More stories

  • in

    Five MIT PhD students awarded 2022 J-WAFS fellowships for water and food solutions

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) recently announced the selection of its 2022-23 cohort of graduate fellows. Two students were named Rasikbhai L. Meswani Fellows for Water Solutions and three students were named J-WAFS Graduate Student Fellows. All five fellows will receive full tuition and a stipend for one semester, and J-WAFS will support the students throughout the 2022-23 academic year by providing networking, mentorship, and opportunities to showcase their research.

    New this year, fellowship nominations were open not only to students pursuing water research, but food-related research as well. The five students selected were chosen for their commitment to solutions-based research that aims to alleviate problems such as water supply or purification, food security, or agriculture. Their projects exemplify the wide range of research that J-WAFS supports, from enhancing nutrition through improved methods to deliver micronutrients to developing high-performance drip irrigation technology. The strong applicant pool reflects the passion MIT students have to address the water and food crises currently facing the planet.

    “This year’s fellows are drawn from a dynamic and engaged community across the Institute whose creativity and ingenuity are pushing forward transformational water and food solutions,” says J-WAFS executive director Renee J. Robins. “We congratulate these students as we recognize their outstanding achievements and their promise as up-and-coming leaders in global water and food sectors.”

    2022-23 Rasikbhai L. Meswani Fellows for Water SolutionsThe Rasikbhai L. Meswani Fellowship for Water Solutions is a fellowship for students pursuing water-related research at MIT. The Rasikbhai L. Meswani Fellowship for Water Solutions was made possible by a generous gift from Elina and Nikhil Meswani and family.

    Aditya Ghodgaonkar is a PhD candidate in the Department of Mechanical Engineering at MIT, where he works in the Global Engineering and Research (GEAR) Lab under Professor Amos Winter. Ghodgaonkar received a bachelor’s degree in mechanical engineering from the RV College of Engineering in India. He then moved to the United States and received a master’s degree in mechanical engineering from Purdue University.Ghodgaonkar is currently designing hydraulic components for drip irrigation that could support the development of water-efficient irrigation systems that are off-grid, inexpensive, and low-maintenance. He has focused on designing drip irrigation emitters that are resistant to clogging, seeking inspiration about flow regulation from marine fauna such as manta rays, as well as turbomachinery concepts. Ghodgaonkar notes that clogging is currently an expensive technical challenge to diagnose, mitigate, and resolve. With an eye on hundreds of millions of farms in developing countries, he aims to bring the benefits of irrigation technology to even the poorest farmers.Outside of his research, Ghodgaonkar is a mentor in MIT Makerworks and has been a teaching assistant for classes such as 2.007 (Design and Manufacturing I). He also helped organize the annual MIT Water Summit last fall.

    Devashish Gokhale is a PhD candidate advised by Professor Patrick Doyle in the Department of Chemical Engineering. He received a bachelor’s degree in chemical engineering from the Indian Institute of Technology Madras, where he researched fluid flow in energy-efficient pumps. Gokhale’s commitment to global water security stemmed from his experience growing up in India, where water sources are threatened by population growth, industrialization, and climate change.As a researcher in the Doyle group, Devashish is developing sustainable and reusable materials for water treatment, with a focus on the elimination of emerging contaminants and other micropollutants from water through cost-effective processes. Many of these contaminants are carcinogens or endocrine disruptors, posing significant threats to both humans and animals. His advisor notes that Devashish was the first researcher in the Doyle group to work on water purification, bringing his passion for the topic to the lab.Gokhale’s research won an award for potential scalability in last year’s J-WAFS World Water Day competition. He also serves as the lecture series chair in the MIT Water Club.

    2022-23 J-WAFS Graduate Student FellowsThe J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship. The program is central to J-WAFS’ efforts to engage across sector and disciplinary boundaries in solving real-world problems. Currently, there are two J-WAFS Research Affiliates: Xylem, Inc., a water technology company, and GoAigua, a company leading the digital transformation of the water industry.

    James Zhang is a PhD candidate in the Department of Mechanical Engineering at MIT, where he has worked in the NanoEngineering Laboratory with Professor Gang Chen since 2019. As an undergraduate at Carnegie Mellon University, he double majored in mechanical engineering and engineering public policy. He then received a master’s degree in mechanical engineering from MIT. In addition to working in the NanoEngineering Laboratory, James has also worked in the Zhao Laboratory and in the Boriskina Research Group at MIT.Zhang is developing a technology that uses light-induced evaporation to clean water. He is currently investigating the fundamental properties of how light interacts with brackish water surfaces. With strong theoretical as well as experimental components, his research could lead to innovations in desalinating brackish water at high energy efficiencies. Outside of his research, Zhang has served as a student moderator for the MIT International Colloquia on Thermal Innovations.

    Katharina Fransen is a PhD candidate advised by Professor Bradley Olsen in the Department of Chemical Engineering at MIT. She received a bachelor’s degree in chemical engineering from the University of Minnesota, where she was involved in the Society of Women Engineers. Fransen is motivated by the challenge of protecting the most vulnerable global communities from the large quantities of plastic waste associated with traditional food packaging materials. As a researcher in the Olsen Lab, Fransen is developing new plastics that are biologically-based and biodegradable, so they can degrade in the environment instead of polluting communities with plastic waste. These polymers are also optimized for food packaging applications to keep food fresher for longer, preventing food waste.Outside of her research, Fransen is involved in Diversity in Chemical Engineering as the coordinator for the graduate application mentorship program for underrepresented groups. She is also an active member of Graduate Womxn in ChemE and mentors an Undergraduate Research Opportunities Program student.

