More stories

  • in

    Helping students bring about decarbonization, from benchtop to global energy marketplace

    MIT students are adept at producing research and innovations at the cutting edge of their fields. But addressing a problem as large as climate change requires understanding the world’s energy landscape, as well as the ways energy technologies evolve over time.Since 2010, the course IDS.521/IDS.065 (Energy Systems for Climate Change Mitigation) has equipped students with the skills they need to evaluate the various energy decarbonization pathways available to the world. The work is designed to help them maximize their impact on the world’s emissions by making better decisions along their respective career paths.“The question guiding my teaching and research is how do we solve big societal challenges with technology, and how can we be more deliberate in developing and supporting technologies to get us there?” says Professor Jessika Trancik, who started the course to help fill a gap in knowledge about the ways technologies evolve and scale over time.Since its inception in 2010, the course has attracted graduate students from across MIT’s five schools. The course has also recently opened to undergraduate students and been adapted to an online course for professionals.Class sessions alternate between lectures and student discussions that lead up to semester-long projects in which groups of students explore specific strategies and technologies for reducing global emissions. This year’s projects span several topics, including how quickly transmission infrastructure is expanding, the relationship between carbon emissions and human development, and how to decarbonize the production of key chemicals.The curriculum is designed to help students identify the most promising ways to mitigate climate change whether they plan to be scientists, engineers, policymakers, investors, urban planners, or just more informed citizens.“We’re coming at this issue from both sides,” explains Trancik, who is part of MIT’s Institute for Data, Systems, and Society. “Engineers are used to designing a technology to work as well as possible here and now, but not always thinking over a longer time horizon about a technology evolving and succeeding in the global marketplace. On the flip side, for students at the macro level, often studies in policy and economics of technological change don’t fully account for the physical and engineering constraints of rates of improvement. But all of that information allows you to make better decisions.”Bridging the gapAs a young researcher working on low-carbon polymers and electrode materials for solar cells, Trancik always wondered how the materials she worked on would scale in the real world. They might achieve promising performance benchmarks in the lab, but would they actually make a difference in mitigating climate change? Later, she began focusing increasingly on developing methods for predicting how technologies might evolve.“I’ve always been interested in both the macro and the micro, or even nano, scales,” Trancik says. “I wanted to know how to bridge these new technologies we’re working on with the big picture of where we want to go.”Trancik’ described her technology-grounded approach to decarbonization in a paper that formed the basis for IDS.065. In the paper, she presented a way to evaluate energy technologies against climate-change mitigation goals while focusing on the technology’s evolution.“That was a departure from previous approaches, which said, given these technologies with fixed characteristics and assumptions about their rates of change, how do I choose the best combination?” Trancik explains. “Instead we asked: Given a goal, how do we develop the best technologies to meet that goal? That inverts the problem in a way that’s useful to engineers developing these technologies, but also to policymakers and investors that want to use the evolution of technologies as a tool for achieving their objectives.”This past semester, the class took place every Tuesday and Thursday in a classroom on the first floor of the Stata Center. Students regularly led discussions where they reflected on the week’s readings and offered their own insights.“Students always share their takeaways and get to ask open questions of the class,” says Megan Herrington, a PhD candidate in the Department of Chemical Engineering. “It helps you understand the readings on a deeper level because people with different backgrounds get to share their perspectives on the same questions and problems. Everybody comes to class with their own lens, and the class is set up to highlight those differences.”The semester begins with an overview of climate science, the origins of emissions reductions goals, and technology’s role in achieving those goals. Students then learn how to evaluate technologies against decarbonization goals.But technologies aren’t static, and neither is the world. Later lessons help students account for the change of technologies over time, identifying the mechanisms for that change and even forecasting rates of change.Students also learn about the role of government policy. This year, Trancik shared her experience traveling to the COP29 United Nations Climate Change Conference.“It’s not just about technology,” Trancik says. “It’s also about the behaviors that we engage in and the choices we make. But technology plays a major role in determining what set of choices we can make.”From the classroom to the worldStudents in the class say it has given them a new perspective on climate change mitigation.“I have really enjoyed getting to see beyond the research people are doing at the benchtop,” says Herrington. “It’s interesting to see how certain materials or technologies that aren’t scalable yet may fit into a larger transformation in energy delivery and consumption. It’s also been interesting to pull back the curtain on energy systems analysis to understand where the metrics we cite in energy-related research originate from, and to anticipate trajectories of emerging technologies.”Onur Talu, a first-year master’s student in the Technology and Policy Program, says the class has made him more hopeful.“I came into this fairly pessimistic about the climate,” says Talu, who has worked for clean technology startups in the past. “This class has taught me different ways to look at the problem of climate change mitigation and developing renewable technologies. It’s also helped put into perspective how much we’ve accomplished so far.”Several student projects from the class over the years have been developed into papers published in peer-reviewed journals. They have also been turned into tools, like carboncounter.com, which plots the emissions and costs of cars and has been featured in The New York Times.Former class students have also launched startups; Joel Jean SM ’13, PhD ’17, for example, started Swift Solar. Others have drawn on the course material to develop impactful careers in government and academia, such as Patrick Brown PhD ’16 at the National Renewable Energy Laboratory and Leah Stokes SM ’15, PhD ’15 at the University of California at Santa Barbara.Overall, students say the course helps them take a more informed approach to applying their skills toward addressing climate change.“It’s not enough to just know how bad climate change could be,” says Yu Tong, a first-year master’s student in civil and environmental engineering. “It’s also important to understand how technology can work to mitigate climate change from both a technological and market perspective. It’s about employing technology to solve these issues rather than just working in a vacuum.” More

