More stories

  • in

    SLB joins the MIT.nano Consortium

    SLB, a global company creating technology to address the world’s energy challenges, has joined the MIT.nano Consortium.The MIT.nano Consortium is a platform for academia-industry collaboration, fostering research and innovation in nanoscale science and engineering.“The addition of SLB to the MIT.nano Consortium represents a powerful synergy between academic innovation and leading industry,” says Vladimir Bulović, the founding faculty director of MIT.nano and the Fariborz Masseh (1990) Professor of Emerging Technologies at MIT. “SLB’s expertise in developing energy technologies and its commitment to decarbonization aligns with MIT‘s mission to address the many challenges of climate change. Their addition to the consortium, and collaborations that will follow, will empower the MIT.nano community to advance critical research in this domain.”For 100 years, SLB has developed strategies and systems to unlock access to energy beneath the Earth’s surface. The company’s founder, Conrad Schlumberger, conceived the idea of using electrical measurements to map subsurface rock bodies back in 1912. Since then, SLB has continued to open new fronts in energy exploration—innovating in oil and gas, scaling new technologies, and designing digital solutions. Applying decades of innovation in science and engineering, SLB has committed to accelerating the decarbonization of the energy sector and supporting the global transition to low-carbon energy systems.With more than 900 facilities in over 120 countries, SLB adds to the global industry perspective of the MIT.nano Consortium and the broader MIT research community.“Taking a nanoscale approach to the scientific and technological challenges we face in the decarbonization domains is an endeavor that SLB is excited to embark on with MIT.nano,” says Smaine Zeroug, SLB research director and ambassador to MIT. “We are confident our engagement with MIT.nano and the extensive research network they offer access to will ultimately lead to field-viable solutions.”SLB has a longstanding relationship with MIT. The company, formerly named Schlumberger, donated specialized software to the MIT Seismic Visualization Laboratory in 1999 to enable MIT researchers and students to use three-dimensional seismic data in their studies of the Earth’s upper crust. SLB is also a current member of the MIT CSAIL Alliances.As a member of the MIT.nano consortium, SLB will gain unparalleled access to MIT.nano’s dynamic user community, providing opportunities to share expertise and guide advances in nanoscale technology.MIT.nano continues to welcome new companies as sustaining members. For details, and to see a list of current members, visit the MIT.nano Consortium page. More

  • in

    The MIT-Portugal Program enters Phase 4

    Since its founding 19 years ago as a pioneering collaboration with Portuguese universities, research institutions and corporations, the MIT-Portugal Program (MPP) has achieved a slew of successes — from enabling 47 entrepreneurial spinoffs and funding over 220 joint projects between MIT and Portuguese researchers to training a generation of exceptional researchers on both sides of the Atlantic.In March, with nearly two decades of collaboration under their belts, MIT and the Portuguese Science and Technology Foundation (FCT) signed an agreement that officially launches the program’s next chapter. Running through 2030, MPP’s Phase 4 will support continued exploration of innovative ideas and solutions in fields ranging from artificial intelligence and nanotechnology to climate change — both on the MIT campus and with partners throughout Portugal.  “One of the advantages of having a program that has gone on so long is that we are pretty well familiar with each other at this point. Over the years, we’ve learned each other’s systems, strengths and weaknesses and we’ve been able to create a synergy that would not have existed if we worked together for a short period of time,” says Douglas Hart, MIT mechanical engineering professor and MPP co-director.Hart and John Hansman, the T. Wilson Professor of Aeronautics and Astronautics at MIT and MPP co-director, are eager to take the program’s existing research projects further, while adding new areas of focus identified by MIT and FCT. Known as the Fundação para a Ciência e Tecnologia in Portugal, FCT is the national public agency supporting research in science, technology and innovation under Portugal’s Ministry of Education, Science and Innovation.“Over the past two decades, the partnership with MIT has built a foundation of trust that has fostered collaboration among researchers and the development of projects with significant scientific impact and contributions to the Portuguese economy,” Fernando Alexandre, Portugal’s minister for education, science, and innovation, says. “In this new phase of the partnership, running from 2025 to 2030, we expect even greater ambition and impact — raising Portuguese science and its capacity to transform the economy and improve our society to even higher levels, while helping to address the challenges we face in areas such as climate change and the oceans, digitalization, and space.”“International collaborations like the MIT-Portugal Program are absolutely vital to MIT’s mission of research, education and service. I’m thrilled to see the program move into its next phase,” says MIT President Sally Kornbluth. “MPP offers our faculty and students opportunities to work in unique research environments where they not only make new findings and learn new methods but also contribute to solving urgent local and global problems. MPP’s work in the realm of ocean science and climate is a prime example of how international partnerships like this can help solve important human problems.”Sharing MIT’s commitment to academic independence and excellence, Kornbluth adds, “the institutions and researchers we partner with through MPP enhance MIT’s ability to achieve its mission, enabling us to pursue the exacting standards of intellectual and creative distinction that make MIT a cradle of innovation and world leader in scientific discovery.”The epitome of an effective international collaboration, MPP has stayed true to its mission and continued to deliver results here in the U.S. and in Portugal for nearly two decades — prevailing amid myriad shifts in the political, social, and economic landscape. The multifaceted program encompasses an annual research conference and educational summits such as an Innovation Workshop at MIT each June and a Marine Robotics Summer School in the Azores in July, as well as student and faculty exchanges that facilitate collaborative research. During the third phase of the program alone, 59 MIT students and 53 faculty and researchers visited Portugal, and MIT hosted 131 students and 49 faculty and researchers from Portuguese universities and other institutions.In each roughly five-year phase, MPP researchers focus on a handful of core research areas. For Phase 3, MPP advanced cutting-edge research in four strategic areas: climate science and climate change; Earth systems: oceans to near space; digital transformation in manufacturing; and sustainable cities. Within these broad areas, MIT and FCT researchers worked together on numerous small-scale projects and several large “flagship” ones, including development of Portugal’s CubeSat satellite, a collaboration between MPP and several Portuguese universities and companies that marked the country’s second satellite launch and the first in 30 years.While work in the Phase 3 fields will continue during Phase 4, researchers will also turn their attention to four more areas: chips/nanotechnology, energy (a previous focus in Phase 2), artificial intelligence, and space.“We are opening up the aperture for additional collaboration areas,” Hansman says.In addition to focusing on distinct subject areas, each phase has emphasized the various parts of MPP’s mission to differing degrees. While Phase 3 accentuated collaborative research more than educational exchanges and entrepreneurship, those two aspects will be given more weight under the Phase 4 agreement, Hart said.“We have approval in Phase 4 to bring a number of Portuguese students over, and our principal investigators will benefit from close collaborations with Portuguese researchers,” he says.The longevity of MPP and the recent launch of Phase 4 are evidence of the program’s value. The program has played a role in the educational, technological and economic progress Portugal has achieved over the past two decades, as well.  “The Portugal of today is remarkably stronger than the Portugal of 20 years ago, and many of the places where they are stronger have been impacted by the program,” says Hansman, pointing to sustainable cities and “green” energy, in particular. “We can’t take direct credit, but we’ve been part of Portugal’s journey forward.”Since MPP began, Hart adds, “Portugal has become much more entrepreneurial. Many, many, many more start-up companies are coming out of Portuguese universities than there used to be.”  A recent analysis of MPP and FCT’s other U.S. collaborations highlighted a number of positive outcomes. The report noted that collaborations with MIT and other US universities have enhanced Portuguese research capacities and promoted organizational upgrades in the national R&D ecosystem, while providing Portuguese universities and companies with opportunities to engage in complex projects that would have been difficult to undertake on their own.Regarding MIT in particular, the report found that MPP’s long-term collaboration has spawned the establishment of sustained doctoral programs and pointed to a marked shift within Portugal’s educational ecosystem toward globally aligned standards. MPP, it reported, has facilitated the education of 198 Portuguese PhDs.Portugal’s universities, students and companies are not alone in benefitting from the research, networks, and economic activity MPP has spawned. MPP also delivers unique value to MIT, as well as to the broader US science and research community. Among the program’s consistent themes over the years, for example, is “joint interest in the Atlantic,” Hansman says.This summer, Faial Island in the Azores will host MPP’s fifth annual Marine Robotics Summer School, a two-week course open to 12 Portuguese Master’s and first year PhD students and 12 MIT upper-level undergraduates and graduate students. The course, which includes lectures by MIT and Portuguese faculty and other researchers, workshops, labs and hands-on experiences, “is always my favorite,” said Hart.“I get to work with some of the best researchers in the world there, and some of the top students coming out of Woods Hole Oceanographic Institution, MIT, and Portugal,” he says, adding that some of his previous Marine Robotics Summer School students have come to study at MIT and then gone on to become professors in ocean science.“So, it’s been exciting to see the growth of students coming out of that program, certainly a positive impact,” Hart says.MPP provides one-of-a-kind opportunities for ocean research due to the unique marine facilities available in Portugal, including not only open ocean off the Azores but also Lisbon’s deep-water port and a Portuguese Naval facility just south of Lisbon that is available for collaborative research by international scientists. Like MIT, Portuguese universities are also strongly invested in climate change research — a field of study keenly related to ocean systems.“The international collaboration has allowed us to test and further develop our research prototypes in different aquaculture environments both in the US and in Portugal, while building on the unique expertise of our Portuguese faculty collaborator Dr. Ricardo Calado from the University of Aveiro and our industry collaborators,” says Stefanie Mueller, the TIBCO Career Development Associate Professor in MIT’s departments of Electrical Engineering and Computer Science and Mechanical Engineering and leader of the Human-Computer Interaction Group at the MIT Computer Science and Artificial Intelligence Lab.Mueller points to the work of MIT mechanical engineering PhD student Charlene Xia, a Marine Robotics Summer School participant, whose research is aimed at developing an economical system to monitor the microbiome of seaweed farms and halt the spread of harmful bacteria associated with ocean warming. In addition to participating in the summer school as a student, Xia returned to the Azores for two subsequent years as a teaching assistant.“The MIT-Portugal Program has been a key enabler of our research on monitoring the aquatic microbiome for potential disease outbreaks,” Mueller says.As MPP enters its next phase, Hart and Hansman are optimistic about the program’s continuing success on both sides of the Atlantic and envision broadening its impact going forward.“I think, at this point, the research is going really well, and we’ve got a lot of connections. I think one of our goals is to expand not the science of the program necessarily, but the groups involved,” Hart says, noting that MPP could have a bigger presence in technical fields such as AI and micro-nano manufacturing, as well as in social sciences and humanities.“We’d like to involve many more people and new people here at MIT, as well as in Portugal,” he says, “so that we can reach a larger slice of the population.”  More

