways of building bridges and other structures. More

  • in

    Coffee fix: MIT students decode the science behind the perfect cup

    Elaine Jutamulia ’24 took a sip of coffee with a few drops of anise extract. It was her second try.“What do you think?” asked Omar Orozco, standing at a lab table in MIT’s Breakerspace, surrounded by filters, brewing pots, and other coffee paraphernalia.“I think when I first tried it, it was still pretty bitter,” Jutamulia said thoughtfully. “But I think now that it’s steeped for a little bit — it took out some of the bitterness.”Jutamulia and current MIT senior Orozco were part of class 3.000 (Coffee Matters: Using the Breakerspace to Make the Perfect Cup), a new MIT course that debuted in spring 2024. The class combines lectures on chemistry and the science of coffee with hands-on experimentation and group projects. Their project explored how additives such as anise, salt, and chili oil influence coffee extraction — the process of dissolving flavor compounds from ground coffee into water — to improve taste and correct common brewing errors.Alongside tasting, they used an infrared spectrometer to identify the chemical compounds in their coffee samples that contribute to flavor. Does anise make bitter coffee smoother? Could chili oil balance the taste?“Generally speaking, if we could make a recommendation, that’s what we’re trying to find,” Orozco said.A three-unit “discovery class” designed to help first-year students explore majors, 3.000 was widely popular, enrolling more than 50 students. Its success was driven by the beverage at its core and the class’s hands-on approach, which pushes students to ask and answer questions they might not have otherwise.For aeronautics and astronautics majors Gabi McDonald and McKenzie Dinesen, coffee was the draw, but the class encouraged them to experiment and think in new ways. “It’s easy to drop people like us in, who love coffee, and, ‘Oh my gosh, there’s this class where we can go make coffee half the time and try all different kinds of things?’” McDonald says.Percolating knowledgeThe class pairs weekly lectures on topics such as coffee chemistry, the anatomy and composition of a coffee bean, the effects of roasting, and the brewing process with tasting sessions — students sample coffee brewed from different beans, roasts, and grinds. In the MIT Breakerspace, a new space on campus conceived and managed by the Department of Materials Science and Engineering (DMSE), students use equipment such as a digital optical microscope to examine ground coffee particles and a scanning electron microscope, which shoots beams of electrons at samples to reveal cross-sections of beans in stunning detail.Once students learn to operate instruments for guided tasks, they form groups and design their own projects.“The driver for those projects is some question they have about coffee raised by one of the lectures or the tasting sessions, or just something they’ve always wanted to know,” says DMSE Professor Jeffrey Grossman, who designed and teaches the class. “Then they’ll use one or more of these pieces of equipment to shed some light on it.”Grossman traces the origins of the class to his initial vision for the Breakerspace, a laboratory for materials analysis and lounge for MIT undergraduates. Opened in November 2023, the space gives students hands-on experience with materials science and engineering, an interdisciplinary field combining chemistry, physics, and engineering to probe the composition and structure of materials.“The world is made of stuff, and these are the tools to understand that stuff and bring it to life,” says Grossman. So he envisioned a class that would give students an “exploratory, inspiring nudge.”“Then the question wasn’t the pedagogy, it was, ‘What’s the hook?’ In materials science, there are a lot of directions you could go, but if you have one that inspires people because they know it and maybe like it already, then that’s exciting.”Cup of ambitionThat hook, of course, was coffee, the second-most-consumed beverage after water. It captured students’ imagination and motivated them to push boundaries.Orozco brought a fair amount of coffee knowledge to the class. In 2023, he taught in Mexico through the MISTI Global Teaching Labs program, where he toured several coffee farms and acquired a deeper knowledge of the beverage. He learned, for example, that black coffee, contrary to general American opinion, isn’t naturally bitter; bitterness arises from certain compounds that develop during the roasting process.“If you properly brew it with the right beans, it actually tastes good,” says Orozco, a humanities and engineering major. A year later, in 3.000, he expanded his understanding of making a good brew, particularly through the group project with Jutamulia and other students to fix bad coffee.The group prepared a control sample of “perfectly brewed” coffee — based on taste, coffee-to-water ratio, and other standards covered in class — alongside coffee that was under-extracted and over-extracted. Under-extracted coffee, made with water that isn’t hot enough or brewed for too short a time, tastes sharp or sour. Over-extracted coffee, brewed with too much coffee or for too long, tastes bitter.Those coffee samples got additives and were analyzed using Fourier Transform Infrared (FTIR) spectroscopy, measuring how coffee absorbed infrared light to identify flavor-related compounds. Jutamulia examined FTIR readings taken from a sample with lime juice to see how the citric acid influenced its chemical profile.“Can we find any correlation between what we saw and the existing known measurements of citric acid?” asks Jutamulia, who studied computation and cognition at MIT, graduating last May.Another group dove into coffee storage, questioning why conventional wisdom advises against freezing.“We just wondered why that’s the case,” says electrical engineering and computer science major Noah Wiley, a coffee enthusiast with his own espresso machine.The team compared methods like freezing brewed coffee, frozen coffee grounds, and whole beans ground after freezing, evaluating their impact on flavor and chemical composition.“Then we’re going to see which ones taste good,” says Wiley. The team used a class coffee review sheet to record attributes like acidity, bitterness, sweetness, and overall flavor, pairing the results with FTIR analysis to determine how storage affected taste.Wiley acknowledged that “good” is subjective. “Sometimes there’s a group consensus. I think people like fuller coffee, not watery,” he says.Other student projects compared caffeine levels in different coffee types, analyzed the effect of microwaving coffee on its chemical composition and flavor, and investigated the differences between authentic and counterfeit coffee beans.“We gave the students some papers to look at in case they were interested,” says Justin Lavallee, Breakerspace manager and co-teacher of the class. “But mostly we told them to focus on something they wanted to learn more about.”Drip, drip, dripBeyond answering specific questions about coffee, both students and teachers gained deeper insights into the beverage.“Coffee is a complicated material. There are thousands of molecules in the beans, which change as you roast and extract them,” says Grossman. “The number of ways you can engineer this collection of molecules — it’s profound, ranging from where and how the coffee’s grown to how the cherries are then treated to get the beans to how the beans are roasted and ground to the brewing method you use.”Dinesen learned firsthand, discovering, for example, that darker roasts have less caffeine than lighter roasts, puncturing a common misconception. “You can vary coffee so much — just with the roast of the bean, the size of the ground,” she says. “It’s so easily manipulatable, if that’s a word.”In addition to learning about the science and chemistry behind coffee, Dinesen and McDonald gained new brewing techniques, like using a pour-over cone. The pair even incorporated coffee making and testing into their study routine, brewing coffee while tackling problem sets for another class.“I would put my pour-over cone in my backpack with a Ziploc bag full of grounds, and we would go to the Student Center and pull out the cone, a filter, and the coffee grounds,” McDonald says. “And then we would make pour-overs while doing a P-set. We tested different amounts of water, too. It was fun.”Tony Chen, a materials science and engineering major, reflected on the 3.000’s title — “Using the Breakerspace to Make the Perfect Cup” — and whether making a perfect cup is possible. “I don’t think there’s one perfect cup because each person has their own preferences. I don’t think I’ve gotten to mine yet,” he says.Enthusiasm for coffee’s complexity and the discovery process was exactly what Grossman hoped to inspire in his students. “The best part for me was also just seeing them developing their own sense of curiosity,” he says.He recalled a moment early in the class when students, after being given a demo of the optical microscope, saw the surface texture of a magnified coffee bean, the mottled shades of color, and the honeycomb-like pattern of tiny irregular cells.“They’re like, ‘Wait a second. What if we add hot water to the grounds while it’s under the microscope? Would we see the extraction?’ So, they got hot water and some ground coffee beans, and lo and behold, it looked different. They could see the extraction right there,” Grossman says. “It’s like they have an idea that’s inspired by the learning, and they go and try it. I saw that happen many, many times throughout the semester.” More

