More stories

  • in

    Using classic physical phenomena to solve new problems

    Quenching, a powerful heat transfer mechanism, is remarkably effective at transporting heat away. But in extreme environments, like nuclear power plants and aboard spaceships, a lot rides on the efficiency and speed of the process.It’s why Marco Graffiedi, a fifth-year doctoral student at MIT’s Department of Nuclear Science and Engineering (NSE), is researching the phenomenon to help develop the next generation of spaceships and nuclear plants.Growing up in small-town ItalyGraffiedi’s parents encouraged a sense of exploration, giving him responsibilities for family projects even at a young age. When they restored a countryside cabin in a small town near Palazzolo, in the hills between Florence and Bologna, the then-14-year-old Marco got a project of his own. He had to ensure the animals on the property had enough accessible water without overfilling the storage tank. Marco designed and built a passive hydraulic system that effectively solved the problem and is still functional today.His proclivity for science continued in high school in Lugo, where Graffiedi enjoyed recreating classical physics phenomena, through experiments. Incidentally, the high school is named after Gregorio Ricci-Curbastro, a mathematician who laid the foundation for the theory of relativity — history that is not lost on Graffiedi. After high school, Graffiedi attended the International Physics Olympiad in Bangkok, a formative event that cemented his love for physics.A gradual shift toward engineeringA passion for physics and basic sciences notwithstanding, Graffiedi wondered if he’d be a better fit for engineering, where he could use the study of physics, chemistry, and math as tools to build something.Following that path, he completed a bachelor’s and master’s in mechanical engineering — because an undergraduate degree in Italy takes only three years, pretty much everyone does a master’s, Graffiedi laughs — at the Università di Pisa and the Scuola Superiore Sant’Anna (School of Engineering). The Sant’Anna is a highly selective institution that most students attend to complement their university studies.Graffiedi’s university studies gradually moved him toward the field of environmental engineering. He researched concentrated solar power in order to reduce the cost of solar power by studying the associated thermal cycle and trying to improve solar power collection. While the project was not very successful, it reinforced Graffiedi’s impression of the necessity of alternative energies. Still firmly planted in energy studies, Graffiedi worked on fracture mechanics for his master’s thesis, in collaboration with (what was then) GE Oil and Gas, researching how to improve the effectiveness of centrifugal compressors. And a summer internship at Fermilab had Graffiedi working on the thermal characterization of superconductive coatings.With his studies behind him, Graffiedi was still unsure about this professional path. Through the Edison Program from GE Oil and Gas, where he worked shortly after graduation, Graffiedi got to test drive many fields — from mechanical and thermal engineering to exploring gas turbines and combustion. He eventually became a test engineer, coordinating a team of engineers to test a new upgrade to the company’s gas turbines. “I set up the test bench, understanding how to instrument the machine, collect data, and run the test,” Graffiedi remembers, “there was a lot you need to think about, from a little turbine blade with sensors on it to the location of safety exits on the test bench.”The move toward nuclear engineeringAs fun as the test engineering job was, Graffiedi started to crave more technical knowledge and wanted to pivot to science. As part of his exploration, he came across nuclear energy and, understanding it to be the future, decided to lean on his engineering background to apply to MIT NSE.He found a fit in Professor Matteo Bucci’s group and decided to explore boiling and quenching. The move from science to engineering, and back to science, was now complete.NASA, the primary sponsor of the research, is interested in preventing boiling of cryogenic fuels, because boiling leads to loss of fuel and the resulting vapor will need to be vented to avoid overpressurizing a fuel tank.Graffiedi’s primary focus is on quenching, which will play an important role in refueling in space — and in the cooling of nuclear cores. When a cryogen is used to cool down a surface, it undergoes what is known as the Leidenfrost effect, which means it first forms a thin vapor film that acts as an insulator and prevents further cooling. To facilitate rapid cooling, it’s important to accelerate the collapse of the vapor film. Graffiedi is exploring the mechanics of the quenching process on a microscopic level, studies that are important for land and space applications.Boiling can be used for yet another modern application: to improve the efficiency of cooling systems for data centers. The growth of data centers and electric transportation systems needs effective heat transfer mechanisms to avoid overheating. Immersion cooling using dielectric fluids — fluids that do not conduct electricity — is one way to do so. These fluids remove heat from a surface by leaning on the principle of boiling. For effective boiling, the fluid must overcome the Leidenfrost effect and break the vapor film that forms. The fluid must also have high critical heat flux (CHF), which is the maximum value of the heat flux at which boiling can effectively be used to transfer heat from a heated surface to a liquid. Because dielectric fluids have lower CHF than water, Graffiedi is exploring solutions to enhance these limits. In particular, he is investigating how high electric fields can be used to enhance CHF and even to use boiling as a way to cool electronic components in the absence of gravity. He published this research in Applied Thermal Engineering in June.Beyond boilingGraffiedi’s love of science and engineering shows in his commitment to teaching as well. He has been a teaching assistant for four classes at NSE, winning awards for his contributions. His many additional achievements include winning the Manson Benedict Award presented to an NSE graduate student for excellence in academic performance and professional promise in nuclear science and engineering, and a service award for his role as past president of the MIT Division of the American Nuclear Society.Boston has a fervent Italian community, Graffiedi says, and he enjoys being a part of it. Fittingly, the MIT Italian club is called MITaly. When he’s not at work or otherwise engaged, Graffiedi loves Latin dancing, something he makes time for at least a couple of times a week. While he has his favorite Italian restaurants in the city, Graffiedi is grateful for another set of skills his parents gave him when was just 11: making perfect pizza and pasta. More