  • in

    MIT spinout Commonwealth Fusion Systems unveils plans for the world’s first fusion power plant

    America is one step closer to tapping into a new and potentially limitless clean energy source today, with the announcement from MIT spinout Commonwealth Fusion Systems (CFS) that it plans to build the world’s first grid-scale fusion power plant in Chesterfield County, Virginia.The announcement is the latest milestone for the company, which has made groundbreaking progress toward harnessing fusion — the reaction that powers the sun — since its founders first conceived of their approach in an MIT classroom in 2012. CFS is now commercializing a suite of advanced technologies developed in MIT research labs.“This moment exemplifies the power of MIT’s mission, which is to create knowledge that serves the nation and the world, whether via the classroom, the lab, or out in communities,” MIT Vice President for Research Ian Waitz says. “From student coursework 12 years ago to today’s announcement of the siting in Virginia of the world’s first fusion power plant, progress has been amazingly rapid. At the same time, we owe this progress to over 65 years of sustained investment by the U.S. federal government in basic science and energy research.”The new fusion power plant, named ARC, is expected to come online in the early 2030s and generate about 400 megawatts of clean, carbon-free electricity — enough energy to power large industrial sites or about 150,000 homes.The plant will be built at the James River Industrial Park outside of Richmond through a nonfinancial collaboration with Dominion Energy Virginia, which will provide development and technical expertise along with leasing rights for the site. CFS will independently finance, build, own, and operate the power plant.The plant will support Virginia’s economic and clean energy goals by generating what is expected to be billions of dollars in economic development and hundreds of jobs during its construction and long-term operation.More broadly, ARC will position the U.S. to lead the world in harnessing a new form of safe and reliable energy that could prove critical for economic prosperity and national security, including for meeting increasing electricity demands driven by needs like artificial intelligence.“This will be a watershed moment for fusion,” says CFS co-founder Dennis Whyte, the Hitachi America Professor of Engineering at MIT. “It sets the pace in the race toward commercial fusion power plants. The ambition is to build thousands of these power plants and to change the world.”Fusion can generate energy from abundant fuels like hydrogen and lithium isotopes, which can be sourced from seawater, and leave behind no emissions or toxic waste. However, harnessing fusion in a way that produces more power than it takes in has proven difficult because of the high temperatures needed to create and maintain the fusion reaction. Over the course of decades, scientists and engineers have worked to make the dream of fusion power plants a reality.In 2012, teaching the MIT class 22.63 (Principles of Fusion Engineering), Whyte challenged a group of graduate students to design a fusion device that would use a new kind of superconducting magnet to confine the plasma used in the reaction. It turned out the magnets enabled a more compact and economic reactor design. When Whyte reviewed his students’ work, he realized that could mean a new development path for fusion.Since then, a huge amount of capital and expertise has rushed into the once fledgling fusion industry. Today there are dozens of private fusion companies around the world racing to develop the first net-energy fusion power plants, many utilizing the new superconducting magnets. CFS, which Whyte founded with several students from his class, has attracted more than $2 billion in funding.“It all started with that class, where our ideas kept evolving as we challenged the standard assumptions that came with fusion,” Whyte says. “We had this new superconducting technology, so much of the common wisdom was no longer valid. It was a perfect forum for students, who can challenge the status quo.”Since the company’s founding in 2017, it has collaborated with researchers in MIT’s Plasma Science and Fusion Center (PFSC) on a range of initiatives, from validating the underlying plasma physics for the first demonstration machine to breaking records with a new kind of magnet to be used in commercial fusion power plants. Each piece of progress moves the U.S. closer to harnessing a revolutionary new energy source.CFS is currently completing development of its fusion demonstration machine, SPARC, at its headquarters in Devens, Massachusetts. SPARC is expected to produce its first plasma in 2026 and net fusion energy shortly after, demonstrating for the first time a commercially relevant design that will produce more power than it consumes. SPARC will pave the way for ARC, which is expected to deliver power to the grid in the early 2030s.“There’s more challenging engineering and science to be done in this field, and we’re very enthusiastic about the progress that CFS and the researchers on our campus are making on those problems,” Waitz says. “We’re in a ‘hockey stick’ moment in fusion energy, where things are moving incredibly quickly now. On the other hand, we can’t forget about the much longer part of that hockey stick, the sustained support for very complex, fundamental research that underlies great innovations. If we’re going to continue to lead the world in these cutting-edge technologies, continued investment in those areas will be crucial.” More

