More stories

  • in

    Reducing carbon emissions from long-haul trucks

    People around the world rely on trucks to deliver the goods they need, and so-called long-haul trucks play a critical role in those supply chains. In the United States, long-haul trucks moved 71 percent of all freight in 2022. But those long-haul trucks are heavy polluters, especially of the carbon emissions that threaten the global climate. According to U.S. Environmental Protection Agency estimates, in 2022 more than 3 percent of all carbon dioxide (CO2) emissions came from long-haul trucks.The problem is that long-haul trucks run almost exclusively on diesel fuel, and burning diesel releases high levels of CO2 and other carbon emissions. Global demand for freight transport is projected to as much as double by 2050, so it’s critical to find another source of energy that will meet the needs of long-haul trucks while also reducing their carbon emissions. And conversion to the new fuel must not be costly. “Trucks are an indispensable part of the modern supply chain, and any increase in the cost of trucking will be felt universally,” notes William H. Green, the Hoyt Hottel Professor in Chemical Engineering and director of the MIT Energy Initiative.For the past year, Green and his research team have been seeking a low-cost, cleaner alternative to diesel. Finding a replacement is difficult because diesel meets the needs of the trucking industry so well. For one thing, diesel has a high energy density — that is, energy content per pound of fuel. There’s a legal limit on the total weight of a truck and its contents, so using an energy source with a lower weight allows the truck to carry more payload — an important consideration, given the low profit margin of the freight industry. In addition, diesel fuel is readily available at retail refueling stations across the country — a critical resource for drivers, who may travel 600 miles in a day and sleep in their truck rather than returning to their home depot. Finally, diesel fuel is a liquid, so it’s easy to distribute to refueling stations and then pump into trucks.Past studies have examined numerous alternative technology options for powering long-haul trucks, but no clear winner has emerged. Now, Green and his team have evaluated the available options based on consistent and realistic assumptions about the technologies involved and the typical operation of a long-haul truck, and assuming no subsidies to tip the cost balance. Their in-depth analysis of converting long-haul trucks to battery electric — summarized below — found a high cost and negligible emissions gains in the near term. Studies of methanol and other liquid fuels from biomass are ongoing, but already a major concern is whether the world can plant and harvest enough biomass for biofuels without destroying the ecosystem. An analysis of hydrogen — also summarized below — highlights specific challenges with using that clean-burning fuel, which is a gas at normal temperatures.Finally, the team identified an approach that could make hydrogen a promising, low-cost option for long-haul trucks. And, says Green, “it’s an option that most people are probably unaware of.” It involves a novel way of using materials that can pick up hydrogen, store it, and then release it when and where it’s needed to serve as a clean-burning fuel.Defining the challenge: A realistic drive cycle, plus diesel values to beatThe MIT researchers believe that the lack of consensus on the best way to clean up long-haul trucking may have a simple explanation: Different analyses are based on different assumptions about the driving behavior of long-haul trucks. Indeed, some of them don’t accurately represent actual long-haul operations. So the first task for the MIT team was to define a representative — and realistic — “drive cycle” for actual long-haul truck operations in the United States. Then the MIT researchers — and researchers elsewhere — can assess potential replacement fuels and engines based on a consistent set of assumptions in modeling and simulation analyses.To define the drive cycle for long-haul operations, the MIT team used a systematic approach to analyze many hours of real-world driving data covering 58,000 miles. They examined 10 features and identified three — daily range, vehicle speed, and road grade — that have the greatest impact on energy demand and thus on fuel consumption and carbon emissions. The representative drive cycle that emerged covers a distance of 600 miles, an average vehicle speed of 55 miles per hour, and a road grade ranging from negative 6 percent to positive 6 percent.The next step was to generate key values for the performance of the conventional diesel “powertrain,” that is, all the components involved in creating power in the engine and delivering it to the wheels on the ground. Based on their defined drive cycle, the researchers simulated the performance of a conventional diesel truck, generating “benchmarks” for fuel consumption, CO2 emissions, cost, and other performance parameters.Now they could perform parallel simulations — based on the same drive-cycle assumptions — of possible replacement fuels and powertrains to see how the cost, carbon emissions, and other performance parameters would compare to the diesel benchmarks.The battery electric optionWhen considering how to decarbonize long-haul trucks, a natural first thought is battery power. After all, battery electric cars and pickup trucks are proving highly successful. Why not switch to battery electric long-haul trucks? “Again, the literature is very divided, with some studies saying that this is the best idea ever, and other studies saying that this makes no sense,” says Sayandeep Biswas, a graduate student in chemical engineering.To assess the battery electric option, the MIT researchers used a physics-based vehicle model plus well-documented estimates for the efficiencies of key components such as the battery pack, generators, motor, and so on. Assuming the previously described drive cycle, they determined operating parameters, including how much power the battery-electric system needs. From there they could calculate the size and weight of the battery required to satisfy the power needs of the battery electric truck.The outcome was disheartening. Providing enough energy to travel 600 miles without recharging would require a 2 megawatt-hour battery. “That’s a lot,” notes Kariana Moreno Sader, a graduate student in chemical engineering. “It’s the same as what two U.S. households consume per month on average.” And the weight of such a battery would significantly reduce the amount of payload that could be carried. An empty diesel truck typically weighs 20,000 pounds. With a legal limit of 80,000 pounds, there’s room for 60,000 pounds of payload. The 2 MWh battery would weigh roughly 27,000 pounds — significantly reducing the allowable capacity for carrying payload.Accounting for that “payload penalty,” the researchers calculated that roughly four electric trucks would be required to replace every three of today’s diesel-powered trucks. Furthermore, each added truck would require an additional driver. The impact on operating expenses would be significant.Analyzing the emissions reductions that might result from shifting to battery electric long-haul trucks also brought disappointing results. One might assume that using electricity would eliminate CO2 emissions. But when the researchers included emissions associated with making that electricity, that wasn’t true.“Battery electric trucks are only as clean as the electricity used to charge them,” notes Moreno Sader. Most of the time, drivers of long-haul trucks will be charging from national grids rather than dedicated renewable energy plants. According to Energy Information Agency statistics, fossil fuels make up more than 60 percent of the current U.S. power grid, so electric trucks would still be responsible for significant levels of carbon emissions. Manufacturing batteries for the trucks would generate additional CO2 emissions.Building the charging infrastructure would require massive upfront capital investment, as would upgrading the existing grid to reliably meet additional energy demand from the long-haul sector. Accomplishing those changes would be costly and time-consuming, which raises further concern about electrification as a means of decarbonizing long-haul freight.In short, switching today’s long-haul diesel trucks to battery electric power would bring major increases in costs for the freight industry and negligible carbon emissions benefits in the near term. Analyses assuming various types of batteries as well as other drive cycles produced comparable results.However, the researchers are optimistic about where the grid is going in the future. “In the long term, say by around 2050, emissions from the grid are projected to be less than half what they are now,” says Moreno Sader. “When we do our calculations based on that prediction, we find that emissions from battery electric trucks would be around 40 percent lower than our calculated emissions based on today’s grid.”For Moreno Sader, the goal of the MIT research is to help “guide the sector on what would be the best option.” With that goal in mind, she and her colleagues are now examining the battery electric option under different scenarios — for example, assuming battery swapping (a depleted battery isn’t recharged but replaced by a fully charged one), short-haul trucking, and other applications that might produce a more cost-competitive outcome, even for the near term.A promising option: hydrogenAs the world looks to get off reliance on fossil fuels for all uses, much attention is focusing on hydrogen. Could hydrogen be a good alternative for today’s diesel-burning long-haul trucks?To find out, the MIT team performed a detailed analysis of the hydrogen option. “We thought that hydrogen would solve a lot of the problems we had with battery electric,” says Biswas. It doesn’t have associated CO2 emissions. Its energy density is far higher, so it doesn’t create the weight problem posed by heavy batteries. In addition, existing compression technology can get enough hydrogen fuel into a regular-sized tank to cover the needed distance and range. “You can actually give drivers the range they want,” he says. “There’s no issue with ‘range anxiety.’”But while using hydrogen for long-haul trucking would reduce carbon emissions, it would cost far more than diesel. Based on their detailed analysis of hydrogen, the researchers concluded that the main source of incurred cost is in