    Linzixuan (Rhoda) Zhang is a PhD candidate advised by Professor Robert Langer and Ana Jaklenec in the Department of Chemical Engineering at MIT. She received a bachelor’s degree in chemical engineering from the University of Illinois at Urbana-Champaign, where she researched how to genetically engineer microorganisms for the efficient production of advanced biofuels and chemicals.Zhang is currently developing a micronutrient delivery platform that fortifies foods with essential vitamins and nutrients. She has helped develop a group of biodegradable polymers that can stabilize micronutrients under harsh conditions, enabling local food companies to fortify food with essential vitamins. This work aims to tackle a hidden crisis in low- and middle-income countries, where a chronic lack of essential micronutrients affects an estimated 2 billion people.Zhang is also working on the development of self-boosting vaccines to promote more widespread vaccine access and serves as a research mentor in the Langer Lab. More

  • in

    A community approach to improving the health of the planet

    Earlier this month, MIT’s Department of Mechanical Engineering (MechE) hosted a Health of the Planet Showcase. The event was the culmination of a four-year long community initiative to focus on what the mechanical engineering community at MIT can do to solve some of the biggest challenges the planet faces on a local and global scale. Structured like an informal poster session, the event marked the first time that administrative staff joined students, researchers, and postdocs in sharing their own research.

    When Evelyn Wang started her tenure as mechanical engineering department head in July 2018, she and associate department heads Pierre Lermusiaux and Rohit Karnik made the health of the planet a top priority for the department. Their goal was to bring students, faculty, and staff together to develop solutions that address the many problems related to the health of the planet.

    “As a field, mechanical engineering is unique in its diversity,” says Wang, the Ford Professor of Engineering. “We have researchers who are world-leading experts on desalination, ocean engineering, energy storage, and photovoltaics, just to name a few. One of our driving motivations has been getting those experts to collaborate and work on new health of the planet research projects together.”

    Wang also saw an opportunity to tap into the passions of the department’s students and staff, many of whom devote their extracurricular and personal time to environmental causes. She enlisted the help of a team of faculty and staff to launch what has become known as the MechE Health of the Planet Initiative.

    The initiative, which capitalizes on the diverse range of research fields in mechanical engineering, encouraged both grand research ideas that could have impact on a global scale, and smaller personal habits that could help on a smaller scale.

    “We wanted to encourage everyone in our community to think about their daily routine and make small changes that really add up over time,” says Dorothy Hanna, program administrator at MIT and one of the staff members leading the initiative.

    The Health of the Planet team started small. They hosted an office supply swap day to encourage recycling and reuse of everyday office products. This idea expanded to include the launch of “Lab Reuse Days.” Members of the Rohsenow Kendall Lab, including members of the research groups of professors Gang Chen, John Lienhard, and Evelyn Wang, gathered extra materials for reuse. Researchers from other labs picked up Arduino kits, tubing, and electrical wiring to use for their own projects.

    While individuals were encouraged to adopt small habits at home and at work to help the health of the planet, research teams were encouraged to work together on solutions on a larger scale.

    Seed funding for collaborative research

    In early 2020, the MIT Department of Mechanical Engineering launched a new collaborative seed research program based on funding from MathWorks, the computing software company that developed MATLAB. The first seed funding supported health of the planet research projects led by two or more mechanical engineering faculty members.

    “One of the driving goals of MechE has been fostering collaborations and supporting interdisciplinary research on the grand challenges our world faces,” says Pierre Lermusiaux, the Nam P. Suh Professor and associate department head for operations. “The seed funding from MathWorks was a great opportunity to build upon the diverse expertise and creativity our researchers have to address health of the planet related issues.” 

    The research projects supported by the seed funding ranged from lithium-ion batteries for electric vehicles to high-performance household energy products for low- and middle-income countries. Each project differs in scope and application, and draws upon the expertise of at least two different research groups at MIT.

    Throughout the past two years, faculty presented about these research projects in several community seminars. They also participated in a full-day faculty research retreat focused on health of the planet research that included presentations from local Cambridge and Boston city leaders, as well as experts from other MIT departments and Harvard University.

    These projects have helped break down barriers and increased collaboration among research groups that focus on different areas. The third round of seed funding for collaborative research projects was recently announced and new projects will be chosen in the coming weeks.

    A community showcase

    Upon returning to the campus last fall, the Health of the Planet team began planning an event to bring the community together and celebrate the department’s research efforts. The Health of the Planet Showcase, which took place on April 4, featured 26 presenters from across the mechanical engineering community at MIT.

    Projects included a marine coastal monitoring robot, solar hydrogen production with thermochemical cycles, and a portable atmospheric water extractor for dry climates. Among the presenters was Administrative Assistant Tony Pulsone, who presented on how honeybees navigate their surroundings, as well as program manager Theresa Werth and program administrator Dorothy Hanna, who presented on reducing bottled water use and practical strategies developed by staff to overcome functional barriers on campus.

    The event concluded with the announcement of the Fay and Alfred D. Chandler Jr. Research Fellowship, awarded to a MechE student-led effort to propose a new paradigm to improve the health of our planet. Graduate student Charlene Xia won for her work developing a real-time opto-fluidics system for monitoring the soil microbiome.

    “The soil microbiome governs the biogeochemical cycling of macronutrients, micronutrients, and other elements vital for the growth of plants and animal life,” Xia said. “Understanding and predicting the impact of climate change on soil microbiomes and the ecosystem services they provide present a grand challenge and major opportunity.”

    The Chandler Fellowship will continue during the 2022-23 academic year, when another student-led project will be chosen. The department also hopes to make the Health of the Planet Showcase an annual gathering.

    “The showcase was such a vibrant event,” adds Wang. “It really energized the department and renewed our commitment to growing community efforts and continuing to advance research to help improve and protect the health of our planet.” More

  • in

    Strengthening students’ knowledge and experience in climate and sustainability

    Tackling the climate crisis is central to MIT. Critical to this mission is harnessing the innovation, passion, and expertise of MIT’s talented students, from a variety of disciplines and backgrounds. To help raise this student involvement to the next level, the MIT Climate and Sustainability Consortium (MCSC) recently launched a program that will engage MIT undergraduates in a unique, year-long, interdisciplinary experience both developing and implementing climate and sustainability research projects.