  • in

    Workshop explores new advanced materials for a growing world

    It is clear that humankind needs increasingly more resources, from computing power to steel and concrete, to meet the growing demands associated with data centers, infrastructure, and other mainstays of society. New, cost-effective approaches for producing the advanced materials key to that growth were the focus of a two-day workshop at MIT on March 11 and 12.A theme throughout the event was the importance of collaboration between and within universities and industries. The goal is to “develop concepts that everybody can use together, instead of everybody doing something different and then trying to sort it out later at great cost,” said Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering at MIT.The workshop was produced by MIT’s Materials Research Laboratory (MRL), which has an industry collegium, and MIT’s Industrial Liaison Program. The program included an address by Javier Sanfelix, lead of the Advanced Materials Team for the European Union. Sanfelix gave an overview of the EU’s strategy to developing advanced materials, which he said are “key enablers of the green and digital transition for European industry.”That strategy has already led to several initiatives. These include a material commons, or shared digital infrastructure for the design and development of advanced materials, and an advanced materials academy for educating new innovators and designers. Sanfelix also described an Advanced Materials Act for 2026 that aims to put in place a legislative framework that supports the entire innovation cycle.Sanfelix was visiting MIT to learn more about how the Institute is approaching the future of advanced materials. “We see MIT as a leader worldwide in technology, especially on materials, and there is a lot to learn about [your] industry collaborations and technology transfer with industry,” he said.Innovations in steel and concreteThe workshop began with talks about innovations involving two of the most common human-made materials in the world: steel and cement. We’ll need more of both but must reckon with the huge amounts of energy required to produce them and their impact on the environment due to greenhouse-gas emissions during that production.One way to address our need for more steel is to reuse what we have, said C. Cem Tasan, the POSCO Associate Professor of Metallurgy in the Department of Materials Science and Engineering (DMSE) and director of the Materials Research Laboratory.But most of the existing approaches to recycling scrap steel involve melting the metal. “And whenever you are dealing with molten metal, everything goes up, from energy use to carbon-dioxide emissions. Life is more difficult,” Tasan said.The question he and his team asked is whether they could reuse scrap steel without melting it. Could they consolidate solid scraps, then roll them together using existing equipment to create new sheet metal? From the materials-science perspective, Tasan said, that shouldn’t work, for several reasons.But it does. “We’ve demonstrated the potential in two papers and two patent applications already,” he said. Tasan noted that the approach focuses on high-quality manufacturing scrap. “This is not junkyard scrap,” he said.Tasan went on to explain how and why the new process works from a materials-science perspective, then gave examples of how the recycled steel could be used. “My favorite example is the stainless-steel countertops in restaurants. Do you really need the mechanical performance of stainless steel there?” You could use the recycled steel instead.Hessam Azarijafari addressed another common, indispensable material: concrete. This year marks the 16th anniversary of the MIT Concrete Sustainability Hub (CSHub), which began when a set of industry leaders and politicians reached out to MIT to learn more about the benefits and environmental impacts of concrete.The hub’s work now centers around three main themes: working toward a carbon-neutral concrete industry; the development of a sustainable infrastructure, with a focus on pavement; and how to make our cities more resilient to natural hazards through investment in stronger, cooler construction.Azarijafari, the deputy director of the CSHub, went on to give several examples of research results that have come out of the CSHub. These include many models to identify different pathways to decarbonize the cement and concrete sector. Other work involves pavements, which the general public thinks of as inert, Azarijafari said. “But we have [created] a state-of-the-art model that can assess interactions between pavement and vehicles.” It turns out that pavement surface characteristics and structural performance “can influence excess fuel consumption by inducing an additional rolling resistance.”Azarijafari emphasized  the importance of working closely with policymakers and industry. That engagement is key “to sharing the lessons that we have learned so far.”Toward a resource-efficient microchip industryConsider the following: In 2020 the number of cell phones, GPS units, and other devices connected to the “cloud,” or large data centers, exceeded 50 billion. And data-center traffic in turn is scaling by 1,000 times every 10 years.But all of that computation takes energy. And “all of it has to happen at a constant cost of energy, because the gross domestic product isn’t changing at that rate,” said Kimerling. The solution is to either produce much more energy, or make information technology much more energy-efficient. Several speakers at the workshop focused on the materials and components behind the latter.Key to everything they discussed: adding photonics, or using light to carry information, to the well-established electronics behind today’s microchips. “The bottom line is that integrating photonics with electronics in the same package is the transistor for the 21st century. If we can’t figure out how to do that, then we’re not going to be able to scale forward,” said Kimerling, who is director of the MIT Microphotonics Center.MIT has long been a leader in the integration of photonics with electronics. For example, Kimerling described the Integrated Photonics System Roadmap – International (IPSR-I), a global network of more than 400 industrial and R&D partners working together to define and create photonic integrated circuit technology. IPSR-I is led by the MIT Microphotonics Center and PhotonDelta. Kimerling began the organization in 1997.Last year IPSR-I released its latest roadmap for photonics-electronics integration, “which  outlines a clear way forward and specifies an innovative learning curve for scaling performance and applications for the next 15 years,” Kimerling said.Another major MIT program focused on the future of the microchip industry is FUTUR-IC, a new global alliance for sustainable microchip manufacturing. Begun last year, FUTUR-IC is funded by the National Science Foundation.“Our goal is to build a resource-efficient microchip industry value chain,” said Anuradha Murthy Agarwal, a principal research scientist at the MRL and leader of FUTUR-IC. That includes all of the elements that go into manufacturing future microchips, including workforce education and techniques to mitigate potential environmental effects.FUTUR-IC is also focused on electronic-photonic integration. “My mantra is to use electronics for computation, [and] shift to photonics for communication to bring this energy crisis in control,” Agarwal said.But integrating electronic chips with photonic chips is not easy. To that end, Agarwal described some of the challenges involved. For example, currently it is difficult to connect the optical fibers carrying communications to a microchip. That’s because the alignment between the two must be almost perfect or the light will disperse. And the dimensions involved are minuscule. An optical fiber has a diameter of only millionths of a meter. As a result, today each connection must be actively tested with a laser to ensure that the light will come through.That said, Agarwal went on to describe a new coupler between the fiber and chip that could solve the problem and allow robots to passively assemble the chips (no laser needed). The work, which was conducted by researchers including MIT graduate student Drew Wenninger, Agarwal, and Kimerling, has been patented, and is reported in two papers. A second recent breakthrough in this area involving a printed micro-reflector was described by Juejun “JJ” Hu, John F. Elliott Professor of Materials Science and Engineering.FUTUR-IC is also leading educational efforts for training a future workforce, as well as techniques for detecting — and potentially destroying — the perfluroalkyls (PFAS, or “forever chemicals”) released during microchip manufacturing. FUTUR-IC educational efforts, including virtual reality and game-based learning, were described by Sajan Saini, education director for FUTUR-IC. PFAS detection and remediation were discussed by Aristide Gumyusenge, an assistant professor in DMSE, and Jesus Castro Esteban, a postdoc in the Department of Chemistry.Other presenters at the workshop included Antoine Allanore, the Heather N. Lechtman Professor of Materials Science and Engineering; Katrin Daehn, a postdoc in the Allanore lab; Xuanhe Zhao, the Uncas (1923) and Helen Whitaker Professor in the Department of Mechanical Engineering; Richard Otte, CEO of Promex; and Carl Thompson, the Stavros V. Salapatas Professor in Materials Science and Engineering. More