transporting it. Hydrogen can be made in a chemical facility, but then it needs to be distributed to refueling stations across the country. Conventionally, there have been two main ways of transporting hydrogen: as a compressed gas and as a cryogenic liquid. As Biswas notes, the former is “super high pressure,” and the latter is “super cold.” The researchers’ calculations show that as much as 80 percent of the cost of delivered hydrogen is due to transportation and refueling, plus there’s the need to build dedicated refueling stations that can meet new environmental and safety standards for handling hydrogen as a compressed gas or a cryogenic liquid.Having dismissed the conventional options for shipping hydrogen, they turned to a less-common approach: transporting hydrogen using “liquid organic hydrogen carriers” (LOHCs), special organic (carbon-containing) chemical compounds that can under certain conditions absorb hydrogen atoms and under other conditions release them.LOHCs are in use today to deliver small amounts of hydrogen for commercial use. Here’s how the process works: In a chemical plant, the carrier compound is brought into contact with hydrogen in the presence of a catalyst under elevated temperature and pressure, and the compound picks up the hydrogen. The “hydrogen-loaded” compound — still a liquid — is then transported under atmospheric conditions. When the hydrogen is needed, the compound is again exposed to a temperature increase and a different catalyst, and the hydrogen is released.LOHCs thus appear to be ideal hydrogen carriers for long-haul trucking. They’re liquid, so they can easily be delivered to existing refueling stations, where the hydrogen would be released; and they contain at least as much energy per gallon as hydrogen in a cryogenic liquid or compressed gas form. However, a detailed analysis of using hydrogen carriers showed that the approach would decrease emissions but at a considerable cost.The problem begins with the “dehydrogenation” step at the retail station. Releasing the hydrogen from the chemical carrier requires heat, which is generated by burning some of the hydrogen being carried by the LOHC. The researchers calculate that getting the needed heat takes 36 percent of that hydrogen. (In theory, the process would take only 27 percent — but in reality, that efficiency won’t be achieved.) So out of every 100 units of starting hydrogen, 36 units are now gone.But that’s not all. The hydrogen that comes out is at near-ambient pressure. So the facility dispensing the hydrogen will need to compress it — a process that the team calculates will use up 20-30 percent of the starting hydrogen.Because of the needed heat and compression, there’s now less than half of the starting hydrogen left to be delivered to the truck — and as a result, the hydrogen fuel becomes twice as expensive. The bottom line is that the technology works, but “when it comes to really beating diesel, the economics don’t work. It’s quite a bit more expensive,” says Biswas. In addition, the refueling stations would require expensive compressors and auxiliary units such as cooling systems. The capital investment and the operating and maintenance costs together imply that the market penetration of hydrogen refueling stations will be slow.A better strategy: onboard release of hydrogen from LOHCsGiven the potential benefits of using of LOHCs, the researchers focused on how to deal with both the heat needed to release the hydrogen and the energy needed to compress it. “That’s when we had the idea,” says Biswas. “Instead of doing the dehydrogenation [hydrogen release] at the refueling station and then loading the truck with hydrogen, why don’t we just take the LOHC and load that onto the truck?” Like diesel, LOHC is a liquid, so it’s easily transported and pumped into trucks at existing refueling stations. “We’ll then make hydrogen as it’s needed based on the power demands of the truck — and we can capture waste heat from the engine exhaust and use it to power the dehydrogenation process,” says Biswas.In their proposed plan, hydrogen-loaded LOHC is created at a chemical “hydrogenation” plant and then delivered to a retail refueling station, where it’s pumped into a long-haul truck. Onboard the truck, the loaded LOHC pours into the fuel-storage tank. From there it moves to the “dehydrogenation unit” — the reactor where heat and a catalyst together promote chemical reactions that separate the hydrogen from the LOHC. The hydrogen is sent to the powertrain, where it burns, producing energy that propels the truck forward.Hot exhaust from the powertrain goes to a “heat-integration unit,” where its waste heat energy is captured and returned to the reactor to help encourage the reaction that releases hydrogen from the loaded LOHC. The unloaded LOHC is pumped back into the fuel-storage tank, where it’s kept in a separate compartment to keep it from mixing with the loaded LOHC. From there, it’s pumped back into the retail refueling station and then transported back to the hydrogenation plant to be loaded with more hydrogen.Switching to onboard dehydrogenation brings down costs by eliminating the need for extra hydrogen compression and by using waste heat in the engine exhaust to drive the hydrogen-release process. So how does their proposed strategy look compared to diesel? Based on a detailed analysis, the researchers determined that using their strategy would be 18 percent more expensive than using diesel, and emissions would drop by 71 percent.But those results need some clarification. The 18 percent cost premium of using LOHC with onboard hydrogen release is based on the price of diesel fuel in 2020. In spring of 2023 the price was about 30 percent higher. Assuming the 2023 diesel price, the LOHC option is actually cheaper than using diesel.Both the cost and emissions outcomes are affected by another assumption: the use of “blue hydrogen,” which is hydrogen produced from natural gas with carbon capture and storage. Another option is to assume the use of “green hydrogen,” which is hydrogen produced using electricity generated from renewable sources, such as wind and solar. Green hydrogen is much more expensive than blue hydrogen, so then the costs would increase dramatically.If in the future the price of green hydrogen drops, the researchers’ proposed plan would shift to green hydrogen — and then the decline in emissions would no longer be 71 percent but rather close to 100 percent. There would be almost no emissions associated with the researchers’ proposed plan for using LHOCs with onboard hydrogen release.Comparing the options on cost and emissionsTo compare the options, Moreno Sader prepared bar charts showing the per-mile cost of shipping by truck in the United States and the CO2 emissions that result using each of the fuels and approaches discussed above: diesel fuel, battery electric, hydrogen as a cryogenic liquid or compressed gas, and LOHC with onboard hydrogen release. The LOHC strategy with onboard dehydrogenation looked promising on both the cost and the emissions charts. In addition to such quantitative measures, the researchers believe that their strategy addresses two other, less-obvious challenges in finding a less-polluting fuel for long-haul trucks.First, the introduction of the new fuel and trucks to use it must not disrupt the current freight-delivery setup. “You have to keep the old trucks running while you’re introducing the new ones,” notes Green. “You cannot have even a day when the trucks aren’t running because it’d be like the end of the economy. Your supermarket shelves would all be empty; your factories wouldn’t be able to run.” The researchers’ plan would be completely compatible with the existing diesel supply infrastructure and would require relatively minor retrofits to today’s long-haul trucks, so the current supply chains would continue to operate while the new fuel and retrofitted trucks are introduced.Second, the strategy has the potential to be adopted globally. Long-haul trucking is important in other parts of the world, and Moreno Sader thinks that “making this approach a reality is going to have a lot of impact, not only in the United States but also in other countries,” including her own country of origin, Colombia. “This is something I think about all the time.” The approach is compatible with the current diesel infrastructure, so the only requirement for adoption is to build the chemical hydrogenation plant. “And I think the capital expenditure related to that will be less than the cost of building a new fuel-supply infrastructure throughout the country,” says Moreno Sader.Testing in the lab“We’ve done a lot of simulations and calculations to show that this is a great idea,” notes Biswas. “But there’s only so far that math can go to convince people.” The next step is to demonstrate their concept in the lab.To that end, the researchers are now assembling all the core components of the onboard hydrogen-release reactor as well as the heat-integration unit that’s key to transferring heat from the engine exhaust to the hydrogen-release reactor. They estimate that this spring they’ll be ready to demonstrate their ability to release hydrogen and confirm the rate at which it’s formed. And — guided by their modeling work — they’ll be able to fine-tune critical components for maximum efficiency and best performance.The next step will be to add an appropriate engine, specially equipped with sensors to provide the critical readings they need to optimize the performance of all their core components together. By the end of 2024, the researchers hope to achieve their goal: the first experimental demonstration of a power-dense, robust onboard hydrogen-release system with highly efficient heat integration.In the meantime, they believe that results from their work to date should help spread the word, bringing their novel approach to the attention of other researchers and experts in the trucking industry who are now searching for ways to decarbonize long-haul trucking.Financial support for development of the representative drive cycle and the diesel benchmarks as well as the analysis of the battery electric option was provided by the MIT Mobility Systems Center of the MIT Energy Initiative. Analysis of LOHC-powered trucks with onboard dehydrogenation was supported by the MIT Climate and Sustainability Consortium. Sayandeep Biswas is supported by a fellowship from the Martin Family Society of Fellows for Sustainability, and Kariana Moreno Sader received fellowship funding from MathWorks through the MIT School of Science. More