  • in

    The brain power behind sustainable AI

    How can you use science to build a better gingerbread house?That was something Miranda Schwacke spent a lot of time thinking about. The MIT graduate student in the Department of Materials Science and Engineering (DMSE) is part of Kitchen Matters, a group of grad students who use food and kitchen tools to explain scientific concepts through short videos and outreach events. Past topics included why chocolate “seizes,” or becomes difficult to work with when melting (spoiler: water gets in), and how to make isomalt, the sugar glass that stunt performers jump through in action movies.Two years ago, when the group was making a video on how to build a structurally sound gingerbread house, Schwacke scoured cookbooks for a variable that would produce the most dramatic difference in the cookies.“I was reading about what determines the texture of cookies, and then tried several recipes in my kitchen until I got two gingerbread recipes that I was happy with,” Schwacke says.She focused on butter, which contains water that turns to steam at high baking temperatures, creating air pockets in cookies. Schwacke predicted that decreasing the amount of butter would yield denser gingerbread, strong enough to hold together as a house.“This hypothesis is an example of how changing the structure can influence the properties and performance of material,” Schwacke said in the eight-minute video.That same curiosity about materials properties and performance drives her research on the high energy cost of computing, especially for artificial intelligence. Schwacke develops new materials and devices for neuromorphic computing, which mimics the brain by processing and storing information in the same place. She studies electrochemical ionic synapses — tiny devices that can be “tuned” to adjust conductivity, much like neurons strengthening or weakening connections in the brain.“If you look at AI in particular — to train these really large models — that consumes a lot of energy. And if you compare that to the amount of energy that we consume as humans when we’re learning things, the brain consumes a lot less energy,” Schwacke says. “That’s what led to this idea to find more brain-inspired, energy-efficient ways of doing AI.”Her advisor, Bilge Yildiz, underscores the point: One reason the brain is so efficient is that data doesn’t need to be moved back and forth.“In the brain, the connections between our neurons, called synapses, are where we process information. Signal transmission is there. It is processed, programmed, and also stored in the same place,” says Yildiz, the Breene M. Kerr (1951) Professor in the Department of Nuclear Science and Engineering and DMSE. Schwacke’s devices aim to replicate that efficiency.Scientific rootsThe daughter of a marine biologist mom and an electrical engineer dad, Schwacke was immersed in science from a young age. Science was “always a part of how I understood the world.”“I was obsessed with dinosaurs. I wanted to be a paleontologist when I grew up,” she says. But her interests broadened. At her middle school in Charleston, South Carolina, she joined a FIRST Lego League robotics competition, building robots to complete tasks like pushing or pulling objects. “My parents, my dad especially, got very involved in the school team and helping us design and build our little robot for the competition.”Her mother, meanwhile, studied how dolphin populations are affected by pollution for the National Oceanic and Atmospheric Administration. That had a lasting impact.“That was an example of how science can be used to understand the world, and also to figure out how we can improve the world,” Schwacke says. “And that’s what I’ve always wanted to do with science.”Her interest in materials science came later, in her high school magnet program. There, she was introduced to the interdisciplinary subject, a blend of physics, chemistry, and engineering that studies the structure and properties of materials and uses that knowledge to design new ones.“I always liked that it goes from this very basic science, where we’re studying how atoms are ordering, all the way up to these solid materials that we interact with in our everyday lives — and how that gives them their properties that we can see and play with,” Schwacke says.As a senior, she participated in a research program with a thesis project on dye-sensitized solar cells, a low-cost, lightweight solar technology that uses dye molecules to absorb light and generate electricity.“What drove me was really understanding, this is how we go from light to energy that we can use — and also seeing how this could help us with having more renewable energy sources,” Schwacke says.After high school, she headed across the country to Caltech. “I wanted to try a totally new place,” she says, where she studied materials science, including nanostructured materials thousands of times thinner than a human hair. She focused on materials properties and microstructure — the tiny internal structure that governs how materials behave — which led her to electrochemical systems like batteries and fuel cells.AI energy challengeAt MIT, she continued exploring energy technologies. She met Yildiz during a Zoom meeting in her first year of graduate school, in fall 2020, when the campus was still operating under strict Covid-19 protocols. Yildiz’s lab studies how charged atoms, or ions, move through materials in technologies like fuel cells, batteries, and electrolyzers.The lab’s research into brain-inspired computing fired Schwacke’s imagination, but she was equally drawn to Yildiz’s way of talking about science.