  • in

    Using liquid air for grid-scale energy storage

    As the world moves to reduce carbon emissions, solar and wind power will play an increasing role on electricity grids. But those renewable sources only generate electricity when it’s sunny or windy. So to ensure a reliable power grid — one that can deliver electricity 24/7 — it’s crucial to have a means of storing electricity when supplies are abundant and delivering it later, when they’re not. And sometimes large amounts of electricity will need to be stored not just for hours, but for days, or even longer.Some methods of achieving “long-duration energy storage” are promising. For example, with pumped hydro energy storage, water is pumped from a lake to another, higher lake when there’s extra electricity and released back down through power-generating turbines when more electricity is needed. But that approach is limited by geography, and most potential sites in the United States have already been used. Lithium-ion batteries could provide grid-scale storage, but only for about four hours. Longer than that and battery systems get prohibitively expensive.A team of researchers from MIT and the Norwegian University of Science and Technology (NTNU) has been investigating a less-familiar option based on an unlikely-sounding concept: liquid air, or air that is drawn in from the surroundings, cleaned and dried, and then cooled to the point that it liquefies. “Liquid air energy storage” (LAES) systems have been built, so the technology is technically feasible. Moreover, LAES systems are totally clean and can be sited nearly anywhere, storing vast amounts of electricity for days or longer and delivering it when it’s needed. But there haven’t been conclusive studies of its economic viability. Would the income over time warrant the initial investment and ongoing costs? With funding from the MIT Energy Initiative’s Future Energy Systems Center, the researchers developed a model that takes detailed information on LAES systems and calculates when and where those systems would be economically viable, assuming future scenarios in line with selected decarbonization targets as well as other conditions that may prevail on future energy grids.They found that under some of the scenarios they modeled, LAES could be economically viable in certain locations. Sensitivity analyses showed that policies providing a subsidy on capital expenses could make LAES systems economically viable in many locations. Further calculations showed that the cost of storing a given amount of electricity with LAES would be lower than with more familiar systems such as pumped hydro and lithium-ion batteries. They conclude that LAES holds promise as a means of providing critically needed long-duration storage when future power grids are decarbonized and dominated by intermittent renewable sources of electricity.The researchers — Shaylin A. Cetegen, a PhD candidate in the MIT Department of Chemical Engineering (ChemE); Professor Emeritus Truls Gundersen of the NTNU Department of Energy and Process Engineering; and MIT Professor Emeritus Paul I. Barton of ChemE — describe their model and their findings in a new paper published in the journal Energy.The LAES technology and its benefitsLAES systems consists of three steps: charging, storing, and discharging. When supply on the grid exceeds demand and prices are low, the LAES system is charged. Air is then drawn in and liquefied. A large amount of electricity is consumed to cool and liquefy the air in the LAES process. The liquid air is then sent to highly insulated storage tanks, where it’s held at a very low temperature and atmospheric pressure. When the power grid needs added electricity to meet demand, the liquid air is first pumped to a higher pressure and then heated, and it turns back into a gas. This high-pressure, high-temperature, vapor-phase air expands in a turbine that generates electricity to be sent back to the grid.According to Cetegen, a primary advantage of LAES is that it’s clean. “There are no contaminants involved,” she says. “It takes in and releases only ambient air and electricity, so it’s as clean as the electricity that’s used to run it.” In addition, a LAES system can be built largely from commercially available components and does not rely on expensive or rare materials. And the system can be sited almost anywhere, including near other industrial processes that produce waste heat or cold that can be used by the LAES system to increase its energy efficiency.Economic viabilityIn considering the potential role of LAES on future power grids, the first question is: Will LAES systems be attractive to investors? Answering that question requires calculating the technology’s net present value (NPV), which represents the sum of all discounted cash flows — including revenues, capital expenditures, operating costs, and other financial factors — over the project’s lifetime. (The study assumed a cash flow discount rate of 7 percent.)To calculate the NPV, the researchers needed to determine how LAES systems will perform in future energy markets. In those markets, various sources of electricity are brought online to meet the current demand, typically following a process called “economic dispatch:” The lowest-cost source that’s available is always deployed next. Determining the NPV of liquid air storage therefore requires predicting how that technology will fare in future markets competing with other sources of electricity when demand exceeds supply — and also accounting for prices when supply exceeds demand, so excess electricity is available to recharge the LAES systems.For their study, the MIT and NTNU researchers designed a model that starts with a description of an LAES system, including details such as the sizes of the units where the air is liquefied and the power is recovered, and also capital expenses based on estimates reported in the literature. The model then draws on state-of-the-art pricing data that’s released every year by the National Renewable Energy Laboratory (NREL) and is widely used by energy modelers worldwide. The NREL dataset forecasts prices, construction and retirement of specific types of electricity generation and storage facilities, and more, assuming eight decarbonization scenarios for 18 regions of the United States out to 2050.The new model then tracks buying and selling in energy markets for every hour of every day in a year, repeating the same schedule for five-year intervals. Based on the NREL dataset and details of the LAES system — plus constraints such as the system’s physical storage capacity and how often it can switch between charging and discharging — the model calculates how much money LAES operators would make selling power to the grid when it’s needed and how much they would spend buying electricity when it’s available to recharge their LAES system. In line with the NREL dataset, the model generates results for 18 U.S. regions and eight decarbonization scenarios, including 100 percent decarbonization by 2035 and 95 percent decarbonization by 2050, and other assumptions about future energy grids, including high-demand growth plus high and low costs for renewable energy and for natural gas.Cetegen describes some of their results: “Assuming a 100-megawatt (MW) system — a standard sort of size — we saw economic viability pop up under the decarbonization scenario calling for 100 percent decarbonization by 2035.” So, positive NPVs (indicating economic viability) occurred only under the most aggressive — therefore the least realistic — scenario, and they occurred in only a few southern states, including Texas and Florida, likely because of how those energy markets are structured and operate.The researchers also tested the sensitivity of NPVs to different storage capacities, that is, how long the system could continuously deliver power to the grid. They calculated the NPVs of a 100 MW system that could provide electricity supply for one day, one week, and one month. “That analysis showed that under aggressive decarbonization, weekly storage is more economically viable than monthly storage, because [in the latter case] we’re paying for more storage capacity than we need,” explains Cetegen.Improving the NPV of the LAES systemThe researchers next analyzed two possible ways to improve the NPV of liquid air storage: by increasing the system’s energy efficiency and by providing financial incentives. Their analyses showed that increasing the energy efficiency, even up to the theoretical limit of the process, would not change the economic viability of LAES under the most realistic decarbonization scenarios. On the other hand, a major improvement resulted when they assumed policies providing subsidies on capital expenditures on new installations. Indeed, assuming subsidies of between 40 percent and 60 percent made the NPVs for a 100 MW system become positive under all the realistic scenarios.Thus, their analysis showed that financial incentives could be far more effective than technical improvements in making LAES economically viable. While engineers may find that outcome disappointing, Cetegen notes that from a broader perspective, it’s good news. “You could spend your whole life trying to optimize the efficiency of this process, and it wouldn’t translate to securing the investment needed to scale the technology,” she says. “Policies can take a long time to implement as well. But theoretically you could do it overnight. So if storage is needed [on a future decarbonized grid], then this is one way to encourage adoption of LAES right away.”Cost comparison with other energy storage technologiesCalculating the economic viability of a storage technology is highly dependent on the assumptions used. As a result, a different measure — the “levelized cost of storage” (LCOS) — is typically used to compare the costs of different storage technologies. In simple terms, the LCOS is the cost of storing each unit of energy over the lifetime of a project, not accounting for any income that results.On that measure, the LAES technology excels. The researchers’ model yielded an LCOS for liquid air storage of about $60 per megawatt-hour, regardless of the decarbonization scenario. That LCOS is about a third that of lithium-ion battery storage and half that of pumped hydro. Cetegen cites another interesting finding: the LCOS of their assumed LAES system varied depending on where it’s being used. The standard practice of reporting a single LCOS for a given energy storage technology may not provide the full picture.Cetegen has adapted the model and is now calculating the NPV and LCOS for energy storage using lithium-ion batteries. But she’s already encouraged by the LCOS of liquid air storage. “While LAES systems may not be economically viable from an investment perspective today, that doesn’t mean they won’t be implemented in the future,” she concludes. “With limited options for grid-scale storage expansion and the growing need for storage technologies to ensure energy security, if we can’t find economically viable alternatives, we’ll likely have to turn to least-cost solutions to meet storage needs. This is why the story of liquid air storage is far from over. We believe our findings justify the continued exploration of LAES as a key energy storage solution for the future.” More