  • in

    Getting to systemic sustainability

    Add up the commitments from the Paris Agreement, the Glasgow Climate Pact, and various commitments made by cities, countries, and businesses, and the world would be able to hold the global average temperature increase to 1.9 degrees Celsius above preindustrial levels, says Ani Dasgupta, the president and chief executive officer of the World Resources Institute (WRI).While that is well above the 1.5 C threshold that many scientists agree would limit the most severe impacts of climate change, it is below the 2.0 degree threshold that could lead to even more catastrophic impacts, such as the collapse of ice sheets and a 30-foot rise in sea levels.However, Dasgupta notes, actions have so far not matched up with commitments.“There’s a huge gap between commitment and outcomes,” Dasgupta said during his talk, “Energizing the global transition,” at the 2024 Earth Day Colloquium co-hosted by the MIT Energy Initiative and MIT Department of Earth, Atmospheric and Planetary Sciences, and sponsored by the Climate Nucleus.Dasgupta noted that oil companies did $6 trillion worth of business across the world last year — $1 trillion more than they were planning. About 7 percent of the world’s remaining tropical forests were destroyed during that same time, he added, and global inequality grew even worse than before.“None of these things were illegal, because the system we have today produces these outcomes,” he said. “My point is that it’s not one thing that needs to change. The whole system needs to change.”People, climate, and natureDasgupta, who previously held positions in nonprofits in India and at the World Bank, is a recognized leader in sustainable cities, poverty alleviation, and building cultures of inclusion. Under his leadership, WRI, a global research nonprofit that studies sustainable practices with the goal of fundamentally transforming the world’s food, land and water, energy, and cities, adopted a new five-year strategy called “Getting the Transition Right for People, Nature, and Climate 2023-2027.” It focuses on creating new economic opportunities to meet people’s essential needs, restore nature, and rapidly lower emissions, while building resilient communities. In fact, during his talk, Dasgupta said that his organization has moved away from talking about initiatives in terms of their impact on greenhouse gas emissions — instead taking a more holistic view of sustainability.“There is no net zero without nature,” Dasgupta said. He showed a slide with a graphic illustrating potential progress toward net-zero goals. “If nature gets diminished, that chart becomes even steeper. It’s very steep right now, but natural systems absorb carbon dioxide. So, if the natural systems keep getting destroyed, that curve becomes harder and harder.”A focus on people is necessary, Dasgupta said, in part because of the unequal climate impacts that the rich and the poor are likely to face in the coming years. “If you made it to this room, you will not be impacted by climate change,” he said. “You have resources to figure out what to do about it. The people who get impacted are people who don’t have resources. It is immensely unfair. Our belief is, if we don’t do climate policy that helps people directly, we won’t be able to make progress.”Where to start?Although Dasgupta stressed that systemic change is needed to bring carbon emissions in line with long-term climate goals, he made the case that it is unrealistic to implement this change around the globe all at once. “This transition will not happen in 196 countries at the same time,” he said. “The question is, how do we get to the tipping point so that it happens at scale? We’ve worked the past few years to ask the question, what is it you need to do to create this tipping point for change?”Analysts at WRI looked for countries that are large producers of carbon, those with substantial tropical forest cover, and those with large quantities of people living in poverty. “We basically tried to draw a map of, where are the biggest challenges for climate change?” Dasgupta said.That map features a relative handful of countries, including the United States, Mexico, China, Brazil, South Africa, India, and Indonesia. Dasgupta said, “Our argument is that, if we could figure out and focus all our efforts to help these countries transition, that will create a ripple effect — of understanding technology, understanding the market, understanding capacity, and understanding the politics of change that will unleash how the rest of these regions will bring change.”Spotlight on the subcontinentDasgupta used one of these countries, his native India, to illustrate the nuanced challenges and opportunities presented by various markets around the globe. In India, he noted, there are around 3 million projected jobs tied to the country’s transition to renewable energy. However, that number is dwarfed by the 10 to 12 million jobs per year the Indian economy needs to create simply to keep up with population growth.“Every developing country faces this question — how to keep growing in a way that reduces their carbon footprint,” Dasgupta said.Five states in India worked with WRI to pool their buying power and procure 5,000 electric buses, saving 60 percent of the cost as a result. Over the next two decades, Dasgupta said, the fleet of electric buses in those five states is expected to increase to 800,000.In the Indian state of Rajasthan, Dasgupta said, 59 percent of power already comes from solar energy. At times, Rajasthan produces more solar than it can use, and officials are exploring ways to either store the excess energy or sell it to other states. But in another state, Jharkhand, where much of the country’s coal is sourced, only 5 percent of power comes from solar. Officials in Jharkhand have reached out to WRI to discuss how to transition their energy economy, as they recognize that coal will fall out of favor in the future, Dasgupta said.“The complexities of the transition are enormous in a country this big,” Dasgupta said. “This is true in most large countries.”The road aheadDespite the challenges ahead, the colloquium was also marked by notes of optimism. In his opening remarks, Robert Stoner, the founding director of the MIT Tata Center for Technology and Design, pointed out how much progress has been made on environmental cleanup since the first Earth Day in 1970. “The world was a very different, much dirtier, place in many ways,” Stoner said. “Our air was a mess, our waterways were a mess, and it was beginning to be noticeable. Since then, Earth Day has become an important part of the fabric of American and global society.”While Dasgupta said that the world presently lacks the “orchestration” among various stakeholders needed to bring climate change under control, he expressed hope that collaboration in key countries could accelerate progress.“I strongly believe that what we need is a very different way of collaborating radically — across organizations like yours, organizations like ours, businesses, and governments,” Dasgupta said. “Otherwise, this transition will not happen at the scale and speed we need.” More