“It wasn’t based on jargon and emphasized a very basic understanding of what was going on — that ions are going here, and electrons are going here — to understand fundamentally what’s happening in the system,” Schwacke says.That mindset shaped her approach to research. Her early projects focused on the properties these devices need to work well — fast operation, low energy use, and compatibility with semiconductor technology — and on using magnesium ions instead of hydrogen, which can escape into the environment and make devices unstable.Her current project, the focus of her PhD thesis, centers on understanding how the insertion of magnesium ions into tungsten oxide, a metal oxide whose electrical properties can be precisely tuned, changes its electrical resistance. In these devices, tungsten oxide serves as a channel layer, where resistance controls signal strength, much like synapses regulate signals in the brain.“I am trying to understand exactly how these devices change the channel conductance,” Schwacke says.Schwacke’s research was recognized with a MathWorks Fellowship from the School of Engineering in 2023 and 2024. The fellowship supports graduate students who leverage tools like MATLAB or Simulink in their work; Schwacke applied MATLAB for critical data analysis and visualization.Yildiz describes Schwacke’s research as a novel step toward solving one of AI’s biggest challenges.“This is electrochemistry for brain-inspired computing,” Yildiz says. “It’s a new context for electrochemistry, but also with an energy implication, because the energy consumption of computing is unsustainably increasing. We have to find new ways of doing computing with much lower energy, and this is one way that can help us move in that direction.”Like any pioneering work, it comes with challenges, especially in bridging the concepts between electrochemistry and semiconductor physics.“Our group comes from a solid-state chemistry background, and when we started this work looking into magnesium, no one had used magnesium in these kinds of devices before,” Schwacke says. “So we were looking at the magnesium battery literature for inspiration and different materials and strategies we could use. When I started this, I wasn’t just learning the language and norms for one field — I was trying to learn it for two fields, and also translate between the two.”She also grapples with a challenge familiar to all scientists: how to make sense of messy data.“The main challenge is being able to take my data and know that I’m interpreting it in a way that’s correct, and that I understand what it actually means,” Schwacke says.She overcomes hurdles by collaborating closely with colleagues across fields, including neuroscience and electrical engineering, and sometimes by just making small changes to her experiments and watching what happens next.Community mattersSchwacke is not just active in the lab. In Kitchen Matters, she and her fellow DMSE grad students set up booths at local events like the Cambridge Science Fair and Steam It Up, an after-school program with hands-on activities for kids.“We did ‘pHun with Food’ with ‘fun’ spelled with a pH, so we had cabbage juice as a pH indicator,” Schwacke says. “We let the kids test the pH of lemon juice and vinegar and dish soap, and they had a lot of fun mixing the different liquids and seeing all the different colors.”She has also served as the social chair and treasurer for DMSE’s graduate student group, the Graduate Materials Council. As an undergraduate at Caltech, she led workshops in science and technology for Robogals, a student-run group that encourages young women to pursue careers in science, and assisted students in applying for the school’s Summer Undergraduate Research Fellowships.For Schwacke, these experiences sharpened her ability to explain science to different audiences, a skill she sees as vital whether she’s presenting at a kids’ fair or at a research conference.“I always think, where is my audience starting from, and what do I need to explain before I can get into what I’m doing so that it’ll all make sense to them?” she says.Schwacke sees the ability to communicate as central to building community, which she considers an important part of doing research. “It helps with spreading ideas. It always helps to get a new perspective on what you’re working on,” she says. “I also think it keeps us sane during our PhD.”Yildiz sees Schwacke’s community involvement as an important part of her resume. “She’s doing all these activities to motivate the broader community to do research, to be interested in science, to pursue science and technology, but that ability will help her also progress in her own research and academic endeavors.”After her PhD, Schwacke wants to take that ability to communicate with her to academia, where she’d like to inspire the next generation of scientists and engineers. Yildiz has no doubt she’ll thrive.“I think she’s a perfect fit,” Yildiz says. “She’s brilliant, but brilliance by itself is not enough. She’s persistent, resilient. You really need those on top of that.” More