  • in

    MIT students advance solutions for water and food with the help of J-WAFS

    For the past decade, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has been instrumental in promoting student engagement across the Institute to help solve the world’s most pressing water and food system challenges. As part of J-WAFS’ central mission of securing the world’s water and food supply, J-WAFS aims to cultivate the next generation of leaders in the water and food sectors by encouraging MIT student involvement through a variety of programs and mechanisms that provide research funding, mentorship, and other types of support.J-WAFS offers a range of opportunities for both undergraduate and graduate students to engage in the advancement of water and food systems research. These include graduate student fellowships, travel grants for participation in conferences, funding for research projects in India, video competitions highlighting students’ water and food research, and support for student-led organizations and initiatives focused on critical areas in water and food.As J-WAFS enters its second decade, it continues to expose students across the Institute to experiential hands-on water and food research, career and other networking opportunities, and a platform to develop their innovative and collaborative solutions.Graduate student fellowshipsIn 2017, J-WAFS inaugurated two graduate student fellowships: the Rasikbhai L. Meswani Fellowship for Water Solutions and the J-WAFS Graduate Student Fellowship Program. The Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water for human need at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family. Each year, up to two outstanding students are selected to receive fellowship support for one academic semester. Through it, J-WAFS seeks to support distinguished MIT students who are pursuing solutions to the pressing global water supply challenges of our time. The J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship.Aditya Avinash Ghodgaonkar, a PhD student in the Department of Mechanical Engineering (MechE), reflects on how receiving a J-WAFS graduate student fellowship positively impacted his research on the design of low-cost emitters for affordable, resilient drip irrigation for farmers: “My J-WAFS fellowship gave me the flexibility and financial support needed to explore new directions in the area of clog-resistant drip irrigation that had a higher risk element that might not have been feasible to manage on an industrially sponsored project,” Ghodgaonkar explains. Emitters, which control the volume and flow rate of water used during irrigation, often clog due to small particles like sand. Ghodgaonkar worked with Professor Amos Winter, and with farmers in resource-constrained communities in countries like Jordan and Morocco, to develop an emitter that is mechanically more resistant to clogging. Ghodgaonkar reports that their energy-efficient, compact, clog-resistant drip emitters are being commercialized by Toro and may be available for retail in the next few years. The opportunities and funding support Ghodgaonkar has received from J-WAFS contributed greatly to his entrepreneurial success and the advancement of the water and agricultural sectors.Linzixuan (Rhoda) Zhang, a PhD student advised by Professor Robert Langer and Principal Research Scientist Ana Jaklenec of the Department of Chemical Engineering, was a 2022 J-WAFS Graduate Student Fellow. With the fellowship, Zhang was able to focus on her innovative research on a novel micronutrient delivery platform that fortifies food with essential vitamins and nutrients. “We intake micronutrients from basically all the healthy food that we eat; however, around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” Zhang says. Her research involves the development of biodegradable polymers that can deliver these micronutrients in harsh environments in underserved regions of the world. “Vitamin A is not very stable, for example; we have vitamin A in different vegetables but when we cook them, the vitamin can easily degrade,” Zhang explains. However, when vitamin A is encapsulated in the microparticle platform, simulation of boiling and of the stomach environment shows that vitamin A was stabilized. “The meaningful factors behind this experiment are real,” says Zhang. The J-WAFS Fellowship helped position Zhang to win the 2024 Collegiate Inventors Competition for this work.J-WAFS grant for water and food projects in IndiaJ-WAFS India Grants are intended to further the work being pursued by MIT individuals as a part of their research, innovation, entrepreneurship, coursework, or related activities. Faculty, research staff, and undergraduate and graduate students are eligible to apply. The program aims to support projects that will benefit low-income communities in India, and facilitates travel and other expenses related to directly engaging with those communities.Gokul Sampath, a PhD student in the Department of Urban Studies and Planning, and Jonathan Bessette, a PhD student in MechE, initially met through J-WAFS-sponsored conference travel, and discovered their mutual interest in the problem of arsenic in water in India. Together, they developed a cross-disciplinary proposal that received a J-WAFS India Grant. Their project is studying how women in rural India make decisions about where they fetch water for their families, and how these decisions impact exposure to groundwater contaminants like naturally-occurring arsenic. Specifically, they are developing low-cost remote sensors to better understand water-fetching practices. The grant is enabling Sampath and Bessette to equip Indian households with sensor-enabled water collection devices (“smart buckets”) that will provide them data about fetching practices in arsenic-affected villages. By demonstrating the efficacy of a sensor-based approach, the team hopes to address a major data gap in international development. “It is due to programs like the Jameel Water and Food Systems Lab that I was able to obtain the support for interdisciplinary work on connecting water security, public health, and regional planning in India,” says Sampath.J-WAFS travel grants for water conferencesIn addition to funding graduate student research, J-WAFS also provides grants for graduate students to attend water conferences worldwide. Typically, students will only receive travel funding to attend conferences where they are presenting their research. However, the J-WAFS travel grants support learning, networking, and career exploration opportunities for exceptional MIT graduate students who are interested in a career in the water sector, whether in academia, nonprofits, government, or industry.Catherine Lu ’23, MNG ’24 was awarded a 2023 Travel Grant to attend the UNC Water and Health Conference in North Carolina. The conference serves as a curated space for policymakers, practitioners, and researchers to convene and assess data, scrutinize scientific findings, and enhance new and existing strategies for expanding access to and provision of services for water, sanitation, and hygiene (WASH). Lu, who studied civil and environmental engineering, worked with Professor Dara Entekhabi on modeling and predicting droughts in Africa using satellite Soil Moisture Active Passive (SMAP) data. As she evaluated her research trajectory and career options in the water sector, Lu found the conference to be informative and enlightening. “I was able to expand my knowledge on all the sectors and issues that are related to water and the implications they have on my research topic.” Furthermore, she notes: “I was really impressed by the diverse range of people that were able to attend the conference. The global perspective offered at the conference provided a valuable context for understanding the challenges and successes of different regions around the world — from WASH education in schools in Zimbabwe and India to rural water access disparities in the United States … Being able to engage with such passionate and dedicated people has motivated me to continue progress in this sector.” Following graduation, Lu secured a position as a water resources engineer at CDM Smith, an engineering and construction firm.Daniela Morales, a master’s student in city planning in the Department of Urban Studies and Planning, was a 2024 J-WAFS Travel Grant recipient who attended World Water Week in Stockholm, Sweden. The annual global conference is organized by the Stockholm International Water Institute and convenes leading experts, decision-makers, and professionals in the water sector to actively engage in discussions and developments addressing critical water-related challenges. Morales’ research interests involve drinking water quality and access in rural and peri-urban areas affected by climate change impacts, the effects of municipal water shutoffs on marginalized communities, and the relationship between regional water management and public health outcomes. When reflecting on her experience at the conference, Morales writes: “Being part of this event has given me so much motivation to continue my professional and academic journey in water management as it relates to public health and city planning … There was so much energy that was collectively generated in the conference, and so many new ideas that I was able to process around my own career interests and my role as a future planner in water management, that the last day of the conference felt less like an ending and more of the beginning of a new chapter. I am excited to take all the information I learned to work towards my own research, and continue to build relationships with all the new contacts I made.” Morales also notes that without the support of the J-WAFS grant, “I would not have had the opportunity to make it to Stockholm and participate in such a unique week of water wisdom.”Seed grants and Solutions grantsJ-WAFS offers seed grants for early-stage research and Solutions Grants for later-stage research that is ready to move from the lab to the commercial world. Proposals for both types of grants must be submitted and led by an MIT principal investigator, but graduate students, and sometimes undergraduates, are often supported by these grants.Arjav Shah, a PhD-MBA student in MIT’s Department of Chemical Engineering and the MIT Sloan School of Management, is