More stories

  • in

    Offering clean energy around the clock

    As remarkable as the rise of solar and wind farms has been over the last 20 years, achieving complete decarbonization is going to require a host of complementary technologies. That’s because renewables offer only intermittent power. They also can’t directly provide the high temperatures necessary for many industrial processes.

    Now, 247Solar is building high-temperature concentrated solar power systems that use overnight thermal energy storage to provide round-the-clock power and industrial-grade heat.

    The company’s modular systems can be used as standalone microgrids for communities or to provide power in remote places like mines and farms. They can also be used in conjunction with wind and conventional solar farms, giving customers 24/7 power from renewables and allowing them to offset use of the grid.

    “One of my motivations for working on this system was trying to solve the problem of intermittency,” 247Solar CEO Bruce Anderson ’69, SM ’73 says. “I just couldn’t see how we could get to zero emissions with solar photovoltaics (PV) and wind. Even with PV, wind, and batteries, we can’t get there, because there’s always bad weather, and current batteries aren’t economical over long periods. You have to have a solution that operates 24 hours a day.”

    The company’s system is inspired by the design of a high-temperature heat exchanger by the late MIT Professor Emeritus David Gordon Wilson, who co-founded the company with Anderson. The company integrates that heat exchanger into what Anderson describes as a conventional, jet-engine-like turbine, enabling the turbine to produce power by circulating ambient pressure hot air with no combustion or emissions — what the company calls a first in the industry.

    Here’s how the system works: Each 247Solar system uses a field of sun-tracking mirrors called heliostats to reflect sunlight to the top of a central tower. The tower features a proprietary solar receiver that heats air to around 1,000 Celsius at atmospheric pressure. The air is then used to drive 247Solar’s turbines and generate 400 kilowatts of electricity and 600 kilowatts of heat. Some of the hot air is also routed through a long-duration thermal energy storage system, where it heats solid materials that retain the heat. The stored heat is then used to drive the turbines when the sun stops shining.

    “We offer round-the-clock electricity, but we also offer a combined heat and power option, with the ability to take heat up to 970 Celsius for use in industrial processes,” Anderson says. “It’s a very flexible system.”

    The company’s first deployment will be with a large utility in India. If that goes well, 247Solar hopes to scale up rapidly with other utilities, corporations, and communities around the globe.

    A new approach to concentrated solar

    Anderson kept in touch with his MIT network after graduating in 1973. He served as the director of MIT’s Industrial Liaison Program (ILP) between 1996 and 2000 and was elected as an alumni member of the MIT Corporation in 2013. The ILP connects companies with MIT’s network of students, faculty, and alumni to facilitate innovation, and the experience changed the course of Anderson’s career.

    “That was an extremely fascinating job, and from it two things happened,” Anderson says. “One is that I realized I was really an entrepreneur and was not well-suited to the university environment, and the other is that I was reminded of the countless amazing innovations coming out of MIT.”

    After leaving as director, Anderson began a startup incubator where he worked with MIT professors to start companies. Eventually, one of those professors was Wilson, who had invented the new heat exchanger and a ceramic turbine. Anderson and Wilson ended up putting together a small team to commercialize the technology in the early 2000s.

    Anderson had done his MIT master’s thesis on solar energy in the 1970s, and the team realized the heat exchanger made possible a novel approach to concentrated solar power. In 2010, they received a $6 million development grant from the U.S. Department of Energy. But their first solar receiver was damaged during shipping to a national laboratory for testing, and the company ran out of money.

    It wasn’t until 2015 that Anderson was able to raise money to get the company back off the ground. By that time, a new high-temperature metal alloy had been developed that Anderson swapped out for Wilson’s ceramic heat exchanger.

    The Covid-19 pandemic further slowed 247’s plans to build a demonstration facility at its test site in Arizona, but strong customer interest has kept the company busy. Concentrated solar power doesn’t work everywhere — Arizona’s clear sunshine is a better fit than Florida’s hazy skies, for example — but Anderson is currently in talks with communities in parts of the U.S., India, Africa, and Australia where the technology would be a good fit.

    These days, the company is increasingly proposing combining its systems with traditional solar PV, which lets customers reap the benefits of low-cost solar electricity during the day while using 247’s energy at night.

    “That way we can get at least 24, if not more, hours of energy from a sunny day,” Anderson says. “We’re really moving toward these hybrid systems, which work like a Prius: Sometimes you’re using one source of energy, sometimes you’re using the other.”

    The company also sells its HeatStorE thermal batteries as standalone systems. Instead of being heated by the solar system, the thermal storage is heated by circulating air through an electric coil that’s been heated by electricity, either from the grid, standalone PV, or wind. The heat can be stored for nine hours or more on a single charge and then dispatched as electricity plus industrial process heat at 250 Celsius, or as heat only, up to 970 Celsius.

    Anderson says 247’s thermal battery is about one-seventh the cost of lithium-ion batteries per kilowatt hour produced.

    Scaling a new model

    The company is keeping its system flexible for whatever path customers want to take to complete decarbonization.