  • in

    Over 1,000 MIT students inspired to work toward climate solutions

    Recently, more than 1,000 MIT students stepped into the shoes of global decision-makers by trying out En-ROADS, a simulation tool developed to test climate policies, explore solutions, and envision a cleaner and safer environmental future.MIT is committed to climate action, and this year’s new student orientation showcased that commitment. For the first time ever, incoming Leaders for Global Operations (LGO), Executive MBA, Sloan Fellow MBA, MBA, and undergraduate students all explored the capabilities of En-ROADS.“The goal is for MIT to become one of the world’s most prolific, collaborative, and interdisciplinary sources of technological, behavioral, and policy solutions for the global climate challenge over the next decade,” MIT Provost Anantha P. Chandrakasan told an audience of about 300 undergraduates from the Class of 2029. “It is something we need to do urgently, and today is your opportunity to play a role in that bold mission.”Connecting passion with science for changeIn group workshop sessions, students collaborated to create a world in which global warming stays well below 2 degrees Celsius above preindustrial levels — the goal of the 2015 Paris Agreement. Backed by the latest science, the En-ROADS simulator let them explore firsthand how policies like carbon pricing and clean energy investments affect our climate, economy, and health. Over 450 incoming MBA students even role-played as delegates at a global climate summit conference, tasked with negotiating a global agreement to address the harm caused by climate change.For first-year MBA student Allison Somuk, who played the role of President Xi Jinping of China, the workshop was not only eye-opening about climate, but also altered how she plans to approach her future work and advocacy.“Before the simulation, I didn’t have data on climate change, so I was surprised to see how close we are to catastrophic temperature increases. What surprised me most was how difficult it was to slow that trajectory. It required significant action and compromise from nearly every sector, not just a few. As someone passionate about improving maternal health care in developing nations, my view of contributing factors has broadened. I now see how maternal health may be affected by a larger system where climate policy decisions directly affect women’s health outcomes.”MIT Sloan Research Affiliate Andrew Jones, who is also executive director and co-founder of Climate Interactive and co-creator of the En-ROADS tool, presented several sessions during orientation. Looking back on the week, he found the experience personally rewarding.  “Engaging with hundreds of students, I was inspired by the powerful alignment between their passion for climate action and MIT’s increased commitment to delivering on climate goals. This is a pivotal moment for breakthroughs on our campus.”Other presenters included Jennifer Graham, MIT Sustainability Initiative senior associate director; Jason Jay, MIT Sustainability Initiative director; Krystal Noiseux, MIT Climate Pathways Project associate director; Bethany Patten, MIT Climate Policy Center executive director; and John Sterman, Jay W. Forrester Professor of Management, professor in the MIT Institute for Data, Systems, and Society, and director of the MIT System Dynamics Group.Chris Rabe, the MIT Climate Project’s Education Program director, was impressed, but not surprised, by how much students learned so quickly as they worked together to solve the problem with En-ROADS.“By integrating reflection, emotional dynamics, multi-generational perspectives, group work, and inquiry, the En-ROADS simulation provides an ideal foundation for first-year students to explore the breadth of climate and sustainability opportunities at MIT. In the process, students came to recognize the many levers and multi-solving approaches required to address the complex challenges of climate change.”Inspiring climate leadersThe En-ROADS workshops were a true team effort, made possible with the help of senior staff at MIT Sloan School of Management and the MBA program office, and members of the MIT Sloan Sustainability Initiative, Climate Pathways Project, Climate Policy Center, the Climate Project, Office of the First Year, and entire undergraduate Orientation team.“Altogether, over a thousand of the newest members of the MIT community have now had a chance to learn for themselves about the climate crisis,” says Sterman, “and what we can do to create a healthier, safer, more prosperous, and more sustainable world — and how they can get involved to bring that world into being, even as first-year undergrads and MBAs.” By the end of the workshops, the students’ spirits were buoyed. They all had successfully found ways to keep global warming to below 2 C.  When asked, “What would you love about being part of this new future you’ve created?,”  a more positive, optimistic word cloud came into view. Answers included:breathing cleaner air;giving my children a better and safer environment;my hometown would not be flooded constantly;rich marine life and protection of reefs;exciting, new clean industries;increased socioeconomic equality; andproof that we as a global community can work together to save ourselves. First-year MBA student Ruby Eisenbud sums up the sentiment many new MIT students came away with after their workshop.“Coming to Sloan, one of the questions on my mind was: How can we, as future leaders, make a positive impact related to climate change? While En-ROADS is a simulation, it felt like we experienced, in the smallest way, what it could be like to be a leader navigating the diverging interests of all stakeholders involved in mitigating the impacts of the climate crisis. While the simulation prompted us to face the difficult reality of climate change, it also reinforced my motivation to emphasize climate in my work at Sloan and beyond.” More