  • in

    Helping students bring about decarbonization, from benchtop to global energy marketplace

    MIT students are adept at producing research and innovations at the cutting edge of their fields. But addressing a problem as large as climate change requires understanding the world’s energy landscape, as well as the ways energy technologies evolve over time.Since 2010, the course IDS.521/IDS.065 (Energy Systems for Climate Change Mitigation) has equipped students with the skills they need to evaluate the various energy decarbonization pathways available to the world. The work is designed to help them maximize their impact on the world’s emissions by making better decisions along their respective career paths.“The question guiding my teaching and research is how do we solve big societal challenges with technology, and how can we be more deliberate in developing and supporting technologies to get us there?” says Professor Jessika Trancik, who started the course to help fill a gap in knowledge about the ways technologies evolve and scale over time.Since its inception in 2010, the course has attracted graduate students from across MIT’s five schools. The course has also recently opened to undergraduate students and been adapted to an online course for professionals.Class sessions alternate between lectures and student discussions that lead up to semester-long projects in which groups of students explore specific strategies and technologies for reducing global emissions. This year’s projects span several topics, including how quickly transmission infrastructure is expanding, the relationship between carbon emissions and human development, and how to decarbonize the production of key chemicals.The curriculum is designed to help students identify the most promising ways to mitigate climate change whether they plan to be scientists, engineers, policymakers, investors, urban planners, or just more informed citizens.“We’re coming at this issue from both sides,” explains Trancik, who is part of MIT’s Institute for Data, Systems, and Society. “Engineers are used to designing a technology to work as well as possible here and now, but not always thinking over a longer time horizon about a technology evolving and succeeding in the global marketplace. On the flip side, for students at the macro level, often studies in policy and economics of technological change don’t fully account for the physical and engineering constraints of rates of improvement. But all of that information allows you to make better decisions.”Bridging the gapAs a young researcher working on low-carbon polymers and electrode materials for solar cells, Trancik always wondered how the materials she worked on would scale in the real world. They might achieve promising performance benchmarks in the lab, but would they actually make a difference in mitigating climate change? Later, she began focusing increasingly on developing methods for predicting how technologies might evolve.“I’ve always been interested in both the macro and the micro, or even nano, scales,” Trancik says. “I wanted to know how to bridge these new technologies we’re working on with the big picture of where we want to go.”Trancik’ described her technology-grounded approach to decarbonization in a paper that formed the basis for IDS.065. In the paper, she presented a way to evaluate energy technologies against climate-change mitigation goals while focusing on the technology’s evolution.“That was a departure from previous approaches, which said, given these technologies with fixed characteristics and assumptions about their rates of change, how do I choose the best combination?” Trancik explains. “Instead we asked: Given a goal, how do we develop the best technologies to meet that goal? That inverts the problem in a way that’s useful to engineers developing these technologies, but also to policymakers and investors that want to use the evolution of technologies as a tool for achieving their objectives.”This past semester, the class took place every Tuesday and Thursday in a classroom on the first floor of the Stata Center. Students regularly led discussions where they reflected on the week’s readings and offered their own insights.“Students always share their takeaways and get to ask open questions of the class,” says Megan Herrington, a PhD candidate in the Department of Chemical Engineering. “It helps you understand the readings on a deeper level because people with different backgrounds get to share their perspectives on the same questions and problems. Everybody comes to class with their own lens, and the class is set up to highlight those differences.”The semester begins with an overview of climate science, the origins of emissions reductions goals, and technology’s role in achieving those goals. Students then learn how to evaluate technologies against decarbonization goals.But technologies aren’t static, and neither is the world. Later lessons help students account for the change of technologies over time, identifying the mechanisms for that change and even forecasting rates of change.Students also learn about the role of government policy. This year, Trancik shared her experience traveling to the COP29 United Nations Climate Change Conference.“It’s not just about technology,” Trancik says. “It’s also about the behaviors that we engage in and the choices we make. But technology plays a major role in determining what set of choices we can make.”From the classroom to the worldStudents in the class say it has given them a new perspective on climate change mitigation.“I have really enjoyed getting to see beyond the research people are doing at the benchtop,” says Herrington. “It’s interesting to see how certain materials or technologies that aren’t scalable yet may fit into a larger transformation in energy delivery and consumption. It’s also been interesting to pull back the curtain on energy systems analysis to understand where the metrics we cite in energy-related research originate from, and to anticipate trajectories of emerging technologies.”Onur Talu, a first-year master’s student in the Technology and Policy Program, says the class has made him more hopeful.“I came into this fairly pessimistic about the climate,” says Talu, who has worked for clean technology startups in the past. “This class has taught me different ways to look at the problem of climate change mitigation and developing renewable technologies. It’s also helped put into perspective how much we’ve accomplished so far.”Several student projects from the class over the years have been developed into papers published in peer-reviewed journals. They have also been turned into tools, like carboncounter.com, which plots the emissions and costs of cars and has been featured in The New York Times.Former class students have also launched startups; Joel Jean SM ’13, PhD ’17, for example, started Swift Solar. Others have drawn on the course material to develop impactful careers in government and academia, such as Patrick Brown PhD ’16 at the National Renewable Energy Laboratory and Leah Stokes SM ’15, PhD ’15 at the University of California at Santa Barbara.Overall, students say the course helps them take a more informed approach to applying their skills toward addressing climate change.“It’s not enough to just know how bad climate change could be,” says Yu Tong, a first-year master’s student in civil and environmental engineering. “It’s also important to understand how technology can work to mitigate climate change from both a technological and market perspective. It’s about employing technology to solve these issues rather than just working in a vacuum.” More