    In addition to 247’s India project, the company is in advanced talks with off-grid communities in the Unites States and Egypt, mining operators around the world, and the government of a small country in Africa. Anderson says the company’s next customer will likely be an off-grid community in the U.S. that currently relies on diesel generators for power.

    The company has also partnered with a financial company that will allow it to access capital to fund its own projects and sell clean energy directly to customers, which Anderson says will help 247 grow faster than relying solely on selling entire systems to each customer.

    As it works to scale up its deployments, Anderson believes 247 offers a solution to help customers respond to increasing pressure from governments as well as community members.

    “Emerging economies in places like Africa don’t have any alternative to fossil fuels if they want 24/7 electricity,” Anderson says. “Our owning and operating costs are less than half that of diesel gen-sets. Customers today really want to stop producing emissions if they can, so you’ve got villages, mines, industries, and entire countries where the people inside are saying, ‘We can’t burn diesel anymore.’” More

  • in

    Two MIT teams selected for NSF sustainable materials grants

    Two teams led by MIT researchers were selected in December 2023 by the U.S. National Science Foundation (NSF) Convergence Accelerator, a part of the TIP Directorate, to receive awards of $5 million each over three years, to pursue research aimed at helping to bring cutting-edge new sustainable materials and processes from the lab into practical, full-scale industrial production. The selection was made after 16 teams from around the country were chosen last year for one-year grants to develop detailed plans for further research aimed at solving problems of sustainability and scalability for advanced electronic products.

    Of the two MIT-led teams chosen for this current round of funding, one team, Topological Electric, is led by Mingda Li, an associate professor in the Department of Nuclear Science and Engineering. This team will be finding pathways to scale up sustainable topological materials, which have the potential to revolutionize next-generation microelectronics by showing superior electronic performance, such as dissipationless states or high-frequency response. The other team, led by Anuradha Agarwal, a principal research scientist at MIT’s Materials Research Laboratory, will be focusing on developing new materials, devices, and manufacturing processes for microchips that minimize energy consumption using electronic-photonic integration, and that detect and avoid the toxic or scarce materials used in today’s production methods.

    Scaling the use of topological materials

    Li explains that some materials based on quantum effects have achieved successful transitions from lab curiosities to successful mass production, such as blue-light LEDs, and giant magnetorestance (GMR) devices used for magnetic data storage. But he says there are a variety of equally promising materials that have shown promise but have yet to make it into real-world applications.

    “What we really wanted to achieve is to bring newer-generation quantum materials into technology and mass production, for the benefit of broader society,” he says. In particular, he says, “topological materials are really promising to do many different things.”

    Topological materials are ones whose electronic properties are fundamentally protected against disturbance. For example, Li points to the fact that just in the last two years, it has been shown that some topological materials are even better electrical conductors than copper, which are typically used for the wires interconnecting electronic components. But unlike the blue-light LEDs or the GMR devices, which have been widely produced and deployed, when it comes to topological materials, “there’s no company, no startup, there’s really no business out there,” adds Tomas Palacios, the Clarence J. Lebel Professor in Electrical Engineering at MIT and co-principal investigator on Li’s team. Part of the reason is that many versions of such materials are studied “with a focus on fundamental exotic physical properties with little or no consideration on the sustainability aspects,” says Liang Fu, an MIT professor of physics and also a co-PI. Their team will be looking for alternative formulations that are more amenable to mass production.

    One possible application of these topological materials is for detecting terahertz radiation, explains Keith Nelson, an MIT professor of chemistry and co-PI. This extremely high-frequency electronics can carry far more information than conventional radio or microwaves, but at present there are no mature electronic devices available that are scalable at this frequency range. “There’s a whole range of possibilities for topological materials” that could work at these frequencies, he says. In addition, he says, “we hope to demonstrate an entire prototype system like this in a single, very compact solid-state platform.”

    Li says that among the many possible applications of topological devices for microelectronics devices of various kinds, “we don’t know which, exactly, will end up as a product, or will reach real industrial scaleup. That’s why this opportunity from NSF is like a bridge, which is precious, to allow us to dig deeper to unleash the true potential.”

    In addition to Li, Palacios, Fu, and Nelson, the Topological Electric team includes Qiong Ma, assistant professor of physics in Boston College; Farnaz Niroui, assistant professor of electrical engineering and computer science at MIT; Susanne Stemmer, professor of materials at the University of California at Santa Barbara; Judy Cha, professor of materials science and engineering at Cornell University; industrial partners including IBM, Analog Devices, and Raytheon; and professional consultants. “We are taking this opportunity seriously,” Li says. “We really want to see if the topological materials are as good as we show in the lab when being scaled up, and how far we can push to broadly industrialize them.”

    Toward sustainable microchip production and use

    The microchips behind everything from smartphones to medical imaging are associated with a significant percentage of greenhouse gas emissions today, and every year the world produces more than 50 million metric tons of electronic waste, the equivalent of about 5,000 Eiffel Towers. Further, the data centers necessary for complex computations and huge amount of data transfer — think AI and on-demand video — are growing and will require 10 percent of the world’s electricity by 2030.

    “The current microchip manufacturing supply chain, which includes production, distribution, and use, is neither scalable nor sustainable, and cannot continue. We must innovate our way out of this crisis,” says Agarwal.