currently pursuing the commercialization of a water treatment technology that was first supported through a 2019 J-WAFS seed grant and then a 2022 J-WAFS Solutions Grant with Professor Patrick Doyle. The technology uses hydrogels to remove a broad range of micropollutants from water. The Solutions funding enables entrepreneurial students and postdocs to lay the groundwork to commercialize a technology by assessing use scenarios and exploring business needs with actual potential customers. “With J-WAFS’ support, we were not only able to scale up the technology, but also gain a deeper understanding of market needs and develop a strong business case,” says Shah. Shah and the Solutions team have discovered that the hydrogels could be used in several real-world contexts, ranging from large-scale industrial use to small-scale, portable, off-grid applications. “We are incredibly grateful to J-WAFS for their support, particularly in fostering industry connections and facilitating introductions to investors, potential customers, and experts,” Shah adds.Shah was also a 2023 J-WAFS Travel Grant awardee who attended Stockholm World Water Week that year. He says, “J-WAFS has played a pivotal role in both my academic journey at MIT and my entrepreneurial pursuits. J-WAFS support has helped me grow both as a scientist and an aspiring entrepreneur. The exposure and opportunities provided have allowed me to develop critical skills such as customer discovery, financial modeling, business development, fundraising, and storytelling — all essential for translating technology into real-world impact. These experiences provided invaluable insights into what it takes to bring a technology from the lab to market.”Shah is currently leading efforts to spin out a company to commercialize the hydrogel research. Since receiving J-WAFS support, the team has made major strides toward launching a startup company, including winning the Pillar VC Moonshot Prize, Cleantech Open National Grand Prize, MassCEC Catalyst Award, and participation in the NSF I-Corps National Program.J-WAFS student video competitionsJ-WAFS has hosted two video competitions: MIT Research for a Water Secure Future and MIT Research for a Food Secure Future, in honor of World Water Day and Word Food Day, respectively. In these competitions, students are tasked with creating original videos showcasing their innovative water and food research conducted at MIT. The opportunity is open to MIT students, postdocs, and recent alumni.Following a review by a distinguished panel of judges, Vishnu Jayaprakash SM ’19, PhD ’22 won first place in the 2022 J-WAFS World Food Day Student Video Competition for his video focused on eliminating pesticide pollution and waste. Jayaprakash delved into the science behind AgZen-Cloak, a new generation of agricultural sprays that prevents pesticides from bouncing off of plants and seeping into the ground, thus causing harmful runoff. The J-WAFS competition provided Jayaprakash with a platform to highlight the universal, low-cost, and environmentally sustainable benefits of AgZen-Cloak. Jayaprakash worked on similar technology as a funded student on a J-WAFS Solutions grant with Professor Kripa Varanasi. The Solutions grant, in fact, helped Jayaprakash and Varanasi to launch AgZen, a company that deploys AgZen-Cloak and other products and technologies to control the interactions of droplets and sprays with crop surfaces. AgZen is currently helping farmers sustainably tend to their agricultural plots while also protecting the environment.  In 2021, Hilary Johnson SM ’18, PhD ’22, won first place in the J-WAFS World Water Day video competition. Her video highlighted her work on a novel pump that uses adaptive hydraulics for improved pump efficiency. The pump was part of a sponsored research project with Xylem Inc., a J-WAFS Research Affiliate company, and Professor Alex Slocum of MechE. At the time, Johnson was a PhD student in Slocum’s lab. She was instrumental in the development of the pump by engineering the volute to expand and contract to meet changing system flow rates. Johnson went on to later become a 2021-22 J-WAFS Fellow, and is now a full-time mechanical engineer at the Lawrence Livermore National Laboratory.J-WAFS-supported student clubsJ-WAFS-supported student clubs provide members of the MIT student community the opportunity for networking and professional advancement through events focused on water and food systems topics.J-WAFS is a sponsor of the MIT Water Club, a student-led group that supports and promotes the engagement of the MIT community in water-sector-related activism, dissemination of information, and research innovation. The club allows students to spearhead the organization of conferences, lectures, outreach events, research showcases, and entrepreneurship competitions including the former MIT Water Innovation Prize and MIT Water Summit. J-WAFS not only sponsors the MIT Water Club financially, but offers mentorship and guidance to the leadership team.The MIT Food and Agriculture Club is also supported by J-WAFS. The club’s mission is to promote the engagement of the MIT community in food and agriculture-related topics. In doing so, the students lead initiatives to share the innovative technology and business solutions researchers are developing in food and agriculture systems. J-WAFS assists in the connection of passionate MIT students with those who are actively working in the food and agriculture industry beyond the Institute. From 2015 to 2022, J-WAFS also helped the club co-produce the Rabobank-MIT Food and Agribusiness Innovation Prize — a student business plan competition for food and agricultural startups.From 2023 onward, the MIT Water Club and the MIT Food and Ag Club have been joining forces to organize a combined prize competition: The MIT Water, Food and Agriculture (WFA) Innovation Prize. The WFA Innovation Prize is a business plan competition for student-led startups focused on any region or market. The teams present business plans involving a technology, product, service, or process that is aimed at solving a problem related to water, food, or agriculture. The competition encourages all approaches to innovation, from engineering and product design to policy and data analytics. The goal of the competition is to help emerging entrepreneurs translate research and ideas into businesses, access mentors and resources, and build networks in the water, food, and agriculture industries. J-WAFS offers financial and in-kind support, working with student leaders to plan, organize, and implement the stages of the competition through to the final pitch event. This year, J-WAFS is continuing to support the WFA team, which is led by Ali Decker, an MBA student at MIT Sloan, and Sam Jakshtis, a master’s student in MIT’s science in real estate development program. The final pitch event will take place on April 30 in the MIT Media Lab.“I’ve had the opportunity to work with Renee Robins, executive director of J-WAFS, on MIT’s Water, Food and Agriculture Innovation Prize for the past two years, and it has been both immensely valuable and a delight to have her support,” says Decker. “Renee has helped us in all areas of prize planning: brainstorming new ideas, thinking through startup finalist selection, connecting to potential sponsors and partners, and more. Above all, she supports us with passion and joy; each time we meet, I look forward to our discussion,” Decker adds.J-WAFS eventsThroughout the year, J-WAFS aims to offer events that will engage any in the MIT student community who are working in water or food systems. For example, on April 19, 2023, J-WAFS teamed up with the MIT Energy Initiative (MITEI) and the Environmental Solutions Initiative (ESI) to co-host an MIT student poster session for Earth Month. The theme of the poster session was “MIT research for a changing planet,” and it featured work from 11 MIT students with projects in water, food, energy, and the environment. The students, who represented a range of MIT departments, labs, and centers, were on hand to discuss their projects and engage with those attending the event. Attendees could vote for their favorite poster after being asked to consider which poster most clearly communicated the research problem and the potential solution. At the end of the night, votes were tallied and the winner of the “People’s Choice Award” for best poster was Elaine Liu ’24, an undergraduate in mathematics at the time of the event. Liu’s poster featured her work on managing failure cascades in systems with wind power.J-WAFS also hosts less-structured student networking events. For instance, during MIT’s Independent Activities Period (IAP) in January 2024, J-WAFS hosted an ice cream social for student networking. The informal event was an opportunity for graduate and undergraduate students from across the Institute to meet and mingle with like-minded peers working in, or interested in, water and food systems. Students were able to explain their current and future research, interests, and projects and ask questions while exchanging ideas, engaging with one another, and potentially forming collaborations, or at the very least sharing insights.Looking ahead to 10 more years of student impactOver the past decade, J-WAFS has demonstrated a strong commitment to empowering students in the water and food sectors, fostering an environment where they can confidently drive meaningful change and innovation. PhD student Jonathan Bessette sums up the J-WAFS community as a “one-of-a-kind community that enables essential research in water and food that otherwise would not be pursued. It’s this type of research that is not often the focus of major funding, yet has such a strong impact in sustainable development.”J-WAFS aims to provide students with the support and tools they need to conduct authentic and meaningful water and food-related research that will benefit communities around the world. This support, coupled with an MIT education, enables students to become leaders in sustainable water and food systems. As the second decade of J-WAFS programming begins, the J-WAFS team remains committed to fostering student collaboration across the Institute, driving innovative solutions to revitalize the world’s water and food systems while empowering the next generation of pioneers in these critical fields.  More