  • in

    New MIT-LUMA Lab created to address climate challenges in the Mediterranean region

    The MIT School of Architecture and Planning (SA+P) and the LUMA Foundation announced today the establishment of the MIT-LUMA Lab to advance paradigm-shifting innovations at the nexus of art, science, technology, conservation, and design. The aim is to empower innovative thinkers to realize their ambitions, support local communities as they seek to address climate-related issues, and scale solutions to pressing challenges facing the Mediterranean region.  The main programmatic pillars of the lab will be collaborative scholarship and research around design, new materials, and sustainability; scholar exchange and education collaborations between the two organizations; innovation and entrepreneurship activities to transfer new ideas into practical applications; and co-production of exhibitions and events. The hope is that this engagement will create a novel model for other institutions to follow to craft innovative solutions to the leading challenge of our time.The MIT-LUMA Lab draws on an establishing gift from the LUMA Foundation, a nonprofit organization based in Zurich formed by Maja Hoffmann in 2004 to support contemporary artistic production. The foundation supports a range of multidisciplinary projects that increase understanding of the environment, human rights, education, and culture.These themes are explored through programs organized by LUMA Arles, a project begun in 2013 and housed on a 27-acre interdisciplinary campus known as the Parc des Ateliers in Arles, France, an experimental site of exhibitions, artists’ residencies, research laboratories, and educational programs.“The Luma Foundation is committed to finding ways to address the current climate emergencies we are facing, focusing on exploring the potentials that can be found in diversity and engagement in every possible form,” says Maja Hoffmann, founder and president of the LUMA Foundation. “Cultural diversity, pluralism, and biodiversity feature at the top of our mission and our work is informed by these concepts.” A focus on the Mediterranean region“The culturally rich area of the Mediterranean, which has produced some of the most remarkable civilizational paradigms across geographies and historical periods, plays an important role in our thinking. Focusing the efforts of the MIT-LUMA Lab on the Mediterranean means extending the possibilities for positive change throughout other global ecosystems,” says Hoffmann. “Our projects of LUMA Arles and its research laboratory on materials and natural resources, the Atelier Luma, our position in one of Europe’s most important natural reserves, in conjunction with the expertise and forward-thinking approach of MIT, define the perfect framework that will allow us to explore new frontiers and devise novel ways to tackle our most significant civilizational risks,” she adds. “Supporting the production of new forms of knowledge and practices, and with locations in Cambridge and in Arles, our collaboration and partnership with MIT will generate solutions and models for the future, for the generations to come, in order to provide them the same and even better opportunities that what we have experienced.”“We know we do not have all the answers at MIT, but we do know how to ask the right questions, how to design effective experiments, and how to build meaningful collaborations,” says Hashim Sarkis, dean of SA+P, which will host the lab. “I am grateful to the LUMA Foundation for offering support for faculty research deployment designed to engage local communities and create jobs, for course development to empower our faculty to teach classes centered on these issues, and for students who seek to dedicate their lives and careers to sustainability. We also look forward to hosting fellows and researchers from the foundation to strengthen our collaboration,” he adds.The Mediterranean region, the MIT-LUMA Lab’s focus, is one of the world’s most vital and fragile global commons. The future of climate relies on the sustainability of the region’s forests, oceans, and deserts that have for millennia created the environmental conditions and system-regulating functions necessary for life on Earth. Those who live in these areas are often the most severely affected by even relatively modest changes in the climate. Climate research and action: A priority at MITTo reverse negative trends and provide a new approach to addressing the climate crisis in these vast areas, SA+P is establishing international collaborations that bring know-how to the field, and in turn to learn from the communities and groups most challenged by climate impacts.The MIT-LUMA Lab is the first in what is envisioned as a series of regionally focused labs at SA+P under the conceptual aegis of a collaborative platform called Our Global Commons. This project will support progress on today’s climate challenges by focusing on community empowerment, long-term local collaborations around research and education, and job creation. Faculty-led fieldwork, engagements with local stakeholders, and student involvement will be the key elements.The creation of Our Global Commons comes as MIT works to dramatically expand its efforts to address climate change. In February 2024, President Sally Kornbluth announced the Climate Project at MIT, a major new initiative to mobilize the Institute’s resources and capabilities to research, develop, deploy, and scale-up new climate solutions. The Institute will hire its first-ever vice president for climate to oversee the new effort. “With the Climate Project at MIT, we aim to help make a decisive difference, at scale, on crucial global climate challenges — and we can only do that by engaging with outstanding colleagues around the globe,” says Kornbluth. “By connecting us to creative thinkers steeped in the cultural and environmental history and emerging challenges of the Mediterranean region, the MIT-LUMA Lab promises to spark important new ideas and collaborations.”“We are excited that the LUMA team will be joining in MIT’s engagement with climate issues, especially given their expertise in advancing vital work at the intersection of art and science, and their long-standing commitment to expanding the frontiers of sustainability and biodiversity,” says Sarkis. “With climate change upending many aspects of our society, the time is now for us to reaffirm and strengthen our SA+P tradition of on-the-ground work with and for communities around the world. Shared efforts among local communities, governments and corporations, and academia are necessary to bring about real change.” More