    The MCSC Climate and Sustainability Scholars Program is a way for students to dive deeply and directly into climate and sustainability research, strengthen their skill sets in a variety of climate and sustainability-related areas, build their networks, and continue to embrace and grow their passion.The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research.

    The program, open to rising juniors and seniors from all majors and departments, is inspired by MIT’s SuperUROP program. Students will enroll in a year-long class while simultaneously engaging in research. Research projects will be climate- and sustainability-focused and can be on or off campus. The course will be initially facilitated by Desiree Plata, the Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, and Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director.“Climate and sustainability challenges face real barriers in science, technology, policy, and beyond,” says Plata, who also serves on the MCSC’s Faculty Steering Committee. “We need to motivate an all-hands effort to bring MIT talent to bear on these challenges, and we need to give our students the tools to make tangible benefits within and between their disciplines. This was our goal in designing the MCSC Scholars Program, and it’s what I’m most excited about.”

    The Climate and Sustainability Scholars Program has relevance across all five schools, and the number of places the course is cross-listed continues to grow. As is the broader goal of the MCSC, the Climate and Sustainability Scholars Program aims to amplify and extend MIT’s expertise — through engaging students of all backgrounds and majors, bringing in faculty mentors and instructors from around the Institute, and identifying research opportunities and principal investigators that span disciplines. The student cohort model will also build off of the successful community-building endeavors by the MIT Energy Initiative and Environmental Solutions Initiative, among others, to bring students with similar interests together into an interdisciplinary, problem-solving space.The program’s fall semester will focus on key climate and sustainability topics, such as decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts, and humanities-based communication of climate topics, all while students engage in research. Students will simultaneously develop project proposals, participate in a project through MIT’s Undergraduate Research Opportunities Program, and communicate their work using written and oral media. The spring semester’s course will focus on research and experiential activities, and help students communicate their outputs in entrepreneurial or policy activities that would enable the research outcomes to be rapidly scaled for impact.Throughout the program, students will engage with their research mentors, additional mentors drawn from MCSC-affiliated faculty, postdoctoral Impact Fellows, and graduate students — and there will also be opportunities for interaction with representatives of MCSC member companies.“Providing opportunities for students to sharpen the skills and knowledge needed to pioneer solutions for climate change mitigation and adaptation is critical,” says Olivetti. “We are excited that the Climate and Sustainability Scholars Program can contribute to that important mission.” More

  • in

    Embracing ancient materials and 21st-century challenges

    When Sophia Mittman was 10 years old, she wanted to be an artist. But instead of using paint, she preferred the mud in her backyard. She sculpted it into pots and bowls like the ones she had seen at the archaeological museums, transforming the earthly material into something beautiful.

    Now an MIT senior studying materials science and engineering, Mittman seeks modern applications for sustainable materials in ways that benefit the community around her.

    Growing up in San Diego, California, Mittman was homeschooled, and enjoyed the process of teaching herself new things. After taking a pottery class in seventh grade, she became interested in sculpture, teaching herself how to make fused glass. From there, Mittman began making pottery and jewelry. This passion to create new things out of sustainable materials led her to pursue materials science, a subject she didn’t even know was originally offered at the Institute.

    “I didn’t know the science behind why those materials had the properties they did. And materials science explained it,” she says.

    During her first year at MIT, Mittman took 2.00b (Toy Product Design), which she considers one of her most memorable classes at the Institute. She remembers learning about the mechanical side of building, using drill presses and sanding machines to create things. However, her favorite part was the seminars on the weekends, where she learned how to make things such as stuffed animals or rolling wooden toys. She appreciated the opportunity to learn how to use everyday materials like wood to construct new and exciting gadgets.

    From there, Mittman got involved in the Glass Club, using blowtorches to melt rods of glass to make things like marbles and little fish decorations. She also took a few pottery and ceramics classes on campus, learning how to hone her skills to craft new things. Understanding MIT’s hands-on approach to learning, Mittman was excited to use her newly curated skills in the various workshops on campus to apply them to the real world.

    In the summer after her first year, Mittman became an undergraduate field and conservation science researcher for the Department of Civil and Environmental Engineering. She traveled to various cities across Italy to collaborate with international art restorers, conservation scientists, and museum curators to study archaeological materials and their applications to modern sustainability. One of her favorite parts was restoring the Roman baths, and studying the mosaics on the ground. She did a research project on Egyptian Blue, one of the first synthetic pigments, which has modern applications because of its infrared luminescence, which can be used for detecting fingerprints in crime scenes. The experience was eye-opening for Mittman; she got to directly experience what she had been learning in the classroom about sustainable materials and how she could preserve and use them for modern applications.

    The next year, upon returning to campus, Mittman joined Incredible Foods as a polymeric food science and technology intern. She learned how to create and apply a polymer coating to natural fruit snacks to replicate real berries. “It was fun to see the breadth of material science because I had learned about polymers in my material science classes, but then never thought that it could be applied to making something as fun as fruit snacks,” she says.

    Venturing into yet another new area of materials science, Mittman last year pursued an internship with Phoenix Tailings, which aims to be the world’s first “clean” mining company. In the lab, she helped develop and analyze chemical reactions to physically and chemically extract rare earth metals and oxides from mining waste. She also worked to engineer bright-colored, high-performance pigments using nontoxic chemicals. Mittman enjoyed the opportunity to explore a mineralogically sustainable method for mining, something she hadn’t previously explored as a branch of materials science research.