    The name of Agarwal’s team, FUTUR-IC, is a reference to the future of the integrated circuits, or chips, through a global alliance for sustainable microchip manufacturing. Says Agarwal, “We bring together stakeholders from industry, academia, and government to co-optimize across three dimensions: technology, ecology, and workforce. These were identified as key interrelated areas by some 140 stakeholders. With FUTUR-IC we aim to cut waste and CO2-equivalent emissions associated with electronics by 50 percent every 10 years.”

    The market for microelectronics in the next decade is predicted to be on the order of a trillion dollars, but most of the manufacturing for the industry occurs only in limited geographical pockets around the world. FUTUR-IC aims to diversify and strengthen the supply chain for manufacturing and packaging of electronics. The alliance has 26 collaborators and is growing. Current external collaborators include the International Electronics Manufacturing Initiative (iNEMI), Tyndall National Institute, SEMI, Hewlett Packard Enterprise, Intel, and the Rochester Institute of Technology.

    Agarwal leads FUTUR-IC in close collaboration with others, including, from MIT, Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering; Elsa Olivetti, the Jerry McAfee Professor in Engineering; Randolph Kirchain, principal research scientist in the Materials Research Laboratory; and Greg Norris, director of MIT’s Sustainability and Health Initiative for NetPositive Enterprise (SHINE). All are affiliated with the Materials Research Laboratory. They are joined by Samuel Serna, an MIT visiting professor and assistant professor of physics at Bridgewater State University. Other key personnel include Sajan Saini, education director for the Initiative for Knowledge and Innovation in Manufacturing in MIT’s Department of Materials Science and Engineering; Peter O’Brien, a professor from Tyndall National Institute; and Shekhar Chandrashekhar, CEO of iNEMI.

    “We expect the integration of electronics and photonics to revolutionize microchip manufacturing, enhancing efficiency, reducing energy consumption, and paving the way for unprecedented advancements in computing speed and data-processing capabilities,” says Serna, who is the co-lead on the project’s technology “vector.”

    Common metrics for these efforts are needed, says Norris, co-lead for the ecology vector, adding, “The microchip industry must have transparent and open Life Cycle Assessment (LCA) models and data, which are being developed by FUTUR-IC.” This is especially important given that microelectronics production transcends industries. “Given the scale and scope of microelectronics, it is critical for the industry to lead in the transition to sustainable manufacture and use,” says Kirchain, another co-lead and the co-director of the Concrete Sustainability Hub at MIT. To bring about this cross-fertilization, co-lead Olivetti, also co-director of the MIT Climate and Sustainability Consortium (MCSC), will collaborate with FUTUR-IC to enhance the benefits from microchip recycling, leveraging the learning across industries.

    Saini, the co-lead for the workforce vector, stresses the need for agility. “With a workforce that adapts to a practice of continuous upskilling, we can help increase the robustness of the chip-manufacturing supply chain, and validate a new design for a sustainability curriculum,” he says.

    “We have become accustomed to the benefits forged by the exponential growth of microelectronic technology performance and market size,” says Kimerling, who is also director of MIT’s Materials Research Laboratory and co-director of the MIT Microphotonics Center. “The ecological impact of this growth in terms of materials use, energy consumption and end-of-life disposal has begun to push back against this progress. We believe that concurrently engineered solutions for these three dimensions will build a common learning curve to power the next 40 years of progress in the semiconductor industry.”

    The MIT teams are two of six that received awards addressing sustainable materials for global challenges through phase two of the NSF Convergence Accelerator program. Launched in 2019, the program targets solutions to especially compelling challenges at an accelerated pace by incorporating a multidisciplinary research approach. More

  • in

    Featured video: Moooving the needle on methane

    Methane traps much more heat per pound than carbon dioxide, making it a powerful contributor to climate change. “In fact, methane emission removal is the fastest way that we can ensure immediate results for reduced global warming,” says Audrey Parker, a graduate student in the Department of Civil and Environmental Engineering.

    Parker and other researchers in the Methane Emission Removal Project are developing a catalyst that can convert methane to carbon dioxide. They are working to set up systems that would reduce methane in the air at dairy farms, which are major emitters of the gas. Overall, agricultural practices and waste generation are responsible for about 28 percent of the world’s methane emissions.

    “If we do our job really well, within the next five years, we will be able to reduce the operating temperature of this catalyst in a way that is net beneficial to the climate and potentially even economically incentivized for the farmer and for society,” says Desirée Plata, an associate professor of civil and environmental engineering who leads the Methane Emission Removal Project.

    Video by Melanie Gonick/MIT News | 4 minutes, 35 seconds More

  • in

    Advancing technology for aquaculture

    According to the National Oceanic and Atmospheric Administration, aquaculture in the United States represents a $1.5 billion industry annually. Like land-based farming, shellfish aquaculture requires healthy seed production in order to maintain a sustainable industry. Aquaculture hatchery production of shellfish larvae — seeds — requires close monitoring to track mortality rates and assess health from the earliest stages of life. 

    Careful observation is necessary to inform production scheduling, determine effects of naturally occurring harmful bacteria, and ensure sustainable seed production. This is an essential step for shellfish hatcheries but is currently a time-consuming manual process prone to human error. 