  • in

    Designing across cultural and geographic divides

    In addition to the typical rigors of MIT classes, Terrascope Subject 2.00C/1.016/EC.746 (Design for Complex Environmental Issues) poses some unusual hurdles for students to navigate: collaborating across time zones, bridging different cultural and institutional experiences, and trying to do hands-on work over Zoom. That’s because the class includes students from not only MIT, but also Diné College in Tsaile, Arizona, within the Navajo Nation, and the University of Puerto Rico-Ponce (UPRP).Despite being thousands of miles apart, students work in teams to tackle a real-world problem for a client, based on the Terrascope theme for the year. “Understanding how to collaborate over long distances with people who are not like themselves will be an important item in many of these students’ toolbelts going forward, in some cases just as much as — or more than — any particular design technique,” says Ari Epstein, Terrascope associate director and senior lecturer. Over the past several years, Epstein has taught the class along with Joel Grimm of MIT Beaver Works and Libby Hsu of MIT D-Lab, as well instructors from the two collaborating institutions. Undergraduate teaching fellows from all three schools are also key members of the instructional staff.Since the partnership began three years ago (initially with Diné College, with the addition of UPRP two years ago), the class themes have included food security and sustainable agriculture in Navajo Nation; access to reliable electrical power in Puerto Rico; and this year, increasing museum visitors’ engagement with artworks depicting mining and landscape alteration in Nevada.Each team — which includes students from all three colleges — meets with clients online early in the term to understand their needs; then, through an iterative process, teams work on designing prototypes. During MIT’s spring break, teams travel to meet with the clients onsite to get feedback and continue to refine their prototypes. At the end of the term, students present their final products to the clients, an expert panel, and their communities at a hybrid showcase event held simultaneously on all three campuses.Free-range design engineering“I really loved the class,” says Graciela Leon, a second-year mechanical engineering major who took the subject in 2024. “It was not at all what I was expecting,” she adds. While the learning objectives on the syllabus are fairly traditional — using an iterative engineering design process, developing teamwork skills, and deepening communication skills, to name a few — the approach is not. “Terrascope is just kind of like throwing you into a real-world problem … it feels a lot more like you are being trusted with this actual challenge,” Leon says.The 2024 challenge was to find a way to help the clients, Puerto Rican senior citizens, turn on gasoline-powered generators when the electrical power grid fails; some of them struggle with the pull cords necessary to start the generators. The students were tasked with designing solutions to make starting the generators easier.Terrascope instructors teach fundamental skills such as iterative design spirals and scrum workflow frameworks, but they also give students ample freedom to follow their ideas. Leon admits she was a bit frustrated at first, because she wasn’t sure what she was supposed to be doing. “I wanted to be building things and thought, ‘Wow, I have to do all these other things, I have to write some kind of client profile and understand my client’s needs.’ I was just like, ‘Hand me a drill! I want to design something!’”When he took the class last year, Uziel Rodriguez-Andujar was also thrown off initially by the independence teams had. Now a second-year UPRP student in mechanical engineering, he’s accustomed to lecture-based classes. “What I found so interesting is the way [they] teach the class, which is, ‘You make your own project, and we need you to find a solution to this. How it will look, and when you have it — that’s up to you,’” he says.Clearing hurdlesTeaching the course on three different campuses introduces a number of challenges for students and instructors to overcome — among them, operating in three different time zones, overcoming language barriers, navigating different cultural and institutional norms, communicating effectively, and designing and building prototypes over Zoom.“The culture span is huge,” explains Epstein. “There are different ways of speaking, different ways of listening, and each organization has different resources.”First-year MIT student EJ Rodriguez found that one of the biggest obstacles was trying to convey ideas to teammates clearly. He took the class this year, when the theme revolved around the environmental impacts of lithium mining. The client, the Nevada Museum of Art, wanted to find ways to engage visitors with its artwork collection related to mining-related landscape changes.Rodriguez and his team designed a pendulum with a light affixed to it that illuminates a painting by a Native American artist. When the pendulum swings, it changes how the visitor experiences the artwork. The team built parts for the pendulum on different campuses, and they reached a point where they realized their pieces were incompatible. “We had different visions of what we wanted for the project, and different vocabulary we were using to describe our ideas. Sometimes there would be a misunderstanding … It required a lot of honesty from each campus to be like, ‘OK, I thought we were doing exactly this,’ and obviously in a really respectful way.”It’s not uncommon for students at Diné College and UPRP to experience an initial hurdle that their MIT peers do not. Epstein notes, “There’s a tendency for some folks outside MIT to see MIT students as these brilliant people that they don’t belong in the same room with.” But the other students soon realize not only that they can hold their own intellectually, but also that their backgrounds and experiences are incredibly valuable. “Their life experiences actually put them way ahead of many MIT students in some ways, when you think about design and fabrication, like repairing farm equipment or rebuilding transmissions,” he adds.That’s how Cauy Bia felt when he took the class in 2024. Currently a first-year graduate student in biology at Diné College, Bia questioned whether he’d be on par with the MIT students. “I’ve grown up on a farm, and we do a lot of building, a lot of calculations, a lot of hands-on stuff. But going into this, I was sweating it so hard [wondering], ‘Am I smart enough to work with these students?’ And then, at the end of the day, that was never an issue,” he says.The value of reflectionEvery two weeks, Terrascope students write personal reflections about their experiences in the class, which helps them appreciate their academic and personal development. “I really felt that I had undergone a process that made me grow as an engineer,” says Leon. “I understood the importance of people and engineering more, including teamwork, working with clients, and de-centering the project away from what I wanted to build and design.”When Bia began the semester, he says, he was more of a “make-or-break-type person” and tended to see things in black and white. “But working with all three campuses, it kind of opened up my thought process so I can assess more ideas, more voices and opinions. And I can get broader perspectives and get bigger ideas from that point,” he says. It was also a powerful experience culturally for him, particularly “drawing parallels between Navajo history, Navajo culture, and seeing the similarities between that and Puerto Rican culture, seeing how close we are as two nations.”Rodriguez-Andujar gained an appreciation for the “constant struggle between simplicity and complexity” in engineering. “You have all these engineers trying to over-engineer everything,” he says. “And after you get your client feedback [halfway through the semester], it turns out, ‘Oh, that doesn’t work for me. I’m sorry — you have to scale it down like a hundred times and make it a lot simpler.’”For instructors, the students’ reflections are invaluable as they strive to make improvements every year. In many ways, you might say the class is an iterative design spiral, too. “The past three years have themselves been prototypes,” Epstein says, “and all of the instructional staff are looking forward to continuing these exciting partnerships.” More

  • in

    Students and staff work together for MIT’s first “No Mow May”