    “I’m still able to contribute to environmental sustainability and to try to make a greener world, but it doesn’t solely have to be through energy because I’m dealing with dirt and mud,” she says.

    Outside of her academic work, Mittman is involved with the Tech Catholic Community (TCC) on campus. She has held roles as the music director, prayer chair, and social committee chair, organizing and managing social events for over 150 club members. She says the TCC is the most supportive community in her campus life, as she can meet people who have similar interests as her, though are in different majors. “There are a lot of emotional aspects of being at MIT, and there’s a spiritual part that so many students wrestle with. The TCC is where I’ve been able to find so much comfort, support, and encouragement; the closest friends I have are in the Tech Catholic Community,” she says.

    Mittman is also passionate about teaching, which allows her to connect to students and teach them material in new and exciting ways. In the fall of her junior and senior years, she was a teaching assistant for 3.091 (Introduction to Solid State Chemistry), where she taught two recitations of 20 students and offered weekly private tutoring. She enjoyed helping students tackle difficult course material in ways that are enthusiastic and encouraging, as she appreciated receiving the same help in her introductory courses.

    Looking ahead, Mittman plans to work fulltime at Phoenix Tailings as a materials scientist following her graduation. In this way, she feels like she has come full circle: from playing in the mud as a kid to working with it as a materials scientist to extract materials to help build a sustainable future for nearby and international communities.

    “I want to be able to apply what I’m enthusiastic about, which is materials science, by way of mineralogical sustainability, so that it can help mines here in America but also mines in Brazil, Austria, Jamaica — all over the world, because ultimately, I think that will help more people live better lives,” she says. More

  • in

    Architecture isn’t just for humans anymore

    In a rural valley of northwestern Nevada, home to stretches of wetlands, sagebrush-grassland, and dozens of natural springs, is a 3,800-acre parcel of off-grid land known as Fly Ranch. Owned by Burning Man, the community that yearly transforms the neighboring playa into a colorful free-wheeling temporary city, Fly Ranch is part of a long-term project to extend the festival’s experimental ethos beyond the one-week event. In 2018, the group, in conjunction with The Land Art Generator Initiative, invited proposals for sustainable systems for energy, water, food, shelter, and regenerative waste management on the site. 

    For recent MIT alumni Zhicheng Xu MArch ’22 and Mengqi Moon He SMArchS ’20, Fly Ranch presented a new challenge. Xu and He, who have backgrounds in landscape design, urbanism, and architecture, had been in the process of researching the use of timber as a building material, and thought the competition would be a good opportunity to experiment and showcase some of their initial research. “But because of our MIT education, we approached the problem with a very critical lens,” says Xu, “We were asking ourselves: Who are we designing for? What do we mean by shelter? Sheltering whom?” 

    Architecture for other-than-human worlds

    Their winning proposal, “Lodgers,” selected among 185 entries and currently on view at the Weisner Student Art Gallery, asks how to design a structure that will accommodate not only the land’s human inhabitants, but also the over 100 plant and animal species that call the desert home. In other words, what would an architecture look like that centered not only human needs, but also those of the broader ecosystem? 

    Developing the project during the pandemic lockdowns, Xu and He pored over a long list of hundreds of local plants and animals — from red-tailed hawks to desert rats to bullfrogs — and designed the project with these species in mind. Combining new computational tools with the traditional Western Shoshone and Northern Paiute designs found in brush shelters and woven baskets, the thatched organic structures called “lodgers” feature bee towers, nesting platforms for birds, sugar-glazed logs for breeding beetle larvae, and composting toilets and environmental education classrooms for humans. 

    But it wasn’t until they visited Fly Ranch, in the spring of 2021, that Xu and He’s understanding of the project deepened. For several nights, they camped onsite with other competition finalists, alongside park rangers and longtime Burners, eating community meals together and learning first-hand the complexities of the desert. At one point during the trip, they were caught in a sandstorm while driving a trailer-load of supplies down a dirt road. The experience, they say, was an important lesson in humility, and how such extremes made the landscape what it was. “That’s why we later came to the term ‘coping with the friction’ because it’s always there,” He says, “There’s no solution.” Xu adds, “The different elements from the land — the water, the heat, the sound, the wind — are the elements we have to cope with in the project. Those little moments made us realize we need to reposition ourselves, stay humble, and try to understand the land.” 

    Leave no trace

    While the deserts of the American West have long been vulnerable to human hubris — from large-scale military procedures to mining operations that have left deep scars on the landscape — Xu and He designed the “lodgers” to leave a light footprint. Instead of viewing buildings as permanent solutions, with the environment perceived as an obstacle to be overcome, Xu and He see their project as a “temporary inhabitant.” 

    To reduce carbon emissions, their goal was to adopt low-cost, low-tech, recycled materials that could be used without the need for special training or heavy equipment, so that the construction itself could be open to everyone in the community. In addition to scrap wood collected onsite, the project uses two-by-four lumber, among the most common and cheapest materials in American construction, and thatching for the facades created from the dry reeds and bulrush that grow abundantly in the region. If the structures are shut down, the use of renewable materials allows them to decompose naturally. 

    Fly Ranch at MIT 

    Now, the MIT community has the opportunity to experience part of the Nevada desert — and be part of the process of participatory design. “We are very fortunate to be funded by the Council of the Arts at MIT,” says Xu. “With that funding, we were able to expand the team, so the format of the exhibition was more democratic than just designing and building.” With the help of their classmates Calvin Zhong ’18 and Wuyahuang Li SMArchS ’21, Xu and He have brought their proposal to life. The ambitious immersive installation includes architectural models, field recordings, projections, and artifacts such as the skeletons of turtles and fish collected at Fly Ranch. Inside the structure is a large communal table, where Xu and He hope to host workshops and conversations to encourage more dialogue and collaboration. Having learned from the design build, Xu and He are now collecting feedback from MIT professors and colleagues to bring the project to the next level. In the fall, they will debut the “lodgers” at the Lisbon Architectural Triennale, and soon hope to build a prototype at Fly Ranch itself. 