  • in

    Study: Burning heavy fuel oil with scrubbers is the best available option for bulk maritime shipping

    When the International Maritime Organization enacted a mandatory cap on the sulfur content of marine fuels in 2020, with an eye toward reducing harmful environmental and health impacts, it left shipping companies with three main options.They could burn low-sulfur fossil fuels, like marine gas oil, or install cleaning systems to remove sulfur from the exhaust gas produced by burning heavy fuel oil. Biofuels with lower sulfur content offer another alternative, though their limited availability makes them a less feasible option.While installing exhaust gas cleaning systems, known as scrubbers, is the most feasible and cost-effective option, there has been a great deal of uncertainty among firms, policymakers, and scientists as to how “green” these scrubbers are.Through a novel lifecycle assessment, researchers from MIT, Georgia Tech, and elsewhere have now found that burning heavy fuel oil with scrubbers in the open ocean can match or surpass using low-sulfur fuels, when a wide variety of environmental factors is considered.The scientists combined data on the production and operation of scrubbers and fuels with emissions measurements taken onboard an oceangoing cargo ship.They found that, when the entire supply chain is considered, burning heavy fuel oil with scrubbers was the least harmful option in terms of nearly all 10 environmental impact factors they studied, such as greenhouse gas emissions, terrestrial acidification, and ozone formation.“In our collaboration with Oldendorff Carriers to broadly explore reducing the environmental impact of shipping, this study of scrubbers turned out to be an unexpectedly deep and important transitional issue,” says Neil Gershenfeld, an MIT professor, director of the Center for Bits and Atoms (CBA), and senior author of the study.“Claims about environmental hazards and policies to mitigate them should be backed by science. You need to see the data, be objective, and design studies that take into account the full picture to be able to compare different options from an apples-to-apples perspective,” adds lead author Patricia Stathatou, an assistant professor at Georgia Tech, who began this study as a postdoc in the CBA.Stathatou is joined on the paper by Michael Triantafyllou, the Henry L. and Grace Doherty and others at the National Technical University of Athens in Greece and the maritime shipping firm Oldendorff Carriers. The research appears today in Environmental Science and Technology.Slashing sulfur emissionsHeavy fuel oil, traditionally burned by bulk carriers that make up about 30 percent of the global maritime fleet, usually has a sulfur content around 2 to 3 percent. This is far higher than the International Maritime Organization’s 2020 cap of 0.5 percent in most areas of the ocean and 0.1 percent in areas near population centers or environmentally sensitive regions.Sulfur oxide emissions contribute to air pollution and acid rain, and can damage the human respiratory system.In 2018, fewer than 1,000 vessels employed scrubbers. After the cap went into place, higher prices of low-sulfur fossil fuels and limited availability of alternative fuels led many firms to install scrubbers so they could keep burning heavy fuel oil.Today, more than 5,800 vessels utilize scrubbers, the majority of which are wet, open-loop scrubbers.“Scrubbers are a very mature technology. They have traditionally been used for decades in land-based applications like power plants to remove pollutants,” Stathatou says.A wet, open-loop marine scrubber is a huge, metal, vertical tank installed in a ship’s exhaust stack, above the engines. Inside, seawater drawn from the ocean is sprayed through a series of nozzles downward to wash the hot exhaust gases as they exit the engines.The seawater interacts with sulfur dioxide in the exhaust, converting it to sulfates — water-soluble, environmentally benign compounds that naturally occur in seawater. The washwater is released back into the ocean, while the cleaned exhaust escapes to the atmosphere with little to no sulfur dioxide emissions.But the acidic washwater can contain other combustion byproducts like heavy metals, so scientists wondered if scrubbers were comparable, from a holistic environmental point of view, to burning low-sulfur fuels.Several studies explored toxicity of washwater and fuel system pollution, but none painted a full picture.The researchers set out to fill that scientific gap.A “well-to-wake” analysisThe team conducted a lifecycle assessment using a global environmental database on production and transport of fossil fuels, such as heavy fuel oil, marine gas oil, and very-low sulfur fuel oil. Considering the entire lifecycle of each fuel is key, since producing low-sulfur fuel requires extra processing steps in the refinery, causing additional emissions of greenhouse gases and particulate matter.“If we just look at everything that happens before the fuel is bunkered onboard the vessel, heavy fuel oil is significantly more low-impact, environmentally, than low-sulfur fuels,” she says.The researchers also collaborated with a scrubber manufacturer to obtain detailed information on all materials, production processes, and transportation steps involved in marine scrubber fabrication and installation.“If you consider that the scrubber has a lifetime of about 20 years, the environmental impacts of producing the scrubber over its lifetime are negligible compared to producing heavy fuel oil,” she adds.For the final piece, Stathatou spent a week onboard a bulk carrier vessel in China to measure emissions and gather seawater and washwater samples. The ship burned heavy fuel oil with a scrubber and low-sulfur fuels under similar ocean conditions and engine settings.Collecting these onboard data was the most challenging part of the study.“All the safety gear, combined with the heat and the noise from the engines on a moving ship, was very overwhelming,” she says.Their results showed that scrubbers reduce sulfur dioxide emissions by 97 percent, putting heavy fuel oil on par with low-sulfur fuels according to that measure. The researchers saw similar trends for emissions of other pollutants like carbon monoxide and nitrous oxide.In addition, they tested washwater samples for more than 60 chemical parameters, including nitrogen, phosphorus, polycyclic aromatic hydrocarbons, and 23 metals.The concentrations of chemicals regulated by the IMO were far below the organization’s requirements. For unregulated chemicals, the researchers compared the concentrations to the strictest limits for industrial effluents from the U.S. Environmental Protection Agency and European Union.Most chemical concentrations were at least an order of magnitude below these requirements.In addition, since washwater is diluted thousands of times as it is dispersed by a moving vessel, the concentrations of such chemicals would be even lower in the open ocean.These findings suggest that the use of scrubbers with heavy fuel oil can be considered as equal to or more environmentally friendly than low-sulfur fuels across many of the impact categories the researchers studied.“This study demonstrates the scientific complexity of the waste stream of scrubbers. Having finally conducted a multiyear, comprehensive, and peer-reviewed study, commonly held fears and assumptions are now put to rest,” says Scott Bergeron, managing director at Oldendorff Carriers and co-author of the study.“This first-of-its-kind study on a well-to-wake basis provides very valuable input to ongoing discussion at the IMO,” adds Thomas Klenum, executive vice president of innovation and regulatory affairs at the Liberian Registry, emphasizing the need “for regulatory decisions to be made based on scientific studies providing factual data and conclusions.”Ultimately, this study shows the importance of incorporating lifecycle assessments into future environmental impact reduction policies, Stathatou says.“There is all this discussion about switching to alternative fuels in the future, but how green are these fuels? We must do our due diligence to compare them equally with existing solutions to see the costs and benefits,” she adds.This study was supported, in part, by Oldendorff Carriers. More