  • in

    In a unique research collaboration, students make the case for less e-waste

    Brought together as part of the Social and Ethical Responsibilities of Computing (SERC) initiative within the MIT Schwarzman College of Computing, a community of students known as SERC Scholars is collaborating to examine the most urgent problems humans face in the digital landscape.Each semester, students from all levels from across MIT are invited to join a different topical working group led by a SERC postdoctoral associate. Each group delves into a specific issue — such as surveillance or data ownership — culminating in a final project presented at the end of the term.Typically, students complete the program with hands-on experience conducting research in a new cross-disciplinary field. However, one group of undergraduate and graduate students recently had the unique opportunity to enhance their resume by becoming published authors of a case study about the environmental and climate justice implications of the electronics hardware life cycle.Although it’s not uncommon for graduate students to co-author case studies, it’s unusual for undergraduates to earn this opportunity — and for their audience to be other undergraduates around the world.“Our team was insanely interdisciplinary,” says Anastasia Dunca, a junior studying computer science and one of the co-authors. “I joined the SERC Scholars Program because I liked the idea of being part of a cohort from across MIT working on a project that utilized all of our skillsets. It also helps [undergraduates] learn the ins and outs of computing ethics research.”Case study co-author Jasmin Liu, an MBA student in the MIT Sloan School of Management, sees the program as a platform to learn about the intersection of technology, society, and ethics: “I met team members spanning computer science, urban planning, to art/culture/technology. I was excited to work with a diverse team because I know complex problems must be approached with many different perspectives. Combining my background in humanities and business with the expertise of others allowed us to be more innovative and comprehensive.”Christopher Rabe, a former SERC postdoc who facilitated the group, says, “I let the students take the lead on identifying the topic and conducting the research.” His goal for the group was to challenge students across disciplines to develop a working definition of climate justice.From mining to e-wasteThe SERC Scholars’ case study, “From Mining to E-waste: The Environmental and Climate Justice Implications of the Electronics Hardware Life Cycle,” was published by the MIT Case Studies in Social and Ethical Responsibilities of Computing.The ongoing case studies series, which releases new issues twice a year on an open-source platform, is enabling undergraduate instructors worldwide to incorporate research-based education materials on computing ethics into their existing class syllabi.This particular case study broke down the electronics life cycle from mining to manufacturing, usage, and disposal. It offered an in-depth look at how this cycle promotes inequity in the Global South. Mining for the average of 60 minerals that power everyday devices lead to illegal deforestation, compromising air quality in the Amazon, and triggering armed conflict in Congo. Manufacturing leads to proven health risks for both formal and informal workers, some of whom are child laborers.Life cycle assessment and circular economy are proposed as mechanisms for analyzing environmental and climate justice issues in the electronics life cycle. Rather than posing solutions, the case study offers readers entry points for further discussion and for assessing their own individual responsibility as producers of e-waste.Crufting and crafting a case studyDunca joined Rabe’s working group, intrigued by the invitation to conduct a rigorous literature review examining issues like data center resource and energy use, manufacturing waste, ethical issues with AI, and climate change. Rabe quickly realized that a common thread among all participants was an interest in understanding and reducing e-waste and its impact on the environment.“I came in with the idea of us co-authoring a case study,” Rabe said. However, the writing-intensive process was initially daunting to those students who were used to conducting applied research. Once Rabe created sub-groups with discrete tasks, the steps for researching, writing, and iterating a case study became more approachable.For Ellie Bultena, an undergraduate student studying linguistics and philosophy and a contributor to the study, that meant conducting field research on the loading dock of MIT’s Stata Center, where students and faculty go “crufting” through piles of clunky printers, broken computers, and used lab equipment discarded by the Institute’s labs, departments, and individual users.Although not a formally sanctioned activity on-campus, “crufting” is the act of gleaning usable parts from these junk piles to be repurposed into new equipment or art. Bultena’s respondents, who opted to be anonymous, said that MIT could do better when it comes to the amount of e-waste generated and suggested that formal strategies could be implemented to encourage community members to repair equipment more easily or recycle more formally.Rabe, now an education program director at the MIT Environmental Solutions Initiative, is hopeful that through the Zero-Carbon Campus Initiative, which commits MIT to eliminating all direct emissions by 2050, MIT will ultimately become a model for other higher education institutions.Although the group lacked the time and resources to travel to communities in the Global South that they profiled in their case study, members leaned into exhaustive secondary research, collecting data on how some countries are irresponsibly dumping e-waste. In contrast, others have developed alternative solutions that can be duplicated elsewhere and scaled.“We source materials, manufacture them, and then throw them away,” Lelia Hampton says. A PhD candidate in electrical engineering and computer science and another co-author, Hampton jumped at the opportunity to serve in a writing role, bringing together the sub-groups research findings. “I’d never written a case study, and it was exciting. Now I want to write 10 more.”The content directly informed Hampton’s dissertation research, which “looks at applying machine learning to climate justice issues such as urban heat islands.” She said that writing a case study that is accessible to general audiences upskilled her for the non-profit organization she’s determined to start. “It’s going to provide communities with free resources and data needed to understand how they are impacted by climate change and begin to advocate against injustice,” Hampton explains.Dunca, Liu, Rabe, Bultena, and Hampton are joined on the case study by fellow authors Mrinalini Singha, a graduate student in the Art, Culture, and Technology program; Sungmoon Lim, a graduate student in urban studies and planning and EECS; Lauren Higgins, an undergraduate majoring in political science; and Madeline Schlegal, a Northeastern University co-op student.Taking the case study to classrooms around the worldAlthough PhD candidates have contributed to previous case studies in the series, this publication is the first to be co-authored with MIT undergraduates. Like any other peer-reviewed journal, before publication, the SERC Scholars’ case study was anonymously reviewed by senior scholars drawn from various fields.The series editor, David Kaiser, also served as one of SERC’s inaugural associate deans and helped shape the program. “The case studies, by design, are short, easy to read, and don’t take up lots of time,” Kaiser explained. “They are gateways for students to explore, and instructors can cover a topic that has likely already been on their mind.” This semester, Kaiser, the Germeshausen Professor of the History of Science and a professor of physics, is teaching STS.004 (Intersections: Science, Technology, and the World), an undergraduate introduction to the field of science, technology, and society. The last month of the semester has been dedicated wholly to SERC case studies, one of which is: “From Mining to E-Waste.”Hampton was visibly moved to hear that the case study is being used at MIT but also by some of the 250,000 visitors to the SERC platform, many of whom are based in the Global South and directly impacted by the issues she and her cohort researched. “Many students are focused on climate, whether through computer science, data science, or mechanical engineering. I hope that this case study educates them on environmental and climate aspects of e-waste and computing.” More