    With funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), MIT Sea Grant is working with Associate Professor Otto Cordero of the MIT Department of Civil and Environmental Engineering, Professor Taskin Padir and Research Scientist Mark Zolotas at the Northeastern University Institute for Experiential Robotics, and others at the Aquaculture Research Corporation (ARC), and the Cape Cod Commercial Fishermen’s Alliance, to advance technology for the aquaculture industry. Located on Cape Cod, ARC is a leading shellfish hatchery, farm, and wholesaler that plays a vital role in providing high-quality shellfish seed to local and regional growers.

    Two MIT students have joined the effort this semester, working with Robert Vincent, MIT Sea Grant’s assistant director of advisory services, through the Undergraduate Research Opportunities Program (UROP). 

    First-year student Unyime Usua and sophomore Santiago Borrego are using microscopy images of shellfish seed from ARC to train machine learning algorithms that will help automate the identification and counting process. The resulting user-friendly image recognition tool aims to aid aquaculturists in differentiating and counting healthy, unhealthy, and dead shellfish larvae, improving accuracy and reducing time and effort.

    Vincent explains that AI is a powerful tool for environmental science that enables researchers, industry, and resource managers to address challenges that have long been pinch points for accurate data collection, analysis, predictions, and streamlining processes. “Funding support from programs like J-WAFS enable us to tackle these problems head-on,” he says. 

    ARC faces challenges with manually quantifying larvae classes, an important step in their seed production process. “When larvae are in their growing stages they are constantly being sized and counted,” explains Cheryl James, ARC larval/juvenile production manager. “This process is critical to encourage optimal growth and strengthen the population.” 

    Developing an automated identification and counting system will help to improve this step in the production process with time and cost benefits. “This is not an easy task,” says Vincent, “but with the guidance of Dr. Zolotas at the Northeastern University Institute for Experiential Robotics and the work of the UROP students, we have made solid progress.” 

    The UROP program benefits both researchers and students. Involving MIT UROP students in developing these types of systems provides insights into AI applications that they might not have considered, providing opportunities to explore, learn, and apply themselves while contributing to solving real challenges.

    Borrego saw this project as an opportunity to apply what he’d learned in class 6.390 (Introduction to Machine Learning) to a real-world issue. “I was starting to form an idea of how computers can see images and extract information from them,” he says. “I wanted to keep exploring that.”

    Usua decided to pursue the project because of the direct industry impacts it could have. “I’m pretty interested in seeing how we can utilize machine learning to make people’s lives easier. We are using AI to help biologists make this counting and identification process easier.” While Usua wasn’t familiar with aquaculture before starting this project, she explains, “Just hearing about the hatcheries that Dr. Vincent was telling us about, it was unfortunate that not a lot of people know what’s going on and the problems that they’re facing.”

    On Cape Cod alone, aquaculture is an $18 million per year industry. But the Massachusetts Division of Marine Fisheries estimates that hatcheries are only able to meet 70–80 percent of seed demand annually, which impacts local growers and economies. Through this project, the partners aim to develop technology that will increase seed production, advance industry capabilities, and help understand and improve the hatchery microbiome.

    Borrego explains the initial challenge of having limited data to work with. “Starting out, we had to go through and label all of the data, but going through that process helped me learn a lot.” In true MIT fashion, he shares his takeaway from the project: “Try to get the best out of what you’re given with the data you have to work with. You’re going to have to adapt and change your strategies depending on what you have.”

    Usua describes her experience going through the research process, communicating in a team, and deciding what approaches to take. “Research is a difficult and long process, but there is a lot to gain from it because it teaches you to look for things on your own and find your own solutions to problems.”

    In addition to increasing seed production and reducing the human labor required in the hatchery process, the collaborators expect this project to contribute to cost savings and technology integration to support one of the most underserved industries in the United States. 

    Borrego and Usua both plan to continue their work for a second semester with MIT Sea Grant. Borrego is interested in learning more about how technology can be used to protect the environment and wildlife. Usua says she hopes to explore more projects related to aquaculture. “It seems like there’s an infinite amount of ways to tackle these issues.” More

  • in

    New major crosses disciplines to address climate change

    Lauren Aguilar knew she wanted to study energy systems at MIT, but before Course 1-12 (Climate System Science and Engineering) became a new undergraduate major, she didn’t see an obvious path to study the systems aspects of energy, policy, and climate associated with the energy transition.

    Aguilar was drawn to the new major that was jointly launched by the departments of Civil and Environmental Engineering (CEE) and Earth, Atmospheric and Planetary Sciences (EAPS) in 2023. She could take engineering systems classes and gain knowledge in climate.

    “Having climate knowledge enriches my understanding of how to build reliable and resilient energy systems for climate change mitigation. Understanding upon what scale we can forecast and predict climate change is crucial to build the appropriate level of energy infrastructure,” says Aguilar.