  • in

    Making steel with electricity

    Steel is one of the most useful materials on the planet. A backbone of modern life, it’s used in skyscrapers, cars, airplanes, bridges, and more. Unfortunately, steelmaking is an extremely dirty process.The most common way it’s produced involves mining iron ore, reducing it in a blast furnace through the addition of coal, and then using an oxygen furnace to burn off excess carbon and other impurities. That’s why steel production accounts for around 7 to 9 percent of humanity’s greenhouse gas emissions worldwide, making it one of the dirtiest industries on the planet.Now Boston Metal is seeking to clean up the steelmaking industry using an electrochemical process called molten oxide electrolysis (MOE), which eliminates many steps in steelmaking and releases oxygen as its sole byproduct.The company, which was founded by MIT Professor Emeritus Donald Sadoway, Professor Antoine Allanore, and James Yurko PhD ’01, is already using MOE to recover high-value metals from mining waste at its Brazilian subsidiary, Boston Metal do Brasil. That work is helping Boston Metal’s team deploy its technology at commercial scale and establish key partnerships with mining operators. It has also built a prototype MOE reactor to produce green steel at its headquarters in Woburn, Massachusetts.And despite its name, Boston Metal has global ambitions. The company has raised more than $370 million to date from organizations across Europe, Asia, the Americas, and the Middle East, and its leaders expect to scale up rapidly to transform steel production in every corner of the world.“There’s a worldwide recognition that we need to act rapidly, and that’s going to happen through technology solutions like this that can help us move away from incumbent technologies,” Boston Metal Chief Scientist and former MIT postdoc Guillaume Lambotte says. “More and more, climate change is a part of our lives, so the pressure is on everyone to act fast.”To the moon and backThe origins of Boston Metal’s technology start on the moon. In the mid 2000s, Sadoway, who is the John F. Elliott Professor Emeritus of Materials Chemistry in MIT’s Department of Materials Science, received a grant from NASA to explore ways to produce oxygen for future lunar bases. Sadoway and other MIT researchers explored the idea of sending an electric current through the iron oxide rock on the moon’s surface, using rock from an old asteroid in Arizona for their experiments. The reaction produced oxygen, with metal as a byproduct.The research stuck with Sadoway, who noticed that down here on Earth, that metal byproduct would be of interest. To help make the electrolysis reaction he studied more viable, he joined forces with Allanore, who is a professor of metallurgy at MIT and the Lechtman Chair in the Department of Materials Science and Engineering. The professors were able to identify a less expensive anode and partnered with Yurko, a former student, to found Boston Metal.“All of the fundamental studies and the initial technologies came out of MIT,” Lambotte says. “We spun out of research that was patented at MIT and licensed from MIT’s Technology Licensing Office.”Lambotte joined the company shortly after Boston Metal’s team published a 2013 paper in Nature describing the MOE platform.“That’s when it went from the lab, with a coffee cup-sized experiment to prove the fundamentals and produce a few grams, to a company that can produce hundreds of kilograms, and soon, tons of metal,” Lambotte says.

    Boston Metal’s process takes place in modular MOE cells the size of a school bus. Here is a schematic of the process.

    Boston Metal’s molten oxide electrolysis process takes place in modular MOE cells the size of a school bus. Iron ore rock is fed into the cell, which contains the cathode (the negative terminal of the MOE cell) and an anode immersed in a liquid electrolyte. The anode is inert, meaning it doesn’t dissolve in the electrolyte or take part in the reaction other than serving as the positive terminal. When electricity runs between the anode and cathode and the cell reaches around 1,600 degrees Celsius, the iron oxide bonds in the ore are split, producing pure liquid metal at the bottom that can be tapped. The byproduct of the reaction is oxygen, and the process doesn’t require water, hazardous chemicals, or precious-metal catalysts.The production of each cell depends on the size of its current. Lambotte says with about 600,000 amps, each cell could produce up to 10 tons of metal every day. Steelmakers would license Boston Metal’s technology and deploy as many cells as needed to reach their production targets.Boston Metal is already using MOE to help mining companies recover high-value metals from their mining waste, which usually needs to undergo costly treatment or storage. Lambotte says it could also be used to produce many other kinds of metals down the line, and Boston Metal was recently selected to negotiate grant funding to produce chromium metal — critical for a number of clean energy applications — in West Virginia.“If you look around the world, a lot of the feedstocks for metal are oxides, and if it’s an oxide, then there’s a chance we can work with that feedstock,” Lambotte says. “There’s a lot of excitement because everyone needs a solution capable of decarbonizing the metal industry, so a lot of people are interested to understand where MOE fits in their own processes.”Gigatons of potentialBoston Metal’s steel decarbonization technology is currently slated to reach commercial-scale in 2026, though its Brazil plant is already introducing the industry to MOE.“I think it’s a window for the metal industry to get acquainted with MOE and see how it works,” Lambotte says. “You need people in the industry to grasp this technology. It’s where you form connections and how new technology spreads.”The Brazilian plant runs on 100 percent renewable energy.“We can be the beneficiary of this tremendous worldwide push to decarbonize the energy sector,” Lambotte says. “I think our approach goes hand in hand with that. Fully green steel requires green electricity, and I think what you’ll see is deployment of this technology where [clean electricity] is already readily available.”Boston Metal’s team is excited about MOE’s application across the metals industry but is focused first and foremost on eliminating the gigatons of emissions from steel production.“Steel produces around 10 percent of global emissions, so that is our north star,” Lambotte says. “Everyone is pledging carbon reductions, emissions reductions, and making net zero goals, so the steel industry is really looking hard for viable technology solutions. People are ready for new approaches.” More