  • in

    In a unique research collaboration, students make the case for less e-waste

    Brought together as part of the Social and Ethical Responsibilities of Computing (SERC) initiative within the MIT Schwarzman College of Computing, a community of students known as SERC Scholars is collaborating to examine the most urgent problems humans face in the digital landscape.Each semester, students from all levels from across MIT are invited to join a different topical working group led by a SERC postdoctoral associate. Each group delves into a specific issue — such as surveillance or data ownership — culminating in a final project presented at the end of the term.Typically, students complete the program with hands-on experience conducting research in a new cross-disciplinary field. However, one group of undergraduate and graduate students recently had the unique opportunity to enhance their resume by becoming published authors of a case study about the environmental and climate justice implications of the electronics hardware life cycle.Although it’s not uncommon for graduate students to co-author case studies, it’s unusual for undergraduates to earn this opportunity — and for their audience to be other undergraduates around the world.“Our team was insanely interdisciplinary,” says Anastasia Dunca, a junior studying computer science and one of the co-authors. “I joined the SERC Scholars Program because I liked the idea of being part of a cohort from across MIT working on a project that utilized all of our skillsets. It also helps [undergraduates] learn the ins and outs of computing ethics research.”Case study co-author Jasmin Liu, an MBA student in the MIT Sloan School of Management, sees the program as a platform to learn about the intersection of technology, society, and ethics: “I met team members spanning computer science, urban planning, to art/culture/technology. I was excited to work with a diverse team because I know complex problems must be approached with many different perspectives. Combining my background in humanities and business with the expertise of others allowed us to be more innovative and comprehensive.”Christopher Rabe, a former SERC postdoc who facilitated the group, says, “I let the students take the lead on identifying the topic and conducting the research.” His goal for the group was to challenge students across disciplines to develop a working definition of climate justice.From mining to e-wasteThe SERC Scholars’ case study, “From Mining to E-waste: The Environmental and Climate Justice Implications of the Electronics Hardware Life Cycle,” was published by the MIT Case Studies in Social and Ethical Responsibilities of Computing.The ongoing case studies series, which releases new issues twice a year on an open-source platform, is enabling undergraduate instructors worldwide to incorporate research-based education materials on computing ethics into their existing class syllabi.This particular case study broke down the electronics life cycle from mining to manufacturing, usage, and disposal. It offered an in-depth look at how this cycle promotes inequity in the Global South. Mining for the average of 60 minerals that power everyday devices lead to illegal deforestation, compromising air quality in the Amazon, and triggering armed conflict in Congo. Manufacturing leads to proven health risks for both formal and informal workers, some of whom are child laborers.Life cycle assessment and circular economy are proposed as mechanisms for analyzing environmental and climate justice issues in the electronics life cycle. Rather than posing solutions, the case study offers readers entry points for further discussion and for assessing their own individual responsibility as producers of e-waste.Crufting and crafting a case studyDunca joined Rabe’s working group, intrigued by the invitation to conduct a rigorous literature review examining issues like data center resource and energy use, manufacturing waste, ethical issues with AI, and climate change. Rabe quickly realized that a common thread among all participants was an interest in understanding and reducing e-waste and its impact on the environment.“I came in with the idea of us co-authoring a case study,” Rabe said. However, the writing-intensive process was initially daunting to those students who were used to conducting applied research. Once Rabe created sub-groups with discrete tasks, the steps for researching, writing, and iterating a case study became more approachable.For Ellie Bultena, an undergraduate student studying linguistics and philosophy and a contributor to the study, that meant conducting field research on the loading dock of MIT’s Stata Center, where students and faculty go “crufting” through piles of clunky printers, broken computers, and used lab equipment discarded by the Institute’s labs, departments, and individual users.Although not a formally sanctioned activity on-campus, “crufting” is the act of gleaning usable parts from these junk piles to be repurposed into new equipment or art. Bultena’s respondents, who opted to be anonymous, said that MIT could do better when it comes to the amount of e-waste generated and suggested that formal strategies could be implemented to encourage community members to repair equipment more easily or recycle more formally.Rabe, now an education program director at the MIT Environmental Solutions Initiative, is hopeful that through the Zero-Carbon Campus Initiative, which commits MIT to eliminating all direct emissions by 2050, MIT will ultimately become a model for other higher education institutions.Although the group lacked the time and resources to travel to communities in the Global South that they profiled in their case study, members leaned into exhaustive secondary research, collecting data on how some countries are irresponsibly dumping e-waste. In contrast, others have developed alternative solutions that can be duplicated elsewhere and scaled.“We source materials, manufacture them, and then throw them away,” Lelia Hampton says. A PhD candidate in electrical engineering and computer science and another co-author, Hampton jumped at the opportunity to serve in a writing role, bringing together the sub-groups research findings. “I’d never written a case study, and it was exciting. Now I want to write 10 more.”The content directly informed Hampton’s dissertation research, which “looks at applying machine learning to climate justice issues such as urban heat islands.” She said that writing a case study that is accessible to general audiences upskilled her for the non-profit organization she’s determined to start. “It’s going to provide communities with free resources and data needed to understand how they are impacted by climate change and begin to advocate against injustice,” Hampton explains.Dunca, Liu, Rabe, Bultena, and Hampton are joined on the case study by fellow authors Mrinalini Singha, a graduate student in the Art, Culture, and Technology program; Sungmoon Lim, a graduate student in urban studies and planning and EECS; Lauren Higgins, an undergraduate majoring in political science; and Madeline Schlegal, a Northeastern University co-op student.Taking the case study to classrooms around the worldAlthough PhD candidates have contributed to previous case studies in the series, this publication is the first to be co-authored with MIT undergraduates. Like any other peer-reviewed journal, before publication, the SERC Scholars’ case study was anonymously reviewed by senior scholars drawn from various fields.The series editor, David Kaiser, also served as one of SERC’s inaugural associate deans and helped shape the program. “The case studies, by design, are short, easy to read, and don’t take up lots of time,” Kaiser explained. “They are gateways for students to explore, and instructors can cover a topic that has likely already been on their mind.” This semester, Kaiser, the Germeshausen Professor of the History of Science and a professor of physics, is teaching STS.004 (Intersections: Science, Technology, and the World), an undergraduate introduction to the field of science, technology, and society. The last month of the semester has been dedicated wholly to SERC case studies, one of which is: “From Mining to E-Waste.”Hampton was visibly moved to hear that the case study is being used at MIT but also by some of the 250,000 visitors to the SERC platform, many of whom are based in the Global South and directly impacted by the issues she and her cohort researched. “Many students are focused on climate, whether through computer science, data science, or mechanical engineering. I hope that this case study educates them on environmental and climate aspects of e-waste and computing.” More