    The interdisciplinary structure of the 1-12 major has students engaging with and learning from professors in different disciplines across the Institute. The blended major was designed to provide a foundational understanding of the Earth system and engineering principles — as well as an understanding of human and institutional behavior as it relates to the climate challenge. Students learn the fundamental sciences through subjects like an atmospheric chemistry class focused on the global carbon cycle or a physics class on low-carbon energy systems. The major also covers topics in data science and machine learning as they relate to forecasting climate risks and building resilience, in addition to policy, economics, and environmental justice studies.

    Junior Ananda Figueiredo was one of the first students to declare the 1-12 major. Her decision to change majors stemmed from a motivation to improve people’s lives, especially when it comes to equality. “I like to look at things from a systems perspective, and climate change is such a complicated issue connected to many different pieces of our society,” says Figueiredo.

    A multifaceted field of study

    The 1-12 major prepares students with the necessary foundational expertise across disciplines to confront climate change. Andrew Babbin, an academic advisor in the new degree program and the Cecil and Ida Green Career Development Associate Professor in EAPS, says the new major harnesses rigorous training encompassing science, engineering, and policy to design and execute a way forward for society.

    Within its first year, Course 1-12 has attracted students with a diverse set of interests, ranging from machine learning for sustainability to nature-based solutions for carbon management to developing the next renewable energy technology and integrating it into the power system.

    Academic advisor Michael Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering, says the best part of this degree is the students, and the enthusiasm and optimism they bring to the climate challenge.

    “We have students seeking to impact policy and students double-majoring in computer science. For this generation, climate change is a challenge for today, not for the future. Their actions inside and outside the classroom speak to the urgency of the challenge and the promise that we can solve it,” Howland says.

    The degree program also leaves plenty of space for students to develop and follow their interests. Sophomore Katherine Kempff began this spring semester as a 1-12 major interested in sustainability and renewable energy. Kempff was worried she wouldn’t be able to finish 1-12 once she made the switch to a different set of classes, but Howland assured her there would be no problems, based on the structure of 1-12.

    “I really like how flexible 1-12 is. There’s a lot of classes that satisfy the requirements, and you are not pigeonholed. I feel like I’m going to be able to do what I’m interested in, rather than just following a set path of a major,” says Kempff.

    Kempff is leveraging her skills she developed this semester and exploring different career interests. She is interviewing for sustainability and energy-sector internships in Boston and MIT this summer, and is particularly interested in assisting MIT in meeting its new sustainability goals.

    Engineering a sustainable future

    The new major dovetail’s MIT’s commitment to address climate change with its steps in prioritizing and enhancing climate education. As the Institute continues making strides to accelerate solutions, students can play a leading role in changing the future.   

    “Climate awareness is critical to all MIT students, most of whom will face the consequences of the projection models for the end of the century,” says Babbin. “One-12 will be a focal point of the climate education mission to train the brightest and most creative students to engineer a better world and understand the complex science necessary to design and verify any solutions they invent.”

    Justin Cole, who transferred to MIT in January from the University of Colorado, served in the U.S. Air Force for nine years. Over the course of his service, he had a front row seat to the changing climate. From helping with the wildfire cleanup in Black Forest, Colorado — after the state’s most destructive fire at the time — to witnessing two category 5 typhoons in Japan in 2018, Cole’s experiences of these natural disasters impressed upon him that climate security was a prerequisite to international security. 

    Cole was recently accepted into the MIT Energy and Climate Club Launchpad initiative where he will work to solve real-world climate and energy problems with professionals in industry.

    “All of the dots are connecting so far in my classes, and all the hopes that I have for studying the climate crisis and the solutions to it at MIT are coming true,” says Cole.

    With a career path that is increasingly growing, there is a rising demand for scientists and engineers who have both deep knowledge of environmental and climate systems and expertise in methods for climate change mitigation.

    “Climate science must be coupled with climate solutions. As we experience worsening climate change, the environmental system will increasingly behave in new ways that we haven’t seen in the past,” says Howland. “Solutions to climate change must go beyond good engineering of small-scale components. We need to ensure that our system-scale solutions are maximally effective in reducing climate change, but are also resilient to climate change. And there is no time to waste,” he says. More

  • in

    Extracting hydrogen from rocks

    It’s commonly thought that the most abundant element in the universe, hydrogen, exists mainly alongside other elements — with oxygen in water, for example, and with carbon in methane. But naturally occurring underground pockets of pure hydrogen are punching holes in that notion — and generating attention as a potentially unlimited source of carbon-free power. One interested party is the U.S. Department of Energy, which last month awarded $20 million in research grants to 18 teams from laboratories, universities, and private companies to develop technologies that can lead to cheap, clean fuel from the subsurface. Geologic hydrogen, as it’s known, is produced when water reacts with iron-rich rocks, causing the iron to oxidize. One of the grant recipients, MIT Assistant Professor Iwnetim Abate’s research group, will use its $1.3 million grant to determine the ideal conditions for producing hydrogen underground — considering factors such as catalysts to initiate the chemical reaction, temperature, pressure, and pH levels. The goal is to improve efficiency for large-scale production, meeting global energy needs at a competitive cost. The U.S. Geological Survey estimates there are potentially billions of tons of geologic hydrogen buried in the Earth’s crust. Accumulations have been discovered worldwide, and a slew of startups are searching for extractable deposits. Abate is looking to jump-start the natural hydrogen production process, implementing “proactive” approaches that involve stimulating production and harvesting the gas.                                                                                                                         “We aim to optimize the reaction parameters to make the reaction faster and produce hydrogen in an economically feasible manner,” says Abate, the Chipman Development Professor in the Department of Materials Science and Engineering (DMSE). Abate’s research centers on designing materials and technologies for the renewable energy transition, including next-generation batteries and novel chemical methods for energy storage. 