    The structures, they hope, will inspire greater reflection on our entanglements with the other-than-human world, and the possibilities of an architecture designed to be impermanent. Humans, after all, are often only “occasional guests” in this landscape, and part of the greater cycles of emergence and decay. “To us, it’s a beautiful expression of how different species are entangled on the land. And us as humans is just another tiny piece in this entanglement,” says Xu. 

    Established as a gift from the MIT Class of 1983, the Wiesner Gallery honors the former president of MIT, Jerome Wiesner, for his support of the arts at the Institute. The gallery was fully renovated in fall 2016, thanks in part to the generosity of Harold ’44 and Arlene Schnitzer and the Council for the Arts at MIT, and now also serves as a central meeting space for MIT Student Arts Programming including the START Studio, Creative Arts Competition, Student Arts Advisory Board, and Arts Scholars. “Lodgers: Friction Between Neighbors” is on view in the Wiesner Student Art Gallery through April 29, and was funded in part by the Council for the Arts at MIT, a group of alumni and friends with a strong commitment to the arts and serving the MIT community. More

  • in

    MIT Energy Conference focuses on climate’s toughest challenges

    This year’s MIT Energy Conference, the largest student-led event of its kind, included keynote talks and panels that tackled some of the thorniest remaining challenges in the global effort to cut back on climate-altering emissions. These include the production of construction materials such as steel and cement, and the role of transportation including aviation and shipping. While the challenges are formidable, approaches incorporating methods such as fusion, heat pumps, energy efficiency, and the use of hydrogen hold promise, participants said.

    The two-day conference, held on March 31 and April 1 for more than 900 participants, included keynote lectures, 14 panel discussions, a fireside chat, networking events, and more. The event this year included the final round of the annual MIT Climate and Energy Prize, whose winning team receives $100,000 and other support. The prize, awarded since 2007, has led to the creation of more than 220 companies and $1.1 billion in investments.

    This year’s winner is a project that hopes to provide an innovative, efficient waterless washing machine aimed at the vast majority of the world’s people, who still do laundry by hand.

    “A truly consequential moment in history”

    In his opening keynote address Fatih Birol, executive director of the International Energy Agency, noted that this year’s conference was taking place during the unprovoked invasion of Ukraine by Russia, a leading gas and oil exporter. As a result, “global oil markets are going through a major turmoil,” he said.

    He said that Russian oil exports are expected to drop by 3 million barrels a day, and that international efforts to release reserves and promote increased production elsewhere will help, but will not suffice. “We have to look to other measures” to make up the shortfall, he said, noting that his agency has produced a 10-point plan of measures to help reduce global demand for oil.

    Europe gets 45 percent of its natural gas from Russia, and the agency also has developed a 10-point plan to help alleviate expected shortages there, including measures to improve energy efficiency in homes and industries, promote renewable heating sources, and postpone retirement of some nuclear plants. But he emphasized that “our goals to reach our climate targets should not be yet another victim of Mr. Putin and his allies.”  Unfortunately, Birol said, “I see that addressing climate change is sliding down in the policy agenda of many governments.”

    But he sees reasons for optimism as well, in terms of the feasibility of achieving the global emissions reduction target, agreed to by countries representing 80 percent of the global economy, of reaching net zero carbon dioxide emissions by 2050. The IEA has developed a roadmap for the entire energy sector to get there, which is now used by many governments as a benchmark, according to Birol.

    In addition, the trend is already clear, he said. “More than 90 percent of all power plants installed in the world [last year] were renewable energy,” mainly solar and wind. And 10 percent of cars sold worldwide last year, and 20 percent in Europe, were electric cars. “Please remember that in 2019 it was only 2 percent!” he said. He also predicted that “nuclear is going to make a comeback in many countries,” both in terms of large plants and newer small modular reactors.

    Birol said that “I hope that the current crisis gives governments the impetus to address the energy security concerns, to reach our climate goals, and … [to] choose the right direction at this very important turning point.”

    The conference’s second day began with keynote talks by Gina McCarthy, national climate advisor at the White House Office of Domestic Climate Policy, and Maria Zuber, MIT’s vice president for research. In her address, Zuber said, “This conference comes at a truly consequential moment in history — a moment that puts into stark relief the enormous risks created by our current fossil-fuel based energy system — risks we cannot continue to accept.”

    She added that “time is not on our side.” To meet global commitments for limiting climate impacts, the world needs to reduce emissions by about half by 2030, and get to net zero by 2050. “In other words, we need to transform our entire global energy system in a few decades,” she said. She cited MIT’s “Fast Forward” climate action plan, issued last year, as presenting the two tracks that the world needs to pursue simultaneously: going as far as possible, as fast as possible, with the tools that exist now, while also innovating and investing in new ideas, technologies, practices, and institutions that may be needed to reach the net-zero goal.

    On the first track, she said, citing an IEA report, “from here until 2040, we can get most of the emissions reductions we need with technologies that are currently available or on the verge of becoming commercially available.” These include electrifying and boosting efficiency in buildings, industry, and transportation; increasing the portion of electricity coming from emissions-free sources; and investing in new infrastructure such as electric vehicle charging stations.

    But more than that is needed, she pointed out. For example, the amount of methane that leaks away into the atmosphere from fossil fuel operations is equivalent to all the natural gas used in Europe’s power sector, Zuber said. Recovering and selling that methane can dramatically reduce global methane emissions, often at little or no cost.