  • in

    Enabling a circular economy in the built environment

    The amount of waste generated by the construction sector underscores an urgent need for embracing circularity — a sustainable model that aims to minimize waste and maximize material efficiency through recovery and reuse — in the built environment: 600 million tons of construction and demolition waste was produced in the United States alone in 2018, with 820 million tons reported in the European Union, and an excess of 2 billion tons annually in China.This significant resource loss embedded in our current industrial ecosystem marks a linear economy that operates on a “take-make-dispose” model of construction; in contrast, the “make-use-reuse” approach of a circular economy offers an important opportunity to reduce environmental impacts.A team of MIT researchers has begun to assess what may be needed to spur widespread circular transition within the built environment in a new open-access study that aims to understand stakeholders’ current perceptions of circularity and quantify their willingness to pay.“This paper acts as an initial endeavor into understanding what the industry may be motivated by, and how integration of stakeholder motivations could lead to greater adoption,” says lead author Juliana Berglund-Brown, PhD student in the Department of Architecture at MIT.Considering stakeholders’ perceptionsThree different stakeholder groups from North America, Europe, and Asia — material suppliers, design and construction teams, and real estate developers — were surveyed by the research team that also comprises Akrisht Pandey ’23; Fabio Duarte, associate director of the MIT Senseable City Lab; Raquel Ganitsky, fellow in the Sustainable Real Estate Development Action Program; Randolph Kirchain, co-director of MIT Concrete Sustainability Hub; and Siqi Zheng, the STL Champion Professor of Urban and Real Estate Sustainability at Department of Urban Studies and Planning.Despite growing awareness of reuse practice among construction industry stakeholders, circular practices have yet to be implemented at scale — attributable to many factors that influence the intersection of construction needs with government regulations and the economic interests of real estate developers.The study notes that perceived barriers to circular adoption differ based on industry role, with lack of both client interest and standardized structural assessment methods identified as the primary concern of design and construction teams, while the largest deterrents for material suppliers are logistics complexity, and supply uncertainty. Real estate developers, on the other hand, are chiefly concerned with higher costs and structural assessment. Yet encouragingly, respondents expressed willingness to absorb higher costs, with developers indicating readiness to pay an average of 9.6 percent higher construction costs for a minimum 52.9 percent reduction in embodied carbon — and all stakeholders highly favor the potential of incentives like tax exemptions to aid with cost premiums.Next steps to encourage circularityThe findings highlight the need for further conversation between design teams and developers, as well as for additional exploration into potential solutions to practical challenges. “The thing about circularity is that there is opportunity for a lot of value creation, and subsequently profit,” says Berglund-Brown. “If people are motivated by cost, let’s provide a cost incentive, or establish strategies that have one.”When it comes to motivating reasons to adopt circularity practices, the study also found trends emerging by industry role. Future net-zero goals influence developers as well as design and construction teams, with government regulation the third-most frequently named reason across all respondent types.“The construction industry needs a market driver to embrace circularity,” says Berglund-Brown, “Be it carrots or sticks, stakeholders require incentives for adoption.”The effect of policy to motivate change cannot be understated, with major strides being made in low operational carbon building design after policy restricting emissions was introduced, such as Local Law 97 in New York City and the Building Emissions Reduction and Disclosure Ordinance in Boston. These pieces of policy, and their results, can serve as models for embodied carbon reduction policy elsewhere.Berglund-Brown suggests that municipalities might initiate ordinances requiring buildings to be deconstructed, which would allow components to be reused, curbing demolition methods that result in waste rather than salvage. Top-down ordinances could be one way to trigger a supply chain shift toward reprocessing building materials that are typically deemed “end-of-life.”The study also identifies other challenges to the implementation of circularity at scale, including risk associated with how to reuse materials in new buildings, and disrupting status quo design practices.“Understanding the best way to motivate transition despite uncertainty is where our work comes in,” says Berglund-Brown. “Beyond that, researchers can continue to do a lot to alleviate risk — like developing standards for reuse.”Innovations that challenge the status quoDisrupting the status quo is not unusual for MIT researchers; other visionary work in construction circularity pioneered at MIT includes “a smart kit of parts” called Pixelframe. This system for modular concrete reuse allows building elements to be disassembled and rebuilt several times, aiding deconstruction and reuse while maintaining material efficiency and versatility.Developed by MIT Climate and Sustainability Consortium Associate Director Caitlin Mueller’s research team, Pixelframe is designed to accommodate a wide range of applications from housing to warehouses, with each piece of interlocking precast concrete modules, called Pixels, assigned a material passport to enable tracking through its many life cycles.Mueller’s work demonstrates that circularity can work technically and logistically at the scale of the built environment — by designing specifically for disassembly, configuration, versatility, and upfront carbon and cost efficiency.“This can be built today. This is building code-compliant today,” said Mueller of Pixelframe in a keynote speech at the recent MCSC Annual Symposium, which saw industry representatives and members of the MIT community coming together to discuss scalable solutions to climate and sustainability problems. “We currently have the potential for high-impact carbon reduction as a compelling alternative to the business-as-usual construction methods we are used to.”Pixelframe was recently awarded a grant by the Massachusetts Clean Energy Center (MassCEC) to pursue commercialization, an important next step toward integrating innovations like this into a circular economy in practice. “It’s MassCEC’s job to make sure that these climate leaders have the resources they need to turn their technologies into successful businesses that make a difference around the world,” said MassCEC CEO Emily Reichart, in a press release.Additional support for circular innovation has emerged thanks to a historic piece of climate legislation from the Biden administration. The Environmental Protection Agency recently awarded a federal grant on the topic of advancing steel reuse to Berglund-Brown — whose PhD thesis focuses on scaling the reuse of structural heavy-section steel — and John Ochsendorf, the Class of 1942 Professor of Civil and Environmental Engineering and Architecture at MIT.“There is a lot of exciting upcoming work on this topic,” says Berglund-Brown. “To any practitioners reading this who are interested in getting involved — please reach out.”The study is supported in part by the MIT Climate and Sustainability Consortium. More