  • in

    Taking the “training wheels” off clean energy

    Renewable power sources have seen unprecedented levels of investment in recent years. But with political uncertainty clouding the future of subsidies for green energy, these technologies must begin to compete with fossil fuels on equal footing, said participants at the 2025 MIT Energy Conference.“What these technologies need less is training wheels, and more of a level playing field,” said Brian Deese, an MIT Institute Innovation Fellow, during a conference-opening keynote panel.The theme of the two-day conference, which is organized each year by MIT students, was “Breakthrough to deployment: Driving climate innovation to market.” Speakers largely expressed optimism about advancements in green technology, balanced by occasional notes of alarm about a rapidly changing regulatory and political environment.Deese defined what he called “the good, the bad, and the ugly” of the current energy landscape. The good: Clean energy investment in the United States hit an all-time high of $272 billion in 2024. The bad: Announcements of future investments have tailed off. And the ugly: Macro conditions are making it more difficult for utilities and private enterprise to build out the clean energy infrastructure needed to meet growing energy demands.“We need to build massive amounts of energy capacity in the United States,” Deese said. “And the three things that are the most allergic to building are high uncertainty, high interest rates, and high tariff rates. So that’s kind of ugly. But the question … is how, and in what ways, that underlying commercial momentum can drive through this period of uncertainty.”A shifting clean energy landscapeDuring a panel on artificial intelligence and growth in electricity demand, speakers said that the technology may serve as a catalyst for green energy breakthroughs, in addition to putting strain on existing infrastructure. “Google is committed to building digital infrastructure responsibly, and part of that means catalyzing the development of clean energy infrastructure that is not only meeting the AI need, but also benefiting the grid as a whole,” said Lucia Tian, head of clean energy and decarbonization technologies at Google.Across the two days, speakers emphasized that the cost-per-unit and scalability of clean energy technologies will ultimately determine their fate. But they also acknowledged the impact of public policy, as well as the need for government investment to tackle large-scale issues like grid modernization.Vanessa Chan, a former U.S. Department of Energy (DoE) official and current vice dean of innovation and entrepreneurship at the University of Pennsylvania School of Engineering and Applied Sciences, warned of the “knock-on” effects of the move to slash National Institutes of Health (NIH) funding for indirect research costs, for example. “In reality, what you’re doing is undercutting every single academic institution that does research across the nation,” she said.During a panel titled “No clean energy transition without transmission,” Maria Robinson, former director of the DoE’s Grid Deployment Office, said that ratepayers alone will likely not be able to fund the grid upgrades needed to meet growing power demand. “The amount of investment we’re going to need over the next couple of years is going to be significant,” she said. “That’s where the federal government is going to have to play a role.”David Cohen-Tanugi, a clean energy venture builder at MIT, noted that extreme weather events have changed the climate change conversation in recent years. “There was a narrative 10 years ago that said … if we start talking about resilience and adaptation to climate change, we’re kind of throwing in the towel or giving up,” he said. “I’ve noticed a very big shift in the investor narrative, the startup narrative, and more generally, the public consciousness. There’s a realization that the effects of climate change are already upon us.”“Everything on the table”The conference featured panels and keynote addresses on a range of emerging clean energy technologies, including hydrogen power, geothermal energy, and nuclear fusion, as well as a session on carbon capture.Alex Creely, a chief engineer at Commonwealth Fusion Systems, explained that fusion (the combining of small atoms into larger atoms, which is the same process that fuels stars) is safer and potentially more economical than traditional nuclear power. Fusion facilities, he said, can be powered down instantaneously, and companies like his are developing new, less-expensive magnet technology to contain the extreme heat produced by fusion reactors.By the early 2030s, Creely said, his company hopes to be operating 400-megawatt power plants that use only 50 kilograms of fuel per year. “If you can get fusion working, it turns energy into a manufacturing product, not a natural resource,” he said.Quinn Woodard Jr., senior director of power generation and surface facilities at geothermal energy supplier Fervo Energy, said his company is making the geothermal energy more economical through standardization, innovation, and economies of scale. Traditionally, he said, drilling is the largest cost in producing geothermal power. Fervo has “completely flipped the cost structure” with advances in drilling, Woodard said, and now the company is focused on bringing down its power plant costs.“We have to continuously be focused on cost, and achieving that is paramount for the success of the geothermal industry,” he said.One common theme across the conference: a number of approaches are making rapid advancements, but experts aren’t sure when — or, in some cases, if — each specific technology will reach a tipping point where it is capable of transforming energy markets.“I don’t want to get caught in a place where we often descend in this climate solution situation, where it’s either-or,” said Peter Ellis, global director of nature climate solutions at The Nature Conservancy. “We’re talking about the greatest challenge civilization has ever faced. We need everything on the table.”The road aheadSeveral speakers stressed the need for academia, industry, and government to collaborate in pursuit of climate and energy goals. Amy Luers, senior global director of sustainability for Microsoft, compared the challenge to the Apollo spaceflight program, and she said that academic institutions need to focus more on how to scale and spur investments in green energy.“The challenge is that academic institutions are not currently set up to be able to learn the how, in driving both bottom-up and top-down shifts over time,” Luers said. “If the world is going to succeed in our road to net zero, the mindset of academia needs to shift. And fortunately, it’s starting to.”During a panel called “From lab to grid: Scaling first-of-a-kind energy technologies,” Hannan Happi, CEO of renewable energy company Exowatt, stressed that electricity is ultimately a commodity. “Electrons are all the same,” he said. “The only thing [customers] care about with regards to electrons is that they are available when they need them, and that they’re very cheap.”Melissa Zhang, principal at Azimuth Capital Management, noted that energy infrastructure development cycles typically take at least five to 10 years — longer than a U.S. political cycle. However, she warned that green energy technologies are unlikely to receive significant support at the federal level in the near future. “If you’re in something that’s a little too dependent on subsidies … there is reason to be concerned over this administration,” she said.World Energy CEO Gene Gebolys, the moderator of the lab-to-grid panel, listed off a number of companies founded at MIT. “They all have one thing in common,” he said. “They all went from somebody’s idea, to a lab, to proof-of-concept, to scale. It’s not like any of this stuff ever ends. It’s an ongoing process.” More