  • in

    MIT delegation mainstreams biodiversity conservation at the UN Biodiversity Convention, COP16

    For the first time, MIT sent an organized engagement to the global Conference of the Parties for the Convention on Biological Diversity, which this year was held Oct. 21 to Nov. 1 in Cali, Colombia.The 10 delegates to COP16 included faculty, researchers, and students from the MIT Environmental Solutions Initiative (ESI), the Department of Electrical Engineering and Computer Science (EECS), the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Department of Urban Studies and Planning (DUSP), the Institute for Data, Systems, and Society (IDSS), and the Center for Sustainability Science and Strategy.In previous years, MIT faculty had participated sporadically in the discussions. This organized engagement, led by the ESI, is significant because it brought representatives from many of the groups working on biodiversity across the Institute; showcased the breadth of MIT’s research in more than 15 events including panels, roundtables, and keynote presentations across the Blue and Green Zones of the conference (with the Blue Zone representing the primary venue for the official negotiations and discussions and the Green Zone representing public events); and created an experiential learning opportunity for students who followed specific topics in the negotiations and throughout side events.The conference also gathered attendees from governments, nongovernmental organizations, businesses, other academic institutions, and practitioners focused on stopping global biodiversity loss and advancing the 23 goals of the Kunming-Montreal Global Biodiversity Framework (KMGBF), an international agreement adopted in 2022 to guide global efforts to protect and restore biodiversity through 2030.MIT’s involvement was particularly pronounced when addressing goals related to building coalitions of sub-national governments (targets 11, 12, 14); technology and AI for biodiversity conservation (targets 20 and 21); shaping equitable markets (targets 3, 11, and 19); and informing an action plan for Afro-descendant communities (targets 3, 10, and 22).Building coalitions of sub-national governmentsThe ESI’s Natural Climate Solutions (NCS) Program was able to support two separate coalitions of Latin American cities, namely the Coalition of Cities Against Illicit Economies in the Biogeographic Chocó Region and the Colombian Amazonian Cities coalition, who successfully signed declarations to advance specific targets of the KMGBF (the aforementioned targets 11, 12, 14).This was accomplished through roundtables and discussions where team members — including Marcela Angel, research program director at the MIT ESI; Angelica Mayolo, ESI Martin Luther King Fellow 2023-25; and Silvia Duque and Hannah Leung, MIT Master’s in City Planning students — presented a set of multi-scale actions including transnational strategies, recommendations to strengthen local and regional institutions, and community-based actions to promote the conservation of the Biogeographic Chocó as an ecological corridor.“There is an urgent need to deepen the relationship between academia and local governments of cities located in biodiversity hotspots,” said Angel. “Given the scale and unique conditions of Amazonian cities, pilot research projects present an opportunity to test and generate a proof of concept. These could generate catalytic information needed to scale up climate adaptation and conservation efforts in socially and ecologically sensitive contexts.”ESI’s research also provided key inputs for the creation of the Fund for the Biogeographic Chocó Region, a multi-donor fund launched within the framework of COP16 by a coalition composed of Colombia, Ecuador, Panamá, and Costa Rica. The fund aims to support biodiversity conservation, ecosystem restoration, climate change mitigation and adaptation, and sustainable development efforts across the region.Technology and AI for biodiversity conservationData, technology, and artificial intelligence are playing an increasing role in how we understand biodiversity and ecosystem change globally. Professor Sara Beery’s research group at MIT focuses on this intersection, developing AI methods that enable species and environmental monitoring at previously unprecedented spatial, temporal, and taxonomic scales.During the International Union of Biological Diversity Science-Policy Forum, the high-level COP16 segment focused on outlining recommendations from scientific and academic community, Beery spoke on a panel alongside María Cecilia Londoño, scientific information manager of the Humboldt Institute and co-chair of the Global Biodiversity Observations Network, and Josh Tewksbury, director of the Smithsonian Tropical Research Institute, among others, about how these technological advancements will help humanity achieve our biodiversity targets. The panel emphasized that AI innovation was needed, but with emphasis on direct human-AI partnership, AI capacity building, and the need for data and AI policy to ensure equity of access and benefit from these technologies.As a direct outcome of the session, for the first time, AI was emphasized in the statement on behalf of science and academia delivered by Hernando Garcia, director of the Humboldt Institute, and David Skorton, secretary general of the Smithsonian Institute, to the high-level segment of the COP16.That statement read, “To effectively address current and future challenges, urgent action is required in equity, governance, valuation, infrastructure, decolonization and policy frameworks around biodiversity data and artificial intelligence.”Beery also organized a panel at the GEOBON pavilion in the Blue Zone on Scaling Biodiversity Monitoring with AI, which brought together global leaders from AI research, infrastructure development, capacity and community building, and policy and regulation. The panel was initiated and experts selected from the participants at the recent Aspen Global Change Institute Workshop on Overcoming Barriers to Impact in AI for Biodiversity, co-organized by Beery.Shaping equitable marketsIn a side event co-hosted by the ESI with CAF-Development Bank of Latin America, researchers from ESI’s Natural Climate Solutions Program — including Marcela Angel; Angelica Mayolo; Jimena Muzio, ESI research associate; and Martin Perez Lara, ESI research affiliate and director for Forest Climate Solutions Impact and Monitoring at World Wide Fund for Nature of the U.S. — presented results of a study titled “Voluntary Carbon Markets for Social Impact: Comprehensive Assessment of the Role of Indigenous Peoples and Local Communities (IPLC) in Carbon Forestry Projects in Colombia.” The report highlighted the structural barriers that hinder effective participation of IPLC, and proposed a conceptual framework to assess IPLC engagement in voluntary carbon markets.Communicating these findings is important because the global carbon market has experienced a credibility crisis since 2023, influenced by critical assessments in academic literature, journalism questioning the quality of mitigation results, and persistent concerns about the engagement of private actors with IPLC. Nonetheless, carbon forestry projects have expanded rapidly in Indigenous, Afro-descendant, and local communities’ territories, and there is a need to assess the relationships between private actors and IPLC and to propose pathways for equitable participation. 