  • in

    So you want to build a solar or wind farm? Here’s how to decide where.

    Deciding where to build new solar or wind installations is often left up to individual developers or utilities, with limited overall coordination. But a new study shows that regional-level planning using fine-grained weather data, information about energy use, and energy system modeling can make a big difference in the design of such renewable power installations. This also leads to more efficient and economically viable operations.The findings show the benefits of coordinating the siting of solar farms, wind farms, and storage systems, taking into account local and temporal variations in wind, sunlight, and energy demand to maximize the utilization of renewable resources. This approach can reduce the need for sizable investments in storage, and thus the total system cost, while maximizing availability of clean power when it’s needed, the researchers found.The study, appearing today in the journal Cell Reports Sustainability, was co-authored by Liying Qiu and Rahman Khorramfar, postdocs in MIT’s Department of Civil and Environmental Engineering, and professors Saurabh Amin and Michael Howland.Qiu, the lead author, says that with the team’s new approach, “we can harness the resource complementarity, which means that renewable resources of different types, such as wind and solar, or different locations can compensate for each other in time and space. This potential for spatial complementarity to improve system design has not been emphasized and quantified in existing large-scale planning.”Such complementarity will become ever more important as variable renewable energy sources account for a greater proportion of power entering the grid, she says. By coordinating the peaks and valleys of production and demand more smoothly, she says, “we are actually trying to use the natural variability itself to address the variability.”Typically, in planning large-scale renewable energy installations, Qiu says, “some work on a country level, for example saying that 30 percent of energy should be wind and 20 percent solar. That’s very general.” For this study, the team looked at both weather data and energy system planning modeling on a scale of less than 10-kilometer (about 6-mile) resolution. “It’s a way of determining where should we, exactly, build each renewable energy plant, rather than just saying this city should have this many wind or solar farms,” she explains.To compile their data and enable high-resolution planning, the researchers relied on a variety of sources that had not previously been integrated. They used high-resolution meteorological data from the National Renewable Energy Laboratory, which is publicly available at 2-kilometer resolution but rarely used in a planning model at such a fine scale. These data were combined with an energy system model they developed to optimize siting at a sub-10-kilometer resolution. To get a sense of how the fine-scale data and model made a difference in different regions, they focused on three U.S. regions — New England, Texas, and California — analyzing up to 138,271 possible siting locations simultaneously for a single region.By comparing the results of siting based on a typical method vs. their high-resolution approach, the team showed that “resource complementarity really helps us reduce the system cost by aligning renewable power generation with demand,” which should translate directly to real-world decision-making, Qiu says. “If an individual developer wants to build a wind or solar farm and just goes to where there is the most wind or solar resource on average, it may not necessarily guarantee the best fit into a decarbonized energy system.”That’s because of the complex interactions between production and demand for electricity, as both vary hour by hour, and month by month as seasons change. “What we are trying to do is minimize the difference between the energy supply and demand rather than simply supplying as much renewable energy as possible,” Qiu says. “Sometimes your generation cannot be utilized by the system, while at other times, you don’t have enough to match the demand.”In New England, for example, the new analysis shows there should be more wind farms in locations where there is a strong wind resource during the night, when solar energy is unavailable. Some locations tend to be windier at night, while others tend to have more wind during the day.These insights were revealed through the integration of high-resolution weather data and energy system optimization used by the researchers. When planning with lower resolution weather data, which was generated at a 30-kilometer resolution globally and is more commonly used in energy system planning, there was much less complementarity among renewable power plants. Consequently, the total system cost was much higher. The complementarity between wind and solar farms was enhanced by the high-resolution modeling due to improved representation of renewable resource variability.The researchers say their framework is very flexible and can be easily adapted to any region to account for the local geophysical and other conditions. In Texas, for example, peak winds in the west occur in the morning, while along the south coast they occur in the afternoon, so the two naturally complement each other.Khorramfar says that this work “highlights the importance of data-driven decision making in energy planning.” The work shows that using such high-resolution data coupled with carefully formulated energy planning model “can drive the system cost down, and ultimately offer more cost-effective pathways for energy transition.”One thing that was surprising about the findings, says Amin, who is a principal investigator in the MIT Laboratory of Information and Data Systems, is how significant the gains were from analyzing relatively short-term variations in inputs and outputs that take place in a 24-hour period. “The kind of cost-saving potential by trying to harness complementarity within a day was not something that one would have expected before this study,” he says.In addition, Amin says, it was also surprising how much this kind of modeling could reduce the need for storage as part of these energy systems. “This study shows that there is actually a hidden cost-saving potential in exploiting local patterns in weather, that can result in a monetary reduction in storage cost.”The system-level analysis and planning suggested by this study, Howland says, “changes how we think about where we site renewable power plants and how we design those renewable plants, so that they maximally serve the energy grid. It has to go beyond just driving down the cost of energy of individual wind or solar farms. And these new insights can only be realized if we continue collaborating across traditional research boundaries, by integrating expertise in fluid dynamics, atmospheric science, and energy engineering.”The research was supported by the MIT Climate and Sustainability Consortium and MIT Climate Grand Challenges. More