  • in

    Surprise discovery could lead to improved catalysts for industrial reactions

    The process of catalysis — in which a material speeds up a chemical reaction — is crucial to the production of many of the chemicals used in our everyday lives. But even though these catalytic processes are widespread, researchers often lack a clear understanding of exactly how they work.A new analysis by researchers at MIT has shown that an important industrial synthesis process, the production of vinyl acetate, requires a catalyst to take two different forms, which cycle back and forth from one to the other as the chemical process unfolds.Previously, it had been thought that only one of the two forms was needed. The new findings are published today in the journal Science, in a paper by MIT graduate students Deiaa Harraz and Kunal Lodaya, Bryan Tang PhD ’23, and MIT professor of chemistry and chemical engineering Yogesh Surendranath.There are two broad classes of catalysts: homogeneous catalysts, which consist of dissolved molecules, and heterogeneous catalysts, which are solid materials whose surface provides the site for the chemical reaction. “For the longest time,” Surendranath says, “there’s been a general view that you either have catalysis happening on these surfaces, or you have them happening on these soluble molecules.” But the new research shows that in the case of vinyl acetate — an important material that goes into many polymer products such as the rubber in the soles of your shoes — there is an interplay between both classes of catalysis.“What we discovered,” Surendranath explains, “is that you actually have these solid metal materials converting into molecules, and then converting back into materials, in a cyclic dance.”He adds: “This work calls into question this paradigm where there’s either one flavor of catalysis or another. Really, there could be an interplay between both of them in certain cases, and that could be really advantageous for having a process that’s selective and efficient.”The synthesis of vinyl acetate has been a large-scale industrial reaction since the 1960s, and it has been well-researched and refined over the years to improve efficiency. This has happened largely through a trial-and-error approach, without a precise understanding of the underlying mechanisms, the researchers say.While chemists are often more familiar with homogeneous catalysis mechanisms, and chemical engineers are often more familiar with surface catalysis mechanisms, fewer researchers study both. This is perhaps part of the reason that the full complexity of this reaction was not previously captured. But Harraz says he and his colleagues are working at the interface between disciplines. “We’ve been able to appreciate both sides of this reaction and find that both types of catalysis are critical,” he says.The reaction that produces vinyl acetate requires something to activate the oxygen molecules that are one of the constituents of the reaction, and something else to activate the other ingredients, acetic acid and ethylene. The researchers found that the form of the catalyst that worked best for one part of the process was not the best for the other. It turns out that the molecular form of the catalyst does the key chemistry with the ethylene and the acetic acid, while it’s the surface that ends up doing the activation of the oxygen.They found that the underlying process involved in interconverting the two forms of the catalyst is actually corrosion, similar to the process of rusting. “It turns out that in rusting, you actually go through a soluble molecular species somewhere in the sequence,” Surendranath says.The team borrowed techniques traditionally used in corrosion research to study the process. They used electrochemical tools to study the reaction, even though the overall reaction does not require a supply of electricity. By making potential measurements, the researchers determined that the corrosion of the palladium catalyst material to soluble palladium ions is driven by an electrochemical reaction with the oxygen, converting it to water. Corrosion is “one of the oldest topics in electrochemistry,” says Lodaya, “but applying the science of corrosion to understand catalysis is much newer, and was essential to our findings.”By correlating measurements of catalyst corrosion with other measurements of the chemical reaction taking place, the researchers proposed that it was the corrosion rate that was limiting the overall reaction. “That’s the choke point that’s controlling the rate of the overall process,” Surendranath says.The interplay between the two types of catalysis works efficiently and selectively “because it actually uses the synergy of a material surface doing what it’s good at and a molecule doing what it’s good at,” Surendranath says. The finding suggests that, when designing new catalysts, rather than focusing on either solid materials or soluble molecules alone, researchers should think about how the interplay of both may open up new approaches.“Now, with an improved understanding of what makes this catalyst so effective, you can try to design specific materials or specific interfaces that promote the desired chemistry,” Harraz says. Since this process has been worked on for so long, these findings may not necessarily lead to improvements in this specific process of making vinyl acetate, but it does provide a better understanding of why the materials work as they do, and could lead to improvements in other catalytic processes.Understanding that “catalysts can transit between molecule and material and back, and the role that electrochemistry plays in those transformations, is a concept that we are really excited to expand on,” Lodaya says.Harraz adds: “With this new understanding that both types of catalysis could play a role, what other catalytic processes are out there that actually involve both? Maybe those have a lot of room for improvement that could benefit from this understanding.”This work is “illuminating, something that will be worth teaching at the undergraduate level,” says Christophe Coperet, a professor of inorganic chemistry at ETH Zurich, who was not associated with the research. “The work highlights new ways of thinking. … [It] is notable in the sense that it not only reconciles homogeneous and heterogeneous catalysis, but it describes these complex processes as half reactions, where electron transfers can cycle between distinct entities.”The research was supported, in part, by the National Science Foundation as a Phase I Center for Chemical Innovation; the Center for Interfacial Ionics; and the Gordon and Betty Moore Foundation. More