    Sparking innovation

    Interest in geologic hydrogen is growing at a time when governments worldwide are seeking carbon-free energy alternatives to oil and gas. In December, French President Emmanuel Macron said his government would provide funding to explore natural hydrogen. And in February, government and private sector witnesses briefed U.S. lawmakers on opportunities to extract hydrogen from the ground. Today commercial hydrogen is manufactured at $2 a kilogram, mostly for fertilizer and chemical and steel production, but most methods involve burning fossil fuels, which release Earth-heating carbon. “Green hydrogen,” produced with renewable energy, is promising, but at $7 per kilogram, it’s expensive. “If you get hydrogen at a dollar a kilo, it’s competitive with natural gas on an energy-price basis,” says Douglas Wicks, a program director at Advanced Research Projects Agency – Energy (ARPA-E), the Department of Energy organization leading the geologic hydrogen grant program. Recipients of the ARPA-E grants include Colorado School of Mines, Texas Tech University, and Los Alamos National Laboratory, plus private companies including Koloma, a hydrogen production startup that has received funding from Amazon and Bill Gates. The projects themselves are diverse, ranging from applying industrial oil and gas methods for hydrogen production and extraction to developing models to understand hydrogen formation in rocks. The purpose: to address questions in what Wicks calls a “total white space.” “In geologic hydrogen, we don’t know how we can accelerate the production of it, because it’s a chemical reaction, nor do we really understand how to engineer the subsurface so that we can safely extract it,” Wicks says. “We’re trying to bring in the best skills of each of the different groups to work on this under the idea that the ensemble should be able to give us good answers in a fairly rapid timeframe.” Geochemist Viacheslav Zgonnik, one of the foremost experts in the natural hydrogen field, agrees that the list of unknowns is long, as is the road to the first commercial projects. But he says efforts to stimulate hydrogen production — to harness the natural reaction between water and rock — present “tremendous potential.” “The idea is to find ways we can accelerate that reaction and control it so we can produce hydrogen on demand in specific places,” says Zgonnik, CEO and founder of Natural Hydrogen Energy, a Denver-based startup that has mineral leases for exploratory drilling in the United States. “If we can achieve that goal, it means that we can potentially replace fossil fuels with stimulated hydrogen.”

    “A full-circle moment”

    For Abate, the connection to the project is personal. As a child in his hometown in Ethiopia, power outages were a usual occurrence — the lights would be out three, maybe four days a week. Flickering candles or pollutant-emitting kerosene lamps were often the only source of light for doing homework at night. “And for the household, we had to use wood and charcoal for chores such as cooking,” says Abate. “That was my story all the way until the end of high school and before I came to the U.S. for college.” In 1987, well-diggers drilling for water in Mali in Western Africa uncovered a natural hydrogen deposit, causing an explosion. Decades later, Malian entrepreneur Aliou Diallo and his Canadian oil and gas company tapped the well and used an engine to burn hydrogen and power electricity in the nearby village. Ditching oil and gas, Diallo launched Hydroma, the world’s first hydrogen exploration enterprise. The company is drilling wells near the original site that have yielded high concentrations of the gas. “So, what used to be known as an energy-poor continent now is generating hope for the future of the world,” Abate says. “Learning about that was a full-circle moment for me. Of course, the problem is global; the solution is global. But then the connection with my personal journey, plus the solution coming from my home continent, makes me personally connected to the problem and to the solution.”

    Experiments that scale

    Abate and researchers in his lab are formulating a recipe for a fluid that will induce the chemical reaction that triggers hydrogen production in rocks. The main ingredient is water, and the team is testing “simple” materials for catalysts that will speed up the reaction and in turn increase the amount of hydrogen produced, says postdoc Yifan Gao. “Some catalysts are very costly and hard to produce, requiring complex production or preparation,” Gao says. “A catalyst that’s inexpensive and abundant will allow us to enhance the production rate — that way, we produce it at an economically feasible rate, but also with an economically feasible yield.” The iron-rich rocks in which the chemical reaction happens can be found across the United States and the world. To optimize the reaction across a diversity of geological compositions and environments, Abate and Gao are developing what they call a high-throughput system, consisting of artificial intelligence software and robotics, to test different catalyst mixtures and simulate what would happen when applied to rocks from various regions, with different external conditions like temperature and pressure. “And from that we measure how much hydrogen we are producing for each possible combination,” Abate says. “Then the AI will learn from the experiments and suggest to us, ‘Based on what I’ve learned and based on the literature, I suggest you test this composition of catalyst material for this rock.’” The team is writing a paper on its project and aims to publish its findings in the coming months. The next milestones for the project, after developing the catalyst recipe, is designing a reactor that will serve two purposes. First, fitted with technologies such as Raman spectroscopy, it will allow researchers to identify and optimize the chemical conditions that lead to improved rates and yield of hydrogen production. The lab-scale device will also inform the design of a real-world reactor that can accelerate hydrogen production in the field. “That would be a plant-scale reactor that would be implanted into the subsurface,” Abate says. The cross-disciplinary project is also tapping the expertise of Yang Shao-Horn, of MIT’s Department of Mechanical Engineering and DMSE, for computational analysis of the catalyst, and Esteban Gazel, a Cornell University scientist who will lend his expertise in geology and geochemistry. He’ll focus on understanding the iron-rich ultramafic rock formations across the United States and the globe and how they react with water. For Wicks at ARPA-E, the questions Abate and the other grant recipients are asking are just the first, critical steps in uncharted energy territory. “If we can understand how to stimulate these rocks into generating hydrogen, safely getting it up, it really unleashes the potential energy source,” he says. Then the emerging industry will look to oil and gas for the drilling, piping, and gas extraction know-how. “As I like to say, this is enabling technology that we hope to, in a very short term, enable us to say, ‘Is there really something there?’” More