  • in

    H2 underground

    In 1987 in a village in Mali, workers were digging a water well when they felt a rush of air. One of the workers was smoking a cigarette, and the air caught fire, burning a clear blue flame. The well was capped at the time, but in 2012, it was tapped to provide energy for the village, powering a generator for nine years.The fuel source: geologic hydrogen.For decades, hydrogen has been discussed as a potentially revolutionary fuel. But efforts to produce “green” hydrogen (splitting water into hydrogen and oxygen using renewable electricity), “grey” hydrogen (making hydrogen from methane and releasing the biproduct carbon dioxide (CO2) into the atmosphere), “brown” hydrogen (produced through the gasification of coal), and “blue” hydrogen (making hydrogen from methane but capturing the CO2) have thus far proven either expensive and/or energy-intensive. Enter geologic hydrogen. Also known as “orange,” “gold,” “white,” “natural,” and even “clear” hydrogen, geologic hydrogen is generated by natural geochemical processes in the Earth’s crust. While there is still much to learn, a growing number of researchers and industry leaders are hopeful that it may turn out to be an abundant and affordable resource lying right beneath our feet.“There’s a tremendous amount of uncertainty about this,” noted Robert Stoner, the founding director of the MIT Tata Center for Technology and Design, in his opening remarks at the MIT Energy Initiative (MITEI) Spring Symposium. “But the prospect of readily producible clean hydrogen showing up all over the world is a potential near-term game changer.”A new hope for hydrogenThis April, MITEI gathered researchers, industry leaders, and academic experts from around MIT and the world to discuss the challenges and opportunities posed by geologic hydrogen in a daylong symposium entitled “Geologic hydrogen: Are orange and gold the new green?” The field is so new that, until a year ago, the U.S. Department of Energy (DOE)’s website incorrectly claimed that hydrogen only occurs naturally on Earth in compound forms, chemically bonded to other elements.“There’s a common misconception that hydrogen doesn’t occur naturally on Earth,” said Geoffrey Ellis, a research geologist with the U.S. Geological Survey. He noted that natural hydrogen production tends to occur in different locations from where oil and natural gas are likely to be discovered, which explains why geologic hydrogen discoveries have been relatively rare, at least until recently.“Petroleum exploration is not targeting hydrogen,” Ellis said. “Companies are simply not really looking for it, they’re not interested in it, and oftentimes they don’t measure for it. The energy industry spends billions of dollars every year on exploration with very sophisticated technology, and still they drill dry holes all the time. So I think it’s naive to think that we would suddenly be finding hydrogen all the time when we’re not looking for it.”In fact, the number of researchers and startup energy companies with targeted efforts to characterize geologic hydrogen has increased over the past several years — and these searches have uncovered new prospects, said Mary Haas, a venture partner at Breakthrough Energy Ventures. “We’ve seen a dramatic uptick in exploratory activity, now that there is a focused effort by a small community worldwide. At Breakthrough Energy, we are excited about the potential of this space, as well as our role in accelerating its progress,” she said. Haas noted that if geologic hydrogen could be produced at $1 per kilogram, this would be consistent with the DOE’s targeted “liftoff” point for the energy source. “If that happens,” she said, “it would be transformative.”Haas noted that only a small portion of identified hydrogen sites are currently under commercial exploration, and she cautioned that it’s not yet clear how large a role the resource might play in the transition to green energy. But, she said, “It’s worthwhile and important to find out.”Inventing a new energy subsectorGeologic hydrogen is produced when water reacts with iron-rich minerals in rock. Researchers and industry are exploring how to stimulate this natural production by pumping water into promising deposits.In any new exploration area, teams must ask a series of questions to qualify the site, said Avon McIntyre, the executive director of HyTerra Ltd., an Australian company focused on the exploration and production of geologic hydrogen. These questions include: Is the geology favorable? Does local legislation allow for exploration and production? Does the site offer a clear path to value? And what are the carbon implications of producing hydrogen at the site?“We have to be humble,” McIntyre said. “We can’t be too prescriptive and think that we’ll leap straight into success. We have a unique opportunity to stop and think about what this industry will look like, how it will work, and how we can bring together various disciplines.” This was a theme that arose multiple times over the course of the symposium: the idea that many different stakeholders — including those from academia, industry, and government — will need to work together to explore the viability of geologic hydrogen and bring it to market at scale.In addition to the potential for hydrogen production to give rise to greenhouse gas emissions (in cases, for instance, where hydrogen deposits are contaminated with natural gas), researchers and industry must also consider landscape deformation and even potential seismic implications, said Bradford Hager, the Cecil and Ida Green Professor of Earth Sciences in the MIT Department of Earth, Atmospheric and Planetary Sciences.The surface impacts of hydrogen exploration and production will likely be similar to those caused by the hydro-fracturing process (“fracking”) used in oil and natural gas extraction, Hager said.“There will be unavoidable surface deformation. In most places, you don’t want this if there’s infrastructure around,” Hager said. “Seismicity in the stimulated zone itself should not be a problem, because the areas are tested first. But we need to avoid stressing surrounding brittle rocks.”McIntyre noted that the commercial case for hydrogen remains a challenge to quantify, without even a “spot” price that companies can use to make economic calculations. Early on, he said, capturing helium at hydrogen exploration sites could be a path to early cash flow, but that may ultimately serve as a “distraction” as teams attempt to scale up to the primary goal of hydrogen production. He also noted that it is not even yet clear whether hard rock, soft rock, or underwater environments hold the most potential for geologic hydrogen, but all show promise.“If you stack all of these things together,” McIntyre said, “what we end up doing may look very different from what we think we’re going to do right now.”The path aheadWhile the long-term prospects for geologic hydrogen are shrouded in uncertainty, most speakers at the symposium struck a tone of optimism. Ellis noted that the DOE has dedicated $20 million in funding to a stimulated hydrogen program. Paris Smalls, the co-founder and CEO of Eden GeoPower Inc., said “we think there is a path” to producing geologic hydrogen below the $1 per kilogram threshold. And Iwnetim Abate, an assistant professor in the MIT Department of Materials Science and Engineering, said that geologic hydrogen opens up the idea of Earth as a “factory to produce clean fuels,” utilizing the subsurface heat and pressure instead of relying on burning fossil fuels or natural gas for the same purpose.“Earth has had 4.6 billion years to do these experiments,” said Oliver Jagoutz, a professor of geology in the MIT Department of Earth, Atmospheric and Planetary Sciences. “So there is probably a very good solution out there.”Alexis Templeton, a professor of geological sciences at the University of Colorado at Boulder, made the case for moving quickly. “Let’s go to pilot, faster than you might think,” she said. “Why? Because we do have some systems that we understand. We could test the engineering approaches and make sure that we are doing the right tool development, the right technology development, the right experiments in the lab. To do that, we desperately need data from the field.”“This is growing so fast,” Templeton added. “The momentum and the development of geologic hydrogen is really quite substantial. We need to start getting data at scale. And then, I think, more people will jump off the sidelines very quickly.”  More