    Panelists pose at the equitable markets side event at the Latin American Pavilion in the Blue Zone.

    Previous item
    Next item

    The research presentation and subsequent panel with representatives of the association for Carbon Project Developers in Colombia Asocarbono, Fondo Acción, and CAF further discussed recommendations for all actors in the value chain of carbon certificates — including those focused on promoting equitable benefit-sharing and safeguarding compliance, increased accountability, enhanced governance structures, strengthened institutionality, and regulatory frameworks  — necessary to create an inclusive and transparent market.Informing an action plan for Afro-descendant communitiesThe Afro-Interamerican Forum on Climate Change (AIFCC), an international network working to highlight the critical role of Afro-descendant peoples in global climate action, was also present at COP16.At the Afro Summit, Mayolo presented key recommendations prepared collectively by the members of AIFCC to the technical secretariat of the Convention on Biological Diversity (CBD). The recommendations emphasize:creating financial tools for conservation and supporting Afro-descendant land rights;including a credit guarantee fund for countries that recognize Afro-descendant collective land titling and research on their contributions to biodiversity conservation;calling for increased representation of Afro-descendant communities in international policy forums;capacity-building for local governments; andstrategies for inclusive growth in green business and energy transition.These actions aim to promote inclusive and sustainable development for Afro-descendant populations.“Attending COP16 with a large group from MIT contributing knowledge and informed perspectives at 15 separate events was a privilege and honor,” says MIT ESI Director John E. Fernández. “This demonstrates the value of the ESI as a powerful research and convening body at MIT. Science is telling us unequivocally that climate change and biodiversity loss are the two greatest challenges that we face as a species and a planet. MIT has the capacity, expertise, and passion to address not only the former, but also the latter, and the ESI is committed to facilitating the very best contributions across the institute for the critical years that are ahead of us.”A fuller overview of the conference is available via The MIT Environmental Solutions Initiative’s Primer of COP16. More