    For the longer run, “we need track-two solutions to decarbonize tough industries like aviation, shipping, chemicals, concrete, and steel,” and to remove carbon dioxide from the atmosphere. She described some of the promising technologies that are in the pipeline. Fusion, for example, has moved from being a scientific challenge to an engineering problem whose solution seems well underway, she said.

    Another important area is food-related systems, which currently account for a third of all global emissions. For example, fertilizer production uses a very energy-intensive process, but work on plants engineered to fix nitrogen directly could make a significant dent.

    These and several other advanced research areas may not all pan out, but some undoubtedly will, and will help curb climate change as well as create new jobs and reduce pollution.

    Though the problems we face are complex, they are not insurmountable, Zuber said. “We don’t need a miracle. What we need is to move along the two tracks I’ve outlined with determination, ingenuity, and fierce urgency.”

    The promise and challenges of hydrogen

    Other conference speakers took on some of the less-discussed but crucial areas that also need to be addressed in order to limit global warming to 1.5 degrees. Heavy transportation, and aviation in particular, have been considered especially challenging. In his keynote address, Glenn Llewellyn, vice president for zero-emission aircraft at Airbus, outlined several approaches his company is working on to develop competitive midrange alternative airliners by 2035 that use either batteries or fuel cells powered by hydrogen. The early-stage designs demonstrate that, contrary to some projections, there is a realistic pathway to weaning that industry from its present reliance on fossil fuel, chiefly kerosene.

    Hydrogen has real potential as an aviation fuel, he said, either directly for use in fuel cells for power or burned directly for propulsion, or indirectly as a feedstock for synthetic fuels. Both are being studied by the company, he said, including a hybrid model that uses both hydrogen fuel cells and hydrogen-fueled jet engines. The company projects a range of 2,000 nautical miles for a jet carrying 200 to 300 passengers, he said — all with no direct emissions and no contrails.

    But this vision will not be practical, Llewellyn said, unless economies of scale help to significantly lower the cost of hydrogen production. “Hydrogen is at the hub of aviation decarbonization,” he said. But that kind of price reduction seems quite feasible, he said, given that other major industries are also seriously looking at the use of hydrogen for their own decarbonization plans, including the production of steel and cement.

    Such uses were the subject of a panel discussion entitled “Deploying the Hydrogen Economy.” Hydrogen production technology exists, but not nearly at the scale that’s needed, which is about 500 million tons a year, pointed out moderator Dharik Mallapragada of the MIT Energy Initiative.

    Yet in some applications, the use of hydrogen both reduces emissions and is economically competitive. Preeti Pande of Plug Power said that her company, which produces hydrogen fuel cells, has found a significant market in an unexpected place: fork lifts, used in warehouses and factories worldwide. It turns out that replacing current battery-operated versions with fuel cell versions is a win-win for the companies that use them, saving money while helping to meet decarbonization goals.

    Lindsay Ashby of Avangrid Renewables said that the company has installed fuel-cell buses in Barcelona that run entirely on hydrogen generated by solar panels. The company is also building a 100-megawatt solar facility to produce hydrogen for the production of fertilizer, another major industry in need of decarbonization because of its large emissions footprint. And Brett Perleman of the Center for Houston’s Future said of his city that “we’re already a hydrogen hub today, just not green hydrogen” since the gas is currently mostly produced as a byproduct of fossil fuels. But that is changing rapidly, he said, and Houston, along with several other cities, aims to be a center of activity for hydrogen produced from renewable, non-carbon-emitting sources. They aim to be producing 1,000 tons a day by 2028, “and I think we’ll end up exceeding that,” he said.

    For industries that can switch to renewably generated electricity, that is typically the best choice, Perleman said. “But for those that can’t, hydrogen is a great option,” and that includes aviation, shipping, and rail. “The big oil companies all have plans in place” to develop clean hydrogen production, he said. “It’s not just a dream, but a reality.”

    For shipping, which tends to rely on bunker fuel, a particularly high-emissions fossil fuel, another potential option could be a new generation of small nuclear plants, said Jeff Navin of Terrapower, a company currently developing such units. “Finding replacements for coal, oil, or natural gas for industrial purposes is very hard,” he said, but often what these processes require is consistent high heat, which nuclear can deliver, as long as costs and regulatory issues can be resolved.  

    MIT professor of nuclear engineering Jacopo Buongiorno pointed out that the primary reasons for delays and cost overruns in nuclear plants have had to do with issues at the construction site, many of which could be alleviated by having smaller, factory-built modular plants, or by building multiple units at a time of a standardized design. If the government would take on the nuclear waste disposal, as some other countries have done, then nuclear power could play an important part in the decarbonization of many industries, he said.

    Student-led startups

    The two-day conference concluded with the final round of the annual MIT Climate and Energy Prize, consisting of the five finalist teams presenting brief pitches for their startup company ideas, followed by questions from the panel of judges. This year’s finalists included a team called Muket, dedicated to finding ways of reducing methane emissions from cattle and dairy farms. Feed additives or other measures could cut the emissions by 50 percent, the team estimates.

    A team called Ivu Biologics described a system for incorporating nitrogen-fixing microbes into the coatings of seeds, thereby reducing the need for added fertilizers, whose production is a major greenhouse gas source. The company is making use of seed-coating technology developed at MIT over the last few years. Another team, called Mesophase, also based on MIT-developed technology, aims to replace the condensers used in power plants and other industrial systems with much more efficient versions, thus increasing the energy output from a given amount of fuel or other heat source.

    A team called TerraTrade aims to facilitate the adoption of power purchase agreements by companies, institutions and governments, by acting as a kind of broker to create and administer such agreements, making it easier for even smaller entities to take part in these plans, which help to enable rapid development of renewable fossil-fuel-free energy production.