  • in

    Two MIT PhD students awarded J-WAFS fellowships for their research on water

    Since 2014, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has advanced interdisciplinary research aimed at solving the world’s most pressing water and food security challenges to meet human needs. In 2017, J-WAFS established the Rasikbhai L. Meswani Water Solutions Fellowship and the J-WAFS Graduate Student Fellowship. These fellowships provide support to outstanding MIT graduate students who are pursuing research that has the potential to improve water and food systems around the world. Recently, J-WAFS awarded the 2024-25 fellowships to Jonathan Bessette and Akash Ball, two MIT PhD students dedicated to addressing water scarcity by enhancing desalination and purification processes. This work is of important relevance since the world’s freshwater supply has been steadily depleting due to the effects of climate change. In fact, one-third of the global population lacks access to safe drinking water. Bessette and Ball are focused on designing innovative solutions to enhance the resilience and sustainability of global water systems. To support their endeavors, J-WAFS will provide each recipient with funding for one academic semester for continued research and related activities.“This year, we received many strong fellowship applications,” says J-WAFS executive director Renee J. Robins. “Bessette and Ball both stood out, even in a very competitive pool of candidates. The award of the J-WAFS fellowships to these two students underscores our confidence in their potential to bring transformative solutions to global water challenges.”2024-25 Rasikbhai L. Meswani Fellowship for Water SolutionsThe Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water and water supply at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family. Jonathan Bessette is a doctoral student in the Global Engineering and Research (GEAR) Center within the Department of Mechanical Engineering at MIT, advised by Professor Amos Winter. His research is focused on water treatment systems for the developing world, mainly desalination, or the process in which salts are removed from water. Currently, Bessette is working on designing and constructing a low-cost, deployable, community-scale desalination system for humanitarian crises.In arid and semi-arid regions, groundwater often serves as the sole water source, despite its common salinity issues. Many remote and developing areas lack reliable centralized power and water systems, making brackish groundwater desalination a vital, sustainable solution for global water scarcity. “An overlooked need for desalination is inland groundwater aquifers, rather than in coastal areas,” says Bessette. “This is because much of the population lives far enough from a coast that seawater desalination could never reach them. My work involves designing low-cost, sustainable, renewable-powered desalination technologies for highly constrained situations, such as drinking water for remote communities,” he adds.To achieve this goal, Bessette developed a batteryless, renewable electrodialysis desalination system. The technology is energy-efficient, conserves water, and is particularly suited for challenging environments, as it is decentralized and sustainable. The system offers significant advantages over the conventional reverse osmosis method, especially in terms of reduced energy consumption for treating brackish water. Highlighting Bessette’s capacity for engineering insight, his advisor noted the “simple and elegant solution” that Bessette and a staff engineer, Shane Pratt, devised that negated the need for the system to have large batteries. Bessette is now focusing on simplifying the system’s architecture to make it more reliable and cost-effective for deployment in remote areas.Growing up in upstate New York, Bessette completed a bachelor’s degree at the State University of New York at Buffalo. As an undergrad, he taught middle and high school students in low-income areas of Buffalo about engineering and sustainability. However, he cited his junior-year travel to India and his experience there measuring water contaminants in rural sites as cementing his dedication to a career addressing food, water, and sanitation challenges. In addition to his doctoral research, his commitment to these goals is further evidenced by another project he is pursuing, funded by a J-WAFS India grant, that uses low-cost, remote sensors to better understand water fetching practices. Bessette is conducting this work with fellow MIT student Gokul Sampath in order to help families in rural India gain access to safe drinking water.2024-25 J-WAFS Graduate Student Fellowship for Water and Food SolutionsThe J-WAFS Graduate Student Fellowship is supported by the J-WAFS Research Affiliate Program, which offers companies the opportunity to engage with MIT on water and food research. Current fellowship support was provided by two J-WAFS Research Affiliates: Xylem, a leading U.S.-based provider of water treatment and infrastructure solutions, and GoAigua, a Spanish company at the forefront of digital transformation in the water industry through innovative solutions. Akash Ball is a doctoral candidate in the Department of Chemical Engineering, advised by Professor Heather Kulik. His research focuses on the computational discovery of novel functional materials for energy-efficient ion separation membranes with high selectivity. Advanced membranes like these are increasingly needed for applications such as water desalination, battery recycling, and removal of heavy metals from industrial wastewater. “Climate change, water pollution, and scarce freshwater reserves cause severe water distress for about 4 billion people annually, with 2 billion in India and China’s semiarid regions,” Ball notes. “One potential solution to this global water predicament is the desalination of seawater, since seawater accounts for 97 percent of all water on Earth.”Although several commercial reverse osmosis membranes are currently available, these membranes suffer several problems, like slow water permeation, permeability-selectivity trade-off, and high fabrication costs. Metal-organic frameworks (MOFs) are porous crystalline materials that are promising candidates for highly selective ion separation with fast water transport due to high surface area, the presence of different pore windows, and the tunability of chemical functionality.In the Kulik lab, Ball is developing a systematic understanding of how MOF chemistry and pore geometry affect water transport and ion rejection rates. By the end of his PhD, Ball plans to identify existing, best-performing MOFs with unparalleled water uptake using machine learning models, propose novel hypothetical MOFs tailored to specific ion separations from water, and discover experimental design rules that enable the synthesis of next-generation membranes.  Ball’s advisor praised the creativity he brings to his research, and his leadership skills that benefit her whole lab. Before coming to MIT, Ball obtained a master’s degree in chemical engineering from the Indian Institute of Technology (IIT) Bombay and a bachelor’s degree in chemical engineering from Jadavpur University in India. During a research internship at IIT Bombay in 2018, he worked on developing a technology for in situ arsenic detection in water. Like Bessette, he noted the impact of this prior research experience on his interest in global water challenges, along with his personal experience growing up in an area in India where access to safe drinking water was not guaranteed. More