    In recent years, some grass lawns around the country have grown a little taller in springtime thanks to No Mow May, a movement originally launched by U.K. nonprofit Plantlife in 2019 designed to raise awareness about the ecological impacts of the traditional, resource-intensive, manicured grass lawn. No Mow May encourages people to skip spring mowing to allow for grass to grow tall and provide food and shelter for beneficial creatures including bees, beetles, and other pollinators.This year, MIT took part in the practice for the first time, with portions of the Kendall/MIT Open Space, Bexley Garden, and the Tang Courtyard forgoing mowing from May 1 through June 6 to make space for local pollinators, decrease water use, and encourage new thinking about the traditional lawn. MIT’s first No Mow May was the result of championing by the Graduate Student Council Sustainability Subcommittee (GSC Sustain) and made possible by the Office of the Vice Provost for Campus Space Management and Planning. A student idea sproutsDespite being a dense urban campus, MIT has no shortage of green spaces — from pocket gardens and community-managed vegetable plots to thousands of shade trees — and interest in these spaces continues to grow. In recent years, student-led initiatives supported by Institute leadership and operational staff have transformed portions of campus by increasing the number of native pollinator plants and expanding community gardens, like the Hive Garden. With No Mow May, these efforts stepped out of the garden and into MIT’s many grassy open spaces. “The idea behind it was to raise awareness for more sustainable and earth-friendly lawn practices,” explains Gianmarco Terrones, GSC Sustain member. Those practices include reducing the burden of mowing, limiting use of fertilizers, and providing shelter and food for pollinators. “The insects that live in these spaces are incredibly important in terms of pollination, but they’re also part of the food chain for a lot of animals,” says Terrones. Research has shown that holding off on mowing in spring, even in small swaths of green space, can have an impact. The early months of spring have the lowest number of flowers in regions like New England, and providing a resource and refuge — even for a short duration — can support fragile pollinators like bees. Additionally, No Mow May aims to help people rethink their yards and practices, which are not always beneficial for local ecosystems. Signage at each No Mow site on campus highlighted information on local pollinators, the impact of the project, and questions for visitors to ask themselves. “Having an active sign there to tell people, ‘look around. How many butterflies do you see after six weeks of not mowing? Do you see more? Do you see more bees?’ can cause subtle shifts in people’s awareness of ecosystems,” says GSC Sustain member Mingrou Xie. A mowed barrier around each project also helped visitors know that areas of tall grass at No Mow sites are intentional.Campus partners bring sustainable practices to lifeTo make MIT’s No Mow May possible, GSC Sustain members worked with the Office of the Vice Provost and the Open Space Working Group, co-chaired by Vice Provost for Campus Space Management and Planning Brent Ryan and Director of Sustainability Julie Newman. The Working Group, which also includes staff from Open Space Programming, Campus Planning, and faculty in the School of Architecture and Planning, helped to identify potential No Mow locations and develop strategies for educational signage and any needed maintenance. “Massachusetts is a biodiverse state, and No Mow May provides an exciting opportunity for MIT to support that biodiversity on its own campus,” says Ryan. Students were eager for space on campus with high visibility, and the chosen locations of the Kendall/MIT Open Space, Bexley Garden, and the Tang Courtyard fit the bill. “We wanted to set an example and empower the community to feel like they can make a positive change to an environment they spend so much time in,” says Xie. For GSC Sustain, that positive change also takes the form of the Native Plant Project, which they launched in 2022 to increase the number of Massachusetts-native pollinator plants on campus — plants like swamp milkweed, zigzag goldenrod, big leaf aster, and red columbine, with which native pollinators have co-evolved. Partnering with the Open Space Working Group, GSC Sustain is currently focused on two locations for new native plant gardens — the President’s Garden and the terrace gardens at the E37 Graduate Residence. “Our short-term goal is to increase the number of native [plants] on campus, but long term we want to foster a community of students and staff interested in supporting sustainable urban gardening,” says Xie.Campus as a test bed continues to growAfter just a few weeks of growing, the campus No Mow May locations sprouted buttercups, mouse ear chickweed, and small tree saplings, highlighting the diversity waiting dormant in the average lawn. Terrones also notes other discoveries: “It’s been exciting to see how much the grass has sprung up these last few weeks. I thought the grass would all grow at the same rate, but as May has gone on the variations in grass height have become more apparent, leading to non-uniform lawns with a clearly unmanicured feel,” he says. “We hope that members of MIT noticed how these lawns have evolved over the span of a few weeks and are inspired to implement more earth-friendly lawn practices in their own homes/spaces.”No Mow May and the Native Plant Project fit into MIT’s overall focus on creating resilient ecosystems that support and protect the MIT community and the beneficial critters that call it home. MIT Grounds Services has long included native plants in the mix of what is grown on campus and native pollinator gardens, like the Hive Garden, have been developed and cared for through partnerships with students and Grounds Services in recent years. Grounds, along with consultants that design and install our campus landscape projects, strive to select plants that assist us with meeting sustainability goals, like helping with stormwater runoff and cooling. No Mow May can provide one more data point for the iterative process of choosing the best plants and practices for a unique microclimate like the MIT campus.“We are always looking for new ways to use our campus as a test bed for sustainability,” says Director of Sustainability Julie Newman. “Community-led projects like No Mow May help us to learn more about our campus and share those lessons with the larger community.”The Office of the Vice Provost, the Open Space Working Group, and GSC Sustain will plan to reconnect in the fall for a formal debrief of the project and its success. Given the positive community feedback, future possibilities of expanding or extending No Mow May will be discussed. More