  • in

    A new biodegradable material to replace certain microplastics

    Microplastics are an environmental hazard found nearly everywhere on Earth, released by the breakdown of tires, clothing, and plastic packaging. Another significant source of microplastics is tiny beads that are added to some cleansers, cosmetics, and other beauty products.In an effort to cut off some of these microplastics at their source, MIT researchers have developed a class of biodegradable materials that could replace the plastic beads now used in beauty products. These polymers break down into harmless sugars and amino acids.“One way to mitigate the microplastics problem is to figure out how to clean up existing pollution. But it’s equally important to look ahead and focus on creating materials that won’t generate microplastics in the first place,” says Ana Jaklenec, a principal investigator at MIT’s Koch Institute for Integrative Cancer Research.These particles could also find other applications. In the new study, Jaklenec and her colleagues showed that the particles could be used to encapsulate nutrients such as vitamin A. Fortifying foods with encapsulated vitamin A and other nutrients could help some of the 2 billion people around the world who suffer from nutrient deficiencies.Jaklenec and Robert Langer, an MIT Institute Professor and member of the Koch Institute, are the senior authors of the paper, which appears today in Nature Chemical Engineering. The paper’s lead author is Linzixuan (Rhoda) Zhang, an MIT graduate student in chemical engineering.Biodegradable plasticsIn 2019, Jaklenec, Langer, and others reported a polymer material that they showed could be used to encapsulate vitamin A and other essential nutrients. They also found that people who consumed bread made from flour fortified with encapsulated iron showed increased iron levels.However, since then, the European Union has classified this polymer, known as BMC, as a microplastic and included it in a ban that went into effect in 2023. As a result, the Bill and Melinda Gates Foundation, which funded the original research, asked the MIT team if they could design an alternative that would be more environmentally friendly.The researchers, led by Zhang, turned to a type of polymer that Langer’s lab had previously developed, known as poly(beta-amino esters). These polymers, which have shown promise as vehicles for gene delivery and other medical applications, are biodegradable and break down into sugars and amino acids.By changing the composition of the material’s building blocks, researchers can tune properties such as hydrophobicity (ability to repel water), mechanical strength, and pH sensitivity. After creating five different candidate materials, the MIT team tested them and identified one that appeared to have the optimal composition for microplastic applications, including the ability to dissolve when exposed to acidic environments such as the stomach.The researchers showed that they could use these particles to encapsulate vitamin A, as well as vitamin D, vitamin E, vitamin C, zinc, and iron. Many of these nutrients are susceptible to heat and light degradation, but when encased in the particles, the researchers found that the nutrients could withstand exposure to boiling water for two hours.They also showed that even after being stored for six months at high temperature and high humidity, more than half of the encapsulated vitamins were undamaged.To demonstrate their potential for fortifying food, the researchers incorporated the particles into bouillon cubes, which are commonly consumed in many African countries. They found that when incorporated into bouillon, the nutrients remained intact after being boiled for two hours.“Bouillon is a staple ingredient in sub-Saharan Africa, and offers a significant opportunity to improve the nutritional status of many billions of people in those regions,” Jaklenec says.In this study, the researchers also tested the particles’ safety by exposing them to cultured human intestinal cells and measuring their effects on the cells. At the doses that would be used for food fortification, they found no damage to the cells.Better cleansingTo explore the particles’ ability to replace the microbeads that are often added to cleansers, the researchers mixed the particles with soap foam. This mixture, they found, could remove permanent marker and waterproof eyeliner from skin much more effectively than soap alone.Soap mixed with the new microplastic was also more effective than a cleanser that includes polyethylene microbeads, the researchers found. They also discovered that the new biodegradable particles did a better job of absorbing potentially toxic elements such as heavy metals.“We wanted to use this as a first step to demonstrate how it’s possible to develop a new class of materials, to expand from existing material categories, and then to apply it to different applications,” Zhang says.With a grant from Estée Lauder, the researchers are now working on further testing the microbeads as a cleanser and potentially other applications, and they plan to run a small human trial later this year. They are also gathering safety data that could be used to apply for GRAS (generally regarded as safe) classification from the U.S. Food and Drug Administration and are planning a clinical trial of foods fortified with the particles.The researchers hope their work could help to significantly reduce the amount of microplastic released into the environment from health and beauty products.“This is just one small part of the broader microplastics issue, but as a society we’re beginning to acknowledge the seriousness of the problem. This work offers a step forward in addressing it,” Jaklenec says. “Polymers are incredibly useful and essential in countless applications in our daily lives, but they come with downsides. This is an example of how we can reduce some of those negative aspects.”The research was funded by the Gates Foundation and the U.S. National Science Foundation. More

  • in

    MIT delegation mainstreams biodiversity conservation at the UN Biodiversity Convention, COP16