    The grand prize of $100,000 was awarded to a team called Ultropia, which is developing a combined clothes washer and drier that uses ultrasound instead of water for its cleaning. The system does use a small amount of water, but this can be recycled, making these usable even in areas where water availability is limited. The devices could have a great impact on the estimated 6 billion people in the world today who are still limited to washing clothes by hand, the team says, and because the machines would be so efficient, they would require very little energy to run — a significant improvement over the wider adoption of conventional washers and driers. More

  • in

    A better way to separate gases

    Industrial processes for chemical separations, including natural gas purification and the production of oxygen and nitrogen for medical or industrial uses, are collectively responsible for about 15 percent of the world’s energy use. They also contribute a corresponding amount to the world’s greenhouse gas emissions. Now, researchers at MIT and Stanford University have developed a new kind of membrane for carrying out these separation processes with roughly 1/10 the energy use and emissions.

    Using membranes for separation of chemicals is known to be much more efficient than processes such as distillation or absorption, but there has always been a tradeoff between permeability — how fast gases can penetrate through the material — and selectivity — the ability to let the desired molecules pass through while blocking all others. The new family of membrane materials, based on “hydrocarbon ladder” polymers, overcomes that tradeoff, providing both high permeability and extremely good selectivity, the researchers say.

    The findings are reported today in the journal Science, in a paper by Yan Xia, an associate professor of chemistry at Stanford; Zachary Smith, an assistant professor of chemical engineering at MIT; Ingo Pinnau, a professor at King Abdullah University of Science and Technology, and five others.

    Gas separation is an important and widespread industrial process whose uses include removing impurities and undesired compounds from natural gas or biogas, separating oxygen and nitrogen from air for medical and industrial purposes, separating carbon dioxide from other gases for carbon capture, and producing hydrogen for use as a carbon-free transportation fuel. The new ladder polymer membranes show promise for drastically improving the performance of such separation processes. For example, separating carbon dioxide from methane, these new membranes have five times the selectivity and 100 times the permeability of existing cellulosic membranes for that purpose. Similarly, they are 100 times more permeable and three times as selective for separating hydrogen gas from methane.

    The new type of polymers, developed over the last several years by the Xia lab, are referred to as ladder polymers because they are formed from double strands connected by rung-like bonds, and these linkages provide a high degree of rigidity and stability to the polymer material. These ladder polymers are synthesized via an efficient and selective chemistry the Xia lab developed called CANAL, an acronym for catalytic arene-norbornene annulation, which stitches readily available chemicals into ladder structures with hundreds or even thousands of rungs. The polymers are synthesized in a solution, where they form rigid and kinked ribbon-like strands that can easily be made into a thin sheet with sub-nanometer-scale pores by using industrially available polymer casting processes. The sizes of the resulting pores can be tuned through the choice of the specific hydrocarbon starting compounds. “This chemistry and choice of chemical building blocks allowed us to make very rigid ladder polymers with different configurations,” Xia says.

    To apply the CANAL polymers as selective membranes, the collaboration made use of Xia’s expertise in polymers and Smith’s specialization in membrane research. Holden Lai, a former Stanford doctoral student, carried out much of the development and exploration of how their structures impact gas permeation properties. “It took us eight years from developing the new chemistry to finding the right polymer structures that bestow the high separation performance,” Xia says.

    The Xia lab spent the past several years varying the structures of CANAL polymers to understand how their structures affect their separation performance. Surprisingly, they found that adding additional kinks to their original CANAL polymers significantly improved the mechanical robustness of their membranes and boosted their selectivity  for molecules of similar sizes, such as oxygen and nitrogen gases, without losing permeability of the more permeable gas. The selectivity actually improves as the material ages. The combination of high selectivity and high permeability makes these materials outperform all other polymer materials in many gas separations, the researchers say.

    Today, 15 percent of global energy use goes into chemical separations, and these separation processes are “often based on century-old technologies,” Smith says. “They work well, but they have an enormous carbon footprint and consume massive amounts of energy. The key challenge today is trying to replace these nonsustainable processes.” Most of these processes require high temperatures for boiling and reboiling solutions, and these often are the hardest processes to electrify, he adds.

    For the separation of oxygen and nitrogen from air, the two molecules only differ in size by about 0.18 angstroms (ten-billionths of a meter), he says. To make a filter capable of separating them efficiently “is incredibly difficult to do without decreasing throughput.” But the new ladder polymers, when manufactured into membranes produce tiny pores that achieve high selectivity, he says. In some cases, 10 oxygen molecules permeate for every nitrogen, despite the razor-thin sieve needed to access this type of size selectivity. These new membrane materials have “the highest combination of permeability and selectivity of all known polymeric materials for many applications,” Smith says.

    “Because CANAL polymers are strong and ductile, and because they are soluble in certain solvents, they could be scaled for industrial deployment within a few years,” he adds. An MIT spinoff company called Osmoses, led by authors of this study, recently won the MIT $100K entrepreneurship competition and has been partly funded by The Engine to commercialize the technology.

    There are a variety of potential applications for these materials in the chemical processing industry, Smith says, including the separation of carbon dioxide from other gas mixtures as a form of emissions reduction. Another possibility is the purification of biogas fuel made from agricultural waste products in order to provide carbon-free transportation fuel. Hydrogen separation for producing a fuel or a chemical feedstock, could also be carried out efficiently, helping with the transition to a hydrogen-based economy.

    The close-knit team of researchers is continuing to refine the process to facilitate the development from laboratory to industrial scale, and to better understand the details on how the macromolecular structures and packing result in the ultrahigh selectivity. Smith says he expects this platform technology to play a role in multiple decarbonization pathways, starting with hydrogen separation and carbon capture, because there is such a pressing need for these technologies in order to transition to a carbon-free economy.

    “These are impressive new structures that have outstanding gas separation performance,” says Ryan Lively, am associate professor of chemical and biomolecular engineering at Georgia Tech, who was not involved in this work. “Importantly, this performance is improved during membrane aging and when the membranes are challenged with concentrated gas mixtures. … If they can scale these materials and fabricate membrane modules, there is significant potential practical impact.”