  • in

    “Each of us holds a piece of the solution”

    MIT has an unparalleled history of bringing together interdisciplinary teams to solve pressing problems — think of the development of radar during World War II, or leading the international coalition that cracked the code of the human genome — but the challenge of climate change could demand a scale of collaboration unlike any that’s come before at MIT.“Solving climate change is not just about new technologies or better models. It’s about forging new partnerships across campus and beyond — between scientists and economists, between architects and data scientists, between policymakers and physicists, between anthropologists and engineers, and more,” MIT Vice President for Energy and Climate Evelyn Wang told an energetic crowd of faculty, students, and staff on May 6. “Each of us holds a piece of the solution — but only together can we see the whole.”Undeterred by heavy rain, approximately 300 campus community members filled the atrium in the Tina and Hamid Moghadam Building (Building 55) for a spring gathering hosted by Wang and the Climate Project at MIT. The initiative seeks to direct the full strength of MIT to address climate change, which Wang described as one of the defining challenges of this moment in history — and one of its greatest opportunities.“It calls on us to rethink how we power our world, how we build, how we live — and how we work together,” Wang said. “And there is no better place than MIT to lead this kind of bold, integrated effort. Our culture of curiosity, rigor, and relentless experimentation makes us uniquely suited to cross boundaries — to break down silos and build something new.”The Climate Project is organized around six missions, thematic areas in which MIT aims to make significant impact, ranging from decarbonizing industry to new policy approaches to designing resilient cities. The faculty leaders of these missions posed challenges to the crowd before circulating among the crowd to share their perspectives and to discuss community questions and ideas.Wang and the Climate Project team were joined by a number of research groups, startups, and MIT offices conducting relevant work today on issues related to energy and climate. For example, the MIT Office of Sustainability showcased efforts to use the MIT campus as a living laboratory; MIT spinouts such as Forma Systems, which is developing high-performance, low-carbon building systems, and Addis Energy, which envisions using the earth as a reactor to produce clean ammonia, presented their technologies; and visitors learned about current projects in MIT labs, including DebunkBot, an artificial intelligence-powered chatbot that can persuade people to shift their attitudes about conspiracies, developed by David Rand, the Erwin H. Schell Professor at the MIT Sloan School of Management.Benedetto Marelli, an associate professor in the Department of Civil and Environmental Engineering who leads the Wild Cards Mission, said the energy and enthusiasm that filled the room was inspiring — but that the individual conversations were equally valuable.“I was especially pleased to see so many students come out. I also spoke with other faculty, talked to staff from across the Institute, and met representatives of external companies interested in collaborating with MIT,” Marelli said. “You could see connections being made all around the room, which is exactly what we need as we build momentum for the Climate Project.” More

  • in

    Mary Robinson urges MIT School of Architecture and Planning graduates to “find a way to lead”

    “Class of 2025, are you ready?”This was the question Hashim Sarkis, dean of the MIT School of Architecture and Planning, posed to the graduating class at the school’s Advanced Degree Ceremony at Kresge Auditorium on May 29. The response was enthusiastic applause and cheers from the 224 graduates from the departments of Architecture and Urban Studies and Planning, the Program in Media Arts and Sciences, and the Center for Real Estate.Following his welcome to an audience filled with family and friends of the graduates, Sarkis introduced the day’s guest speaker, whom he cited as the “perfect fit for this class.” Recognizing the “international rainbow of graduates,” Sarkis welcomed Mary Robinson, former president of Ireland and head of the Mary Robinson Foundation — Climate Justice to the podium. Robinson, a lawyer by training, has had a wide-ranging career that began with elected positions in Ireland followed by leadership roles in global causes for justice, human rights, and climate change.Robinson laced her remarks with personal anecdotes from her career, from with earning a master’s in law at nearby Harvard University in 1968 — a year of political unrest in the United States — to founding The Elders in 2007 with world leaders: former South African President Nelson Mandela, anti-apartheid and human rights activist Desmond Tutu, and former U.S. President Jimmy Carter.She described an “early lesson” in recounting her efforts to reform the laws of contraception in Ireland at the beginning of her career in the Irish legislature. Previously, women were not prescribed birth control unless they were married and had irregular menstrual cycles certified by their physicians. Robinson received thousands of letters of condemnation and threats that she would destroy the country of Ireland if she would allow contraception to be more broadly available. The legislation introduced was successful despite the “hate mail” she received, which was so abhorrent that her fiancé at the time, now her husband, burned it. That experience taught her to stand firm to her values.“If you really believe in something, you must be prepared to pay a price,” she told the graduates.In closing, Robinson urged the class to put their “skills and talent to work to address the climate crisis,” a problem she said she came late to in her career.“You have had the privilege of being here at the School of Architecture and Planning at MIT,” said Robinson. “When you leave here, find ways to lead.” More