    For the first time, MIT sent an organized engagement to the global Conference of the Parties for the Convention on Biological Diversity, which this year was held Oct. 21 to Nov. 1 in Cali, Colombia.The 10 delegates to COP16 included faculty, researchers, and students from the MIT Environmental Solutions Initiative (ESI), the Department of Electrical Engineering and Computer Science (EECS), the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Department of Urban Studies and Planning (DUSP), the Institute for Data, Systems, and Society (IDSS), and the Center for Sustainability Science and Strategy.In previous years, MIT faculty had participated sporadically in the discussions. This organized engagement, led by the ESI, is significant because it brought representatives from many of the groups working on biodiversity across the Institute; showcased the breadth of MIT’s research in more than 15 events including panels, roundtables, and keynote presentations across the Blue and Green Zones of the conference (with the Blue Zone representing the primary venue for the official negotiations and discussions and the Green Zone representing public events); and created an experiential learning opportunity for students who followed specific topics in the negotiations and throughout side events.The conference also gathered attendees from governments, nongovernmental organizations, businesses, other academic institutions, and practitioners focused on stopping global biodiversity loss and advancing the 23 goals of the Kunming-Montreal Global Biodiversity Framework (KMGBF), an international agreement adopted in 2022 to guide global efforts to protect and restore biodiversity through 2030.MIT’s involvement was particularly pronounced when addressing goals related to building coalitions of sub-national governments (targets 11, 12, 14); technology and AI for biodiversity conservation (targets 20 and 21); shaping equitable markets (targets 3, 11, and 19); and informing an action plan for Afro-descendant communities (targets 3, 10, and 22).Building coalitions of sub-national governmentsThe ESI’s Natural Climate Solutions (NCS) Program was able to support two separate coalitions of Latin American cities, namely the Coalition of Cities Against Illicit Economies in the Biogeographic Chocó Region and the Colombian Amazonian Cities coalition, who successfully signed declarations to advance specific targets of the KMGBF (the aforementioned targets 11, 12, 14).This was accomplished through roundtables and discussions where team members — including Marcela Angel, research program director at the MIT ESI; Angelica Mayolo, ESI Martin Luther King Fellow 2023-25; and Silvia Duque and Hannah Leung, MIT Master’s in City Planning students — presented a set of multi-scale actions including transnational strategies, recommendations to strengthen local and regional institutions, and community-based actions to promote the conservation of the Biogeographic Chocó as an ecological corridor.“There is an urgent need to deepen the relationship between academia and local governments of cities located in biodiversity hotspots,” said Angel. “Given the scale and unique conditions of Amazonian cities, pilot research projects present an opportunity to test and generate a proof of concept. These could generate catalytic information needed to scale up climate adaptation and conservation efforts in socially and ecologically sensitive contexts.”ESI’s research also provided key inputs for the creation of the Fund for the Biogeographic Chocó Region, a multi-donor fund launched within the framework of COP16 by a coalition composed of Colombia, Ecuador, Panamá, and Costa Rica. The fund aims to support biodiversity conservation, ecosystem restoration, climate change mitigation and adaptation, and sustainable development efforts across the region.Technology and AI for biodiversity conservationData, technology, and artificial intelligence are playing an increasing role in how we understand biodiversity and ecosystem change globally. Professor Sara Beery’s research group at MIT focuses on this intersection, developing AI methods that enable species and environmental monitoring at previously unprecedented spatial, temporal, and taxonomic scales.During the International Union of Biological Diversity Science-Policy Forum, the high-level COP16 segment focused on outlining recommendations from scientific and academic community, Beery spoke on a panel alongside María Cecilia Londoño, scientific information manager of the Humboldt Institute and co-chair of the Global Biodiversity Observations Network, and Josh Tewksbury, director of the Smithsonian Tropical Research Institute, among others, about how these technological advancements will help humanity achieve our biodiversity targets. The panel emphasized that AI innovation was needed, but with emphasis on direct human-AI partnership, AI capacity building, and the need for data and AI policy to ensure equity of access and benefit from these technologies.As a direct outcome of the session, for the first time, AI was emphasized in the statement on behalf of science and academia delivered by Hernando Garcia, director of the Humboldt Institute, and David Skorton, secretary general of the Smithsonian Institute, to the high-level segment of the COP16.That statement read, “To effectively address current and future challenges, urgent action is required in equity, governance, valuation, infrastructure, decolonization and policy frameworks around biodiversity data and artificial intelligence.”Beery also organized a panel at the GEOBON pavilion in the Blue Zone on Scaling Biodiversity Monitoring with AI, which brought together global leaders from AI research, infrastructure development, capacity and community building, and policy and regulation. The panel was initiated and experts selected from the participants at the recent Aspen Global Change Institute Workshop on Overcoming Barriers to Impact in AI for Biodiversity, co-organized by Beery.Shaping equitable marketsIn a side event co-hosted by the ESI with CAF-Development Bank of Latin America, researchers from ESI’s Natural Climate Solutions Program — including Marcela Angel; Angelica Mayolo; Jimena Muzio, ESI research associate; and Martin Perez Lara, ESI research affiliate and director for Forest Climate Solutions Impact and Monitoring at World Wide Fund for Nature of the U.S. — presented results of a study titled “Voluntary Carbon Markets for Social Impact: Comprehensive Assessment of the Role of Indigenous Peoples and Local Communities (IPLC) in Carbon Forestry Projects in Colombia.” The report highlighted the structural barriers that hinder effective participation of IPLC, and proposed a conceptual framework to assess IPLC engagement in voluntary carbon markets.Communicating these findings is important because the global carbon market has experienced a credibility crisis since 2023, influenced by critical assessments in academic literature, journalism questioning the quality of mitigation results, and persistent concerns about the engagement of private actors with IPLC. Nonetheless, carbon forestry projects have expanded rapidly in Indigenous, Afro-descendant, and local communities’ territories, and there is a need to assess the relationships between private actors and IPLC and to propose pathways for equitable participation. 