    The research team also included Jun Myun Ahn and Ashley Robinson at Stanford, Francesco Benedetti at MIT, now the chief executive officer at Osmoses, and Yingge Wang at King Abdullah University of Science and Technology in Saudi Arabia. The work was supported by the Stanford Natural Gas Initiative, the Sloan Research Fellowship, the U.S. Department of Energy Office of Basic Energy Sciences, and the National Science Foundation. More

  • in

    Finding her way to fusion

    “I catch myself startling people in public.”

    Zoe Fisher’s animated hands carry part of the conversation as she describes how her naturally loud and expressive laughter turned heads in the streets of Yerevan. There during MIT’s Independent Activities period (IAP), she was helping teach nuclear science at the American University of Armenia, before returning to MIT to pursue fusion research at the Plasma Science and Fusion Center (PSFC).

    Startling people may simply be in Fisher’s DNA. She admits that when she first arrived at MIT, knowing nothing about nuclear science and engineering (NSE), she chose to join that department’s Freshman Pre-Orientation Program (FPOP) “for the shock value.” It was a choice unexpected by family, friends, and mostly herself. Now in her senior year, a 2021 recipient of NSE’s Irving Kaplan Award for academic achievements by a junior and entering a fifth-year master of science program in nuclear fusion, Fisher credits that original spontaneous impulse for introducing her to a subject she found so compelling that, after exploring multiple possibilities, she had to return to it.

    Fisher’s venture to Armenia, under the guidance of NSE associate professor Areg Danagoulian, is not the only time she has taught oversees with MISTI’s Global Teaching Labs, though it is the first time she has taught nuclear science, not to mention thermodynamics and materials science. During IAP 2020 she was a student teacher at a German high school, teaching life sciences, mathematics, and even English to grades five through 12. And after her first year she explored the transportation industry with a mechanical engineering internship in Tuscany, Italy.

    By the time she was ready to declare her NSE major she had sampled the alternatives both overseas and at home, taking advantage of MIT’s Undergraduate Research Opportunities Program (UROP). Drawn to fusion’s potential as an endless source of carbon-free energy on earth, she decided to try research at the PSFC, to see if the study was a good fit. 

    Much fusion research at MIT has favored heating hydrogen fuel inside a donut-shaped device called a tokamak, creating plasma that is hot and dense enough for fusion to occur. Because plasma will follow magnetic field lines, these devices are wrapped with magnets to keep the hot fuel from damaging the chamber walls.

    Fisher was assigned to SPARC, the PSFC’s new tokamak collaboration with MIT startup Commonwealth Fusion Systems (CSF), which uses a game-changing high-temperature superconducting (HTS) tape to create fusion magnets that minimize tokamak size and maximize performance. Working on a database reference book for SPARC materials, she was finding purpose even in the most repetitive tasks. “Which is how I knew I wanted to stay in fusion,” she laughs.

    Fisher’s latest UROP assignment takes her — literally — deeper into SPARC research. She works in a basement laboratory in building NW13 nicknamed “The Vault,” on a proton accelerator whose name conjures an underworld: DANTE. Supervised by PSFC Director Dennis Whyte and postdoc David Fischer, she is exploring the effects of radiation damage on the thin HTS tape that is key to SPARC’s design, and ultimately to the success of ARC, a prototype working fusion power plant.

    Because repetitive bombardment with neutrons produced during the fusion process can diminish the superconducting properties of the HTS, it is crucial to test the tape repeatedly. Fisher assists in assembling and testing the experimental setups for irradiating the HTS samples. Fisher recalls her first project was installing a “shutter” that would allow researchers to control exactly how much radiation reached the tape without having to turn off the entire experiment.

    “You could just push the button — block the radiation — then unblock it. It sounds super simple, but it took many trials. Because first I needed the right size solenoid, and then I couldn’t find a piece of metal that was small enough, and then we needed cryogenic glue…. To this day the actual final piece is made partially of paper towels.”

    She shrugs and laughs. “It worked, and it was the cheapest option.”

    Fisher is always ready to find the fun in fusion. Referring to DANTE as “A really cool dude,” she admits, “He’s perhaps a bit fickle. I may or may not have broken him once.” During a recent IAP seminar, she joined other PSFC UROP students to discuss her research, and expanded on how a mishap can become a gateway to understanding.

    “The grad student I work with and I got to repair almost the entire internal circuit when we blew the fuse — which originally was a really bad thing. But it ended up being great because we figured out exactly how it works.”

    Fisher’s upbeat spirit makes her ideal not only for the challenges of fusion research, but for serving the MIT community. As a student representative for NSE’s Diversity, Equity and Inclusion Committee, she meets monthly with the goal of growing and supporting diversity within the department.

    “This opportunity is impactful because I get my voice, and the voices of my peers, taken seriously,” she says. “Currently, we are spending most of our efforts trying to identify and eliminate hurdles based on race, ethnicity, gender, and income that prevent people from pursuing — and applying to — NSE.”

    To break from the lab and committees, she explores the Charles River as part of MIT’s varsity sailing team, refusing to miss a sunset. She also volunteers as an FPOP mentor, seeking to provide incoming first-years with the kind of experience that will make them want to return to the topic, as she did.

    She looks forward to continuing her studies on the HTS tapes she has been irradiating, proposing to send a current pulse above the critical current through the tape, to possibly anneal any defects from radiation, which would make repairs on future fusion power plants much easier.

    Fisher credits her current path to her UROP mentors and their infectious enthusiasm for the carbon-free potential of fusion energy.

    “UROPing around the PSFC showed me what I wanted to do with my life,” she says. “Who doesn’t want to save the world?” More