  • in

    Propelling atomically layered magnets toward green computers

    Globally, computation is booming at an unprecedented rate, fueled by the boons of artificial intelligence. With this, the staggering energy demand of the world’s computing infrastructure has become a major concern, and the development of computing devices that are far more energy-efficient is a leading challenge for the scientific community. 

    Use of magnetic materials to build computing devices like memories and processors has emerged as a promising avenue for creating “beyond-CMOS” computers, which would use far less energy compared to traditional computers. Magnetization switching in magnets can be used in computation the same way that a transistor switches from open or closed to represent the 0s and 1s of binary code. 

    While much of the research along this direction has focused on using bulk magnetic materials, a new class of magnetic materials — called two-dimensional van der Waals magnets — provides superior properties that can improve the scalability and energy efficiency of magnetic devices to make them commercially viable. 

    Although the benefits of shifting to 2D magnetic materials are evident, their practical induction into computers has been hindered by some fundamental challenges. Until recently, 2D magnetic materials could operate only at very low temperatures, much like superconductors. So bringing their operating temperatures above room temperature has remained a primary goal. Additionally, for use in computers, it is important that they can be controlled electrically, without the need for magnetic fields. Bridging this fundamental gap, where 2D magnetic materials can be electrically switched above room temperature without any magnetic fields, could potentially catapult the translation of 2D magnets into the next generation of “green” computers.

    A team of MIT researchers has now achieved this critical milestone by designing a “van der Waals atomically layered heterostructure” device where a 2D van der Waals magnet, iron gallium telluride, is interfaced with another 2D material, tungsten ditelluride. In an open-access paper published March 15 in Science Advances, the team shows that the magnet can be toggled between the 0 and 1 states simply by applying pulses of electrical current across their two-layer device. 

    Play video

    The Future of Spintronics: Manipulating Spins in Atomic Layers without External Magnetic FieldsVideo: Deblina Sarkar

    “Our device enables robust magnetization switching without the need for an external magnetic field, opening up unprecedented opportunities for ultra-low power and environmentally sustainable computing technology for big data and AI,” says lead author Deblina Sarkar, the AT&T Career Development Assistant Professor at the MIT Media Lab and Center for Neurobiological Engineering, and head of the Nano-Cybernetic Biotrek research group. “Moreover, the atomically layered structure of our device provides unique capabilities including improved interface and possibilities of gate voltage tunability, as well as flexible and transparent spintronic technologies.”

    Sarkar is joined on the paper by first author Shivam Kajale, a graduate student in Sarkar’s research group at the Media Lab; Thanh Nguyen, a graduate student in the Department of Nuclear Science and Engineering (NSE); Nguyen Tuan Hung, an MIT visiting scholar in NSE and an assistant professor at Tohoku University in Japan; and Mingda Li, associate professor of NSE.

    Breaking the mirror symmetries 

    When electric current flows through heavy metals like platinum or tantalum, the electrons get segregated in the materials based on their spin component, a phenomenon called the spin Hall effect, says Kajale. The way this segregation happens depends on the material, and particularly its symmetries.

    “The conversion of electric current to spin currents in heavy metals lies at the heart of controlling magnets electrically,” Kajale notes. “The microscopic structure of conventionally used materials, like platinum, have a kind of mirror symmetry, which restricts the spin currents only to in-plane spin polarization.”

    Kajale explains that two mirror symmetries must be broken to produce an “out-of-plane” spin component that can be transferred to a magnetic layer to induce field-free switching. “Electrical current can ‘break’ the mirror symmetry along one plane in platinum, but its crystal structure prevents the mirror symmetry from being broken in a second plane.”

    In their earlier experiments, the researchers used a small magnetic field to break the second mirror plane. To get rid of the need for a magnetic nudge, Kajale and Sarkar and colleagues looked instead for a material with a structure that could break the second mirror plane without outside help. This led them to another 2D material, tungsten ditelluride. The tungsten ditelluride that the researchers used has an orthorhombic crystal structure. The material itself has one broken mirror plane. Thus, by applying current along its low-symmetry axis (parallel to the broken mirror plane), the resulting spin current has an out-of-plane spin component that can directly induce switching in the ultra-thin magnet interfaced with the tungsten ditelluride. 