    Panelists pose at the equitable markets side event at the Latin American Pavilion in the Blue Zone.

    Previous item
    Next item

    The research presentation and subsequent panel with representatives of the association for Carbon Project Developers in Colombia Asocarbono, Fondo Acción, and CAF further discussed recommendations for all actors in the value chain of carbon certificates — including those focused on promoting equitable benefit-sharing and safeguarding compliance, increased accountability, enhanced governance structures, strengthened institutionality, and regulatory frameworks  — necessary to create an inclusive and transparent market.Informing an action plan for Afro-descendant communitiesThe Afro-Interamerican Forum on Climate Change (AIFCC), an international network working to highlight the critical role of Afro-descendant peoples in global climate action, was also present at COP16.At the Afro Summit, Mayolo presented key recommendations prepared collectively by the members of AIFCC to the technical secretariat of the Convention on Biological Diversity (CBD). The recommendations emphasize:creating financial tools for conservation and supporting Afro-descendant land rights;including a credit guarantee fund for countries that recognize Afro-descendant collective land titling and research on their contributions to biodiversity conservation;calling for increased representation of Afro-descendant communities in international policy forums;capacity-building for local governments; andstrategies for inclusive growth in green business and energy transition.These actions aim to promote inclusive and sustainable development for Afro-descendant populations.“Attending COP16 with a large group from MIT contributing knowledge and informed perspectives at 15 separate events was a privilege and honor,” says MIT ESI Director John E. Fernández. “This demonstrates the value of the ESI as a powerful research and convening body at MIT. Science is telling us unequivocally that climate change and biodiversity loss are the two greatest challenges that we face as a species and a planet. MIT has the capacity, expertise, and passion to address not only the former, but also the latter, and the ESI is committed to facilitating the very best contributions across the institute for the critical years that are ahead of us.”A fuller overview of the conference is available via The MIT Environmental Solutions Initiative’s Primer of COP16. More

  • in

    Is there enough land on Earth to fight climate change and feed the world?

    Capping global warming at 1.5 degrees Celsius is a tall order. Achieving that goal will not only require a massive reduction in greenhouse gas emissions from human activities, but also a substantial reallocation of land to support that effort and sustain the biosphere, including humans. More land will be needed to accommodate a growing demand for bioenergy and nature-based carbon sequestration while ensuring sufficient acreage for food production and ecological sustainability.The expanding role of land in a 1.5 C world will be twofold — to remove carbon dioxide from the atmosphere and to produce clean energy. Land-based carbon dioxide removal strategies include bioenergy with carbon capture and storage; direct air capture; and afforestation/reforestation and other nature-based solutions. Land-based clean energy production includes wind and solar farms and sustainable bioenergy cropland. Any decision to allocate more land for climate mitigation must also address competing needs for long-term food security and ecosystem health.Land-based climate mitigation choices vary in terms of costs — amount of land required, implications for food security, impact on biodiversity and other ecosystem services — and benefits — potential for sequestering greenhouse gases and producing clean energy.Now a study in the journal Frontiers in Environmental Science provides the most comprehensive analysis to date of competing land-use and technology options to limit global warming to 1.5 C. Led by researchers at the MIT Center for Sustainability Science and Strategy (CS3), the study applies the MIT Integrated Global System Modeling (IGSM) framework to evaluate costs and benefits of different land-based climate mitigation options in Sky2050, a 1.5 C climate-stabilization scenario developed by Shell.Under this scenario, demand for bioenergy and natural carbon sinks increase along with the need for sustainable farming and food production. To determine if there’s enough land to meet all these growing demands, the research team uses the global hectare (gha) — an area of 10,000 square meters, or 2.471 acres — as the standard unit of measurement, and current estimates of the Earth’s total habitable land area (about 10 gha) and land area used for food production and bioenergy (5 gha).The team finds that with transformative changes in policy, land management practices, and consumption patterns, global land is sufficient to provide a sustainable supply of food and ecosystem services throughout this century while also reducing greenhouse gas emissions in alignment with the 1.5 C goal. These transformative changes include policies to protect natural ecosystems; stop deforestation and accelerate reforestation and afforestation; promote advances in sustainable agriculture technology and practice; reduce agricultural and food waste; and incentivize consumers to purchase sustainably produced goods.If such changes are implemented, 2.5–3.5 gha of land would be used for NBS practices to sequester 3–6 gigatonnes (Gt) of CO2 per year, and 0.4–0.6 gha of land would be allocated for energy production — 0.2–0.3 gha for bioenergy and 0.2–0.35 gha for wind and solar power generation.“Our scenario shows that there is enough land to support a 1.5 degree C future as long as effective policies at national and global levels are in place,” says CS3 Principal Research Scientist Angelo Gurgel, the study’s lead author. “These policies must not only promote efficient use of land for food, energy, and nature, but also be supported by long-term commitments from government and industry decision-makers.” More