  • in

    Ensuring a durable transition

    To fend off the worst impacts of climate change, “we have to decarbonize, and do it even faster,” said William H. Green, director of the MIT Energy Initiative (MITEI) and Hoyt C. Hottel Professor, MIT Department of Chemical Engineering, at MITEI’s Annual Research Conference.“But how the heck do we actually achieve this goal when the United States is in the middle of a divisive election campaign, and globally, we’re facing all kinds of geopolitical conflicts, trade protectionism, weather disasters, increasing demand from developing countries building a middle class, and data centers in countries like the U.S.?”Researchers, government officials, and business leaders convened in Cambridge, Massachusetts, Sept. 25-26 to wrestle with this vexing question at the conference that was themed, “A durable energy transition: How to stay on track in the face of increasing demand and unpredictable obstacles.”“In this room we have a lot of power,” said Green, “if we work together, convey to all of society what we see as real pathways and policies to solve problems, and take collective action.”The critical role of consensus-building in driving the energy transition arose repeatedly in conference sessions, whether the topic involved developing and adopting new technologies, constructing and siting infrastructure, drafting and passing vital energy policies, or attracting and retaining a skilled workforce.Resolving conflictsThere is “blowback and a social cost” in transitioning away from fossil fuels, said Stephen Ansolabehere, the Frank G. Thompson Professor of Government at Harvard University, in a panel on the social barriers to decarbonization. “Companies need to engage differently and recognize the rights of communities,” he said.Nora DeDontney, director of development at Vineyard Offshore, described her company’s two years of outreach and negotiations to bring large cables from ocean-based wind turbines onshore.“Our motto is, ‘community first,’” she said. Her company works to mitigate any impacts towns might feel because of offshore wind infrastructure construction with projects, such as sewer upgrades; provides workforce training to Tribal Nations; and lays out wind turbines in a manner that provides safe and reliable areas for local fisheries.Elsa A. Olivetti, professor in the Department of Materials Science and Engineering at MIT and the lead of the Decarbonization Mission of MIT’s new Climate Project, discussed the urgent need for rapid scale-up of mineral extraction. “Estimates indicate that to electrify the vehicle fleet by 2050, about six new large copper mines need to come on line each year,” she said. To meet the demand for metals in the United States means pushing into Indigenous lands and environmentally sensitive habitats. “The timeline of permitting is not aligned with the temporal acceleration needed,” she said.Larry Susskind, the Ford Professor of Urban and Environmental Planning in the MIT Department of Urban Studies and Planning, is trying to resolve such tensions with universities playing the role of mediators. He is creating renewable energy clinics where students train to participate in emerging disputes over siting. “Talk to people before decisions are made, conduct joint fact finding, so that facilities reduce harms and share the benefits,” he said.Clean energy boom and pressureA relatively recent and unforeseen increase in demand for energy comes from data centers, which are being built by large technology companies for new offerings, such as artificial intelligence.“General energy demand was flat for 20 years — and now, boom,” said Sean James, Microsoft’s senior director of data center research. “It caught utilities flatfooted.” With the expansion of AI, the rush to provision data centers with upwards of 35 gigawatts of new (and mainly renewable) power in the near future, intensifies pressure on big companies to balance the concerns of stakeholders across multiple domains. Google is pursuing 24/7 carbon-free energy by 2030, said Devon Swezey, the company’s senior manager for global energy and climate.“We’re pursuing this by purchasing more and different types of clean energy locally, and accelerating technological innovation such as next-generation geothermal projects,” he said. Pedro Gómez Lopez, strategy and development director, Ferrovial Digital, which designs and constructs data centers, incorporates renewable energy into their projects, which contributes to decarbonization goals and benefits to locales where they are sited. “We can create a new supply of power, taking the heat generated by a data center to residences or industries in neighborhoods through District Heating initiatives,” he said.The Inflation Reduction Act and other legislation has ramped up employment opportunities in clean energy nationwide, touching every region, including those most tied to fossil fuels. “At the start of 2024 there were about 3.5 million clean energy jobs, with ‘red’ states showing the fastest growth in clean energy jobs,” said David S. Miller, managing partner at Clean Energy Ventures. “The majority (58 percent) of new jobs in energy are now in clean energy — that transition has happened. And one-in-16 new jobs nationwide