    “Because it’s also a 2D van der Waals material, it can also ensure that when we stack the two materials together, we get pristine interfaces and a good flow of electron spins between the materials,” says Kajale. 

    Becoming more energy-efficient 

    Computer memory and processors built from magnetic materials use less energy than traditional silicon-based devices. And the van der Waals magnets can offer higher energy efficiency and better scalability compared to bulk magnetic material, the researchers note. 

    The electrical current density used for switching the magnet translates to how much energy is dissipated during switching. A lower density means a much more energy-efficient material. “The new design has one of the lowest current densities in van der Waals magnetic materials,” Kajale says. “This new design has an order of magnitude lower in terms of the switching current required in bulk materials. This translates to something like two orders of magnitude improvement in energy efficiency.”

    The research team is now looking at similar low-symmetry van der Waals materials to see if they can reduce current density even further. They are also hoping to collaborate with other researchers to find ways to manufacture the 2D magnetic switch devices at commercial scale. 

    This work was carried out, in part, using the facilities at MIT.nano. It was funded by the Media Lab, the U.S. National Science Foundation, and the U.S. Department of Energy. More

  • in

    Shining a light on oil fields to make them more sustainable

    Operating an oil field is complex and there is a staggeringly long list of things that can go wrong.

    One of the most common problems is spills of the salty brine that’s a toxic byproduct of pumping oil. Another is over- or under-pumping that can lead to machine failure and methane leaks. (The oil and gas industry is the largest industrial emitter of methane in the U.S.) Then there are extreme weather events, which range from winter frosts to blazing heat, that can put equipment out of commission for months. One of the wildest problems Sebastien Mannai SM ’14, PhD ’18 has encountered are hogs that pop open oil tanks with their snouts to enjoy on-demand oil baths.

    Mannai helps oil field owners detect and respond to these problems while optimizing the operation of their machinery to prevent the issues from occurring in the first place. He is the founder and CEO of Amplified Industries, a company selling oil field monitoring and control tools that help make the industry more efficient and sustainable.

    Amplified Industries’ sensors and analytics give oil well operators real-time alerts when things go wrong, allowing them to respond to issues before they become disasters.

    “We’re able to find 99 percent of the issues affecting these machines, from mechanical failures to human errors, including issues happening thousands of feet underground,” Mannai explains. “With our AI solution, operators can put the wells on autopilot, and the system automatically adjusts or shuts the well down as soon as there’s an issue.”

    Amplified currently works with private companies in states spanning from Texas to Wyoming, that own and operate as many as 3,000 wells. Such companies make up the majority of oil well operators in the U.S. and operate both new and older, more failure-prone equipment that has been in the field for decades.

    Such operators also have a harder time responding to environmental regulations like the Environmental Protection Agency’s new methane guidelines, which seek to dramatically reduce emissions of the potent greenhouse gas in the industry over the next few years.

    “These operators don’t want to be releasing methane,” Mannai explains. “Additionally, when gas gets into the pumping equipment, it leads to premature failures. We can detect gas and slow the pump down to prevent it. It’s the best of both worlds: The operators benefit because their machines are working better, saving them money while also giving them a smaller environmental footprint with fewer spills and methane leaks.”

    Leveraging “every MIT resource I possibly could”

    Mannai learned about the cutting-edge technology used in the space and aviation industries as he pursued his master’s degree at the Gas Turbine Laboratory in MIT’s Department of Aeronautics and Astronautics. Then, during his PhD at MIT, he worked with an oil services company and discovered the oil and gas industry was still relying on decades-old technologies and equipment.

    “When I first traveled to the field, I could not believe how old-school the actual operations were,” says Mannai, who has previously worked in rocket engine and turbine factories. “A lot of oil wells have to be adjusted by feel and rules of thumb. The operators have been let down by industrial automation and data companies.”

    Monitoring oil wells for problems typically requires someone in a pickup truck to drive hundreds of miles between wells looking for obvious issues, Mannai says. The sensors that are deployed are expensive and difficult to replace. Over time, they’re also often damaged in the field to the point of being unusable, forcing technicians to make educated guesses about the status of each well.

    “We often see that equipment unplugged or programmed incorrectly because it is incredibly over-complicated and ill-designed for the reality of the field,” Mannai says. “Workers on the ground often have to rip it out and bypass the control system to pump by hand. That’s how you end up with so many spills and wells pumping at suboptimal levels.”

    To build a better oil field monitoring system, Mannai received support from the MIT Sandbox Innovation Fund and the Venture Mentoring Service (VMS). He also participated in the delta V summer accelerator at the Martin Trust Center for MIT Entrepreneurship, the fuse program during IAP, and the MIT I-Corps program, and took a number of classes at the MIT Sloan School of Management. In 2019, Amplified Industries — which operated under the name Acoustic Wells until recently — won the MIT $100K Entrepreneurship competition.

    “My approach was to sign up to every possible entrepreneurship related program and to leverage every MIT resource I