  • in

    MIT D-Lab students design global energy solutions through collaboration

    This semester, MIT D-Lab students built prototype solutions to help farmers in Afghanistan, people living in informal settlements in Argentina, and rural poultry farmers in Cameroon. The projects span continents and collectively stand to improve thousands of lives — and they all trace back to two longstanding MIT D-Lab classes.For nearly two decades, 2.651 / EC.711 (Introduction to Energy in Global Development) and 2.652 / EC.712 (Applications of Energy in Global Development) have paired students with international organizations and communities to learn D-Lab’s participatory approach to design and study energy technologies in low-resource environments. Hundreds of students from across MIT have taken the courses, which feature visits from partners and trips to the communities after the semester. They often discover a passion for helping people in low-resource settings that lasts a lifetime.“Through the trips, students often gain an appreciation for what they have at home, and they can’t forget about what they see,” says D-Lab instructor Josh Maldonado ’23, who took both courses as a student. “For me, it changed my entire career. Students maintain relationships with the people they work with. They stay on the group chats with community members and meet up with them when they travel. They come back and want to mentor for the class. You can just see it has a lasting effect.”The introductory course takes place each spring and is followed by summer trips for students. The applications class, which is more focused on specific projects, is held in the fall and followed by student travel over winter break.“MIT has always advocated for going out and impacting the world,” Maldonado says. “The fact that we can use what we learn here in such a meaningful way while still a student is awesome. It gets back to MIT’s motto, ‘mens et manus’ (‘mind and hand’).”Curriculum for impactIntroduction to Energy in Global Development has been taught since around 2008, with past projects focusing on mitigating the effects of aquatic weeds for fisherman in Ghana, making charcoal for cookstoves in Uganda, and creating brick evaporative coolers to extend the shelf life of fruits and vegetables in Mali.The class follows MIT D-Lab’s participatory design philosophy in which students design solutions in close collaboration with local communities. Along the way, students learn about different energy technologies and how they might be implemented cheaply in rural communities that lack basic infrastructure.“In product design, the idea is to get out and meet your customer where they are,” Maldonado explains. “The problem is our partners are often in remote, low-resource regions of the world. We put a big emphasis on designing with the local communities and increasing their creative capacity building to show them they can build solutions themselves.”Students from across MIT, including graduates and undergraduates, along with students from Harvard University and Wellesley College, can enroll in both courses. MIT senior Kanokwan Tungkitkancharoen took the introductory class this spring.“There are students from chemistry, computer science, civil engineering, policy, and more,” says Tungkitkancharoen. “I think that convergence models how things get done in real life. The class also taught me how to communicate the same information in different ways to cater to different people. It helped me distill my approach to what is this person trying to learn and how can I convey that information.”Tungkitkancharoen’s team worked with a nonprofit called Weatherizers Without Borders to implement weatherization strategies that enhance housing conditions and environmental resilience for people in the southern Argentinian community of Bariloche.The team built model homes and used heat sensing cameras to show the impact of weatherization strategies to locals and policymakers in the region.“Our partners live in self-built homes, but the region is notorious for being very cold in the winter and very hot in the summer,” Tungkitkancharoen says. “We’re helping our partners retrofit homes so they can withstand the weather better. Before the semester, I was interested in working directly with people impacted by these technologies and the current climate situation. D-Lab helped me work with people on the ground, and I’ve been super grateful to our community partners.”The project to design micro-irrigation systems to support agricultural productivity and water conservation in Afghanistan is in partnership with the Ecology and Conservation Organization of Afghanistan and a team from a local university in Afghanistan.“I love the process of coming into class with a practical question you need to solve and working closely with community partners,” says MIT master’s student Khadija Ghanizada, who has served as a teacher’s assistant for both the introductory and applications courses. “All of these projects will have a huge impact, but being from Afghanistan, I know this will make a difference because it’s a land-locked country, it’s dealing with droughts, and 80 percent of our economy depends on agriculture. We also make sure students are thinking about scalability of their solutions, whether scaling worldwide or just nationally. Every project has its own impact story.”Meeting community partnersNow that the spring semester is over, many students from the introductory class will travel to the regions they studied with instructors and local guides over the summer.“The traveling and implementation are things students always look forward to,” Maldonado says. “Students do a lot of prep work, thinking about the tools they need, the local resources they need, and working with partners to acquire those resources.”Following travel, students write a report on how the trip went, which helps D-Lab refine the course for next semester.“Oftentimes instructors are also doing research in these regions while they teach the class,” Maldonado says. “To be taught by people who were just in the field two weeks before the class started, and to see pictures of what they’re doing, is really powerful.”Students who have taken the class have gone on to careers in international development, nonprofits, and to start companies that grow the impact of their class projects. But the most immediate impact can be seen in the communities that students work with.“These solutions should be able to be built locally, sourced locally, and potentially also lead to the creation of localized markets based around the technology,” Maldonado says. “Almost everything the D-Lab does is open-sourced, so when we go to these communities, we don’t just teach people how to use these solutions, we teach them how to make them. Technology, if implemented correctly by mindful engineers and scientists, can be highly adopted and can grow a community of makers and fabricators and local businesses.” More