  • in

    William Green named director of MIT Energy Initiative

    MIT professor William H. Green has been named director of the MIT Energy Initiative (MITEI).In appointing Green, then-MIT Vice President for Research Maria Zuber highlighted his expertise in chemical kinetics — the understanding of the rates of chemical reactions — and the work of his research team in reaction kinetics, quantum chemistry, numerical methods, and fuel chemistry, as well as his work performing techno-economic assessments of proposed fuel and vehicle changes and biofuel production options.“Bill has been an active participant in MITEI; his broad view of energy science and technology will be a major asset and will position him well to contribute to the success of MIT’s exciting new Climate Project,” Zuber wrote in a letter announcing the appointment, which went into effect April 1. Green is the Hoyt C. Hottel Professor of Chemical Engineering and previously served as the executive officer of the MIT Department of Chemical Engineering from 2012 to 2015. He sees MITEI’s role today as bringing together the voices of engineering, science, industry, and policy to quickly drive the global energy transition.“MITEI has a very important role in fostering the energy and climate innovations happening at MIT and in building broader consensus, first in the engineering community and then ultimately to start the conversations that will lead to public acceptance and societal consensus,” says Green.Achieving consensus much more quickly is essential, says Green, who noted that it was during the 1992 Rio Summit that globally we recognized the problem of greenhouse gas emissions, yet almost a quarter-century passed before the Paris Agreement came into force. Eight years after the Paris Agreement, there is still disagreement over how to address this challenge in most sectors of the economy, and much work to be done to translate the Paris pledges into reality.“Many people feel we’re collectively too slow in dealing with the climate problem,” he says. “It’s very important to keep helping the research community be more effective and faster to provide the solutions that society needs, but we also need to work on being faster at reaching consensus around the good solutions we do have, and supporting them so they’ll actually be economically attractive so that investors can feel safe to invest in them, and to change regulations to make them feasible, when needed.”With experience in industry, policy, and academia, Green is well positioned to facilitate this acceleration. “I can see the situation from the point of view of a scientist, from the point of view of an engineer, from the point of view of the big companies, from the point of view of a startup company, and from the point of view of a parent concerned about the effects of climate change on the world my children are inheriting,” he says.Green also intends to extend MITEI’s engagement with a broader range of countries, industries, and economic sectors as MITEI focuses on decarbonization and accelerating the much-needed energy transition worldwide.Green received a PhD in physical chemistry from the University of California at Berkeley and a BA in chemistry from Swarthmore College. He joined MIT in 1997. He is the recipient of the AIChE’s R.H. Wilhelm Award in Chemical Reaction Engineering and is an inaugural Fellow of the Combustion Institute.He succeeds Robert Stoner, who served as interim director of MITEI beginning in July 2023, when longtime director Robert C. Armstrong retired after serving in the role for a decade. More

  • in

    Nuno Loureiro named director of MIT’s Plasma Science and Fusion Center

    Nuno Loureiro, professor of nuclear science and engineering and of physics, has been appointed the new director of the MIT Plasma Science and Fusion Center, effective May 1.Loureiro is taking the helm of one of MIT’s largest labs: more than 250 full-time researchers, staff members, and students work and study in seven buildings with 250,000 square feet of lab space. A theoretical physicist and fusion scientist, Loureiro joined MIT as a faculty member in 2016, and was appointed deputy director of the Plasma Science and Fusion Center (PSFC) in 2022. Loureiro succeeds Dennis Whyte, who stepped down at the end of 2023 to return to teaching and research.Stepping into his new role as director, Loureiro says, “The PSFC has an impressive tradition of discovery and leadership in plasma and fusion science and engineering. Becoming director of the PSFC is an incredible opportunity to shape the future of these fields. We have a world-class team, and it’s an honor to be chosen as its leader.”Loureiro’s own research ranges widely. He is recognized for advancing the understanding of multiple aspects of plasma behavior, particularly turbulence and the physics underpinning solar flares and other astronomical phenomena. In the fusion domain, his work enables the design of fusion devices that can more efficiently control and harness the energy of fusing plasmas, bringing the dream of clean, near-limitless fusion power that much closer. Plasma physics is foundational to advancing fusion science, a fact Loureiro has embraced and that is relevant as he considers the direction of the PSFC’s multidisciplinary research. “But plasma physics is only one aspect of our focus. Building a scientific agenda that continues and expands on the PSFC’s history of innovation in all aspects of fusion science and engineering is vital, and a key facet of that work is facilitating our researchers’ efforts to produce the breakthroughs that are necessary for the realization of fusion energy.”As the climate crisis accelerates, fusion power continues to grow in appeal: It produces no carbon emissions, its fuel is plentiful, and dangerous “meltdowns” are impossible. The sooner that fusion power is commercially available, the greater impact it can have on reducing greenhouse gas emissions and meeting global climate goals. While technical challenges remain, “the PSFC is well poised to meet them, and continue to show leadership. We are a mission-driven lab, and our students and staff are incredibly motivated,” Loureiro comments.“As MIT continues to lead the way toward the delivery of clean fusion power onto the grid, I have no doubt that Nuno is the right person to step into this key position at this critical time,” says Maria T. Zuber, MIT’s presidential advisor for science and technology policy. “I look forward to the steady advance of plasma physics and fusion science at MIT under Nuno’s leadership.”Over the last decade, there have been massive leaps forward in the field of fusion energy, driven in part by innovations like high-temperature superconducting magnets developed at the PSFC. Further progress is guaranteed: Loureiro believes that “The next few years are certain to be an exciting time for us, and for fusion as a whole. It’s the dawn of a new era with burning plasma experiments” — a reference to the collaboration between the PSFC and Commonwealth Fusion Systems, a startup company spun out of the PSFC, to build SPARC, a fusion device that is slated to turn on in 2026 and produce a burning plasma that yields more energy than it consumes. “It’s going to be a watershed moment,” says Loureiro.He continues, “In addition, we have strong connections to inertial confinement fusion experiments, including those at Lawrence Livermore National Lab, and we’re looking forward to expanding our research into stellarators, which are another kind of magnetic fusion device.” Over recent years, the PSFC has significantly increased its collaboration with industrial partners such Eni, IBM, and others. Loureiro sees great value in this: “These collaborations are mutually beneficial: they allow us to grow our research portfolio while advancing companies’ R&D efforts. It’s very dynamic and exciting.”Loureiro’s directorship begins as the PSFC is launching key tech development projects like LIBRA, a “blanket” of molten salt that can be wrapped around fusion vessels and perform double duty as a neutron energy absorber and a breeder for tritium (the fuel for fusion). Researchers at the PSFC have also developed a way to rapidly test the durability of materials being considered for use in a fusion power plant environment, and are now creating an experiment that will utilize a powerful particle accelerator called a gyrotron to irradiate candidate materials.Interest in fusion is at an all-time high; the demand for researchers and engineers, particularly in the nascent commercial fusion industry, is reflected by the record number of graduate students that are studying at the PSFC — more than 90 across seven affiliated MIT departments. The PSFC’s classrooms are full, and Loureiro notes a palpable sense of excitement. “Students are our greatest strength,” says Loureiro. “They come here to do world-class research but also to grow as individuals, and I want to give them a great place to do that. Supporting those experiences, making sure they can be as successful as possible is one of my top priorities.” Loureiro plans to continue teaching and advising students after his appointment begins.MIT President Sally Kornbluth’s recently announced Climate Project is a clarion call for Loureiro: “It’s not hyperbole to say MIT is where you go to find solutions to humanity’s biggest problems,” he says. “Fusion is a hard problem, but it can be solved with resolve and ingenuity — characteristics that define MIT. Fusion energy will change the course of human history. It’s both humbling and exciting to be leading a research center that will play a key role in enabling that change.”  More