were in clean energy, with clean energy jobs growing more than three times faster than job growth economy-wide”In this rapid expansion, the U.S. Department of Energy (DoE) is prioritizing economically marginalized places, according to Zoe Lipman, lead for good jobs and labor standards in the Office of Energy Jobs at the DoE. “The community benefit process is integrated into our funding,” she said. “We are creating the foundation of a virtuous circle,” encouraging benefits to flow to disadvantaged and energy communities, spurring workforce training partnerships, and promoting well-paid union jobs. “These policies incentivize proactive community and labor engagement, and deliver community benefits, both of which are key to building support for technological change.”Hydrogen opportunity and challengeWhile engagement with stakeholders helps clear the path for implementation of technology and the spread of infrastructure, there remain enormous policy, scientific, and engineering challenges to solve, said multiple conference participants. In a “fireside chat,” Prasanna V. Joshi, vice president of low-carbon-solutions technology at ExxonMobil, and Ernest J. Moniz, professor of physics and special advisor to the president at MIT, discussed efforts to replace natural gas and coal with zero-carbon hydrogen in order to reduce greenhouse gas emissions in such major industries as steel and fertilizer manufacturing.“We have gone into an era of industrial policy,” said Moniz, citing a new DoE program offering incentives to generate demand for hydrogen — more costly than conventional fossil fuels — in end-use applications. “We are going to have to transition from our current approach, which I would call carrots-and-twigs, to ultimately, carrots-and-sticks,” Moniz warned, in order to create “a self-sustaining, major, scalable, affordable hydrogen economy.”To achieve net zero emissions by 2050, ExxonMobil intends to use carbon capture and sequestration in natural gas-based hydrogen and ammonia production. Ammonia can also serve as a zero-carbon fuel. Industry is exploring burning ammonia directly in coal-fired power plants to extend the hydrogen value chain. But there are challenges. “How do you burn 100 percent ammonia?”, asked Joshi. “That’s one of the key technology breakthroughs that’s needed.” Joshi believes that collaboration with MIT’s “ecosystem of breakthrough innovation” will be essential to breaking logjams around the hydrogen and ammonia-based industries.MIT ingenuity essentialThe energy transition is placing very different demands on different regions around the world. Take India, where today per capita power consumption is one of the lowest. But Indians “are an aspirational people … and with increasing urbanization and industrial activity, the growth in power demand is expected to triple by 2050,” said Praveer Sinha, CEO and managing director of the Tata Power Co. Ltd., in his keynote speech. For that nation, which currently relies on coal, the move to clean energy means bringing another 300 gigawatts of zero-carbon capacity online in the next five years. Sinha sees this power coming from wind, solar, and hydro, supplemented by nuclear energy.“India plans to triple nuclear power generation capacity by 2032, and is focusing on advancing small modular reactors,” said Sinha. “The country also needs the rapid deployment of storage solutions to firm up the intermittent power.” The goal is to provide reliable electricity 24/7 to a population living both in large cities and in geographically remote villages, with the help of long-range transmission lines and local microgrids. “India’s energy transition will require innovative and affordable technology solutions, and there is no better place to go than MIT, where you have the best brains, startups, and technology,” he said.These assets were on full display at the conference. Among them a cluster of young businesses, including:the MIT spinout Form Energy, which has developed a 100-hour iron battery as a backstop to renewable energy sources in case of multi-day interruptions;startup Noya that aims for direct air capture of atmospheric CO2 using carbon-based materials;the firm Active Surfaces, with a lightweight material for putting solar photovoltaics in previously inaccessible places;Copernic Catalysts, with new chemistry for making ammonia and sustainable aviation fuel far more inexpensively than current processes; andSesame Sustainability, a software platform spun out of MITEI that gives industries a full financial analysis of the costs and benefits of decarbonization.The pipeline of research talent extended into the undergraduate ranks, with a conference “slam” competition showcasing students’ summer research projects in areas from carbon capture using enzymes to 3D design for the coils used in fusion energy confinement.“MIT students like me are looking to be the next generation of energy leaders, looking for careers where we can apply our engineering skills to tackle exciting climate problems and make a tangible impact,” said Trent Lee, a junior in mechanical engineering researching improvements in lithium-ion energy storage. “We are stoked by the energy transition, because it’s not just the future, but our chance to build it.” More

  • in

    Linzixuan (Rhoda) Zhang wins 2024 Collegiate Inventors Competition

    Linzixuan (Rhoda) Zhang, a doctoral candidate in the MIT Department of Chemical Engineering, recently won the 2024 Collegiate Inventors Competition, medaling in both the Graduate and People’s Choice categories for developing materials to stabilize nutrients in food with the goal of improving global health.  The annual competition, organized by the National Inventors Hall of Fame and United States Patent and Trademark Office (USPTO), celebrates college and university student inventors. The finalists present their inventions to a panel of final-round judges composed of National Inventors Hall of Fame inductees and USPTO officials. No stranger to having her work in the limelight, Zhang is a three-time winner of the Koch Institute Image Awards in 2022, 2023, and 2024, as well as a 2022 fellow at the MIT Abdul Latif Jameel Water and Food Systems Lab.  “Rhoda is an exceptionally dedicated and creative student. Her well-deserved award recognizes the potential of her research on nutrient stabilization, which could have a significant impact on society,” says Ana Jaklenec, one of Zhang’s advisors and a principal investigator at MIT’s Koch Institute for Integrative Cancer Research. Zhang is also advised by David H. Koch (1962) Institute Professor Robert Langer. Frameworks for global healthIn a world where nearly 2 billion people suffer from micronutrient deficiencies, particularly iron, the urgency for effective solutions has never been greater. Iron deficiency is especially harmful for vulnerable populations such as children and pregnant women, since it can lead to weakened immune systems and developmental delays. The World Health Organization has highlighted food fortification as a cost-effective strategy, yet many current methods fall short. Iron and other nutrients can break down during processing or cooking, and synthetic additives often come with high costs and environmental drawbacks. Zhang, along with her teammate, Xin Yang, a postdoc associate at Koch Institute, set out to innovate new technologies for nutrient fortification that are effective, accessible, and sustainable, leading to the invention nutritional metal-organic frameworks (NuMOFs) and the subsequent launch of MOFe Coffee, the world’s first iron-fortified coffee. NuMOFs not only protect essential nutrients such as iron while in food for long periods of time, but also make them more easily absorbed and used once consumed.The inspiration for the coffee came from the success of iodized salt, which significantly reduced iodine deficiency worldwide. Because coffee and tea are associated with low iron absorption, iron fortification would directly address the challenge.However, replicating the success of iodized salt for iron fortification has been extremely challenging due to the micronutrient’s high reactivity and the instability of iron(II) salts. As researchers with backgrounds in material science, chemistry, and food technology, Zhang and Yang leveraged their expertise to develop a solution that could overcome these technical barriers. The fortified coffee serves as a practical example of how NuMOFs can help people increase their iron intake by engaging in a habit that’s already part of their daily routine, with significant potential benefits for women, who are disproportionately affected by iron deficiency. The team plans to expand the technology to incorporate additional nutrients to address a wider array of nutritional deficiencies and improve health equity globally.Fast-track to addressing global health improvementsLooking ahead, Zhang and Yang in the Jaklenec Group are focused on both product commercialization and ongoing research, refining MOFe Coffee to enhance nutrient stability and ensuring the product remains palatable while maximizing iron absorption.Winning the CIC competition means that Zhang, Yang, and the team can fast-track their patent application with the USPTO. The team hopes that their fast-tracked patent will allow them to attract more potential investors and partners, which is crucial for scaling their efforts. A quicker patent process also means that the team can bring the technology to market faster, helping improve global nutrition and health for those who need it most. “Our goal is to make a real difference in addressing micronutrient deficiencies around the world,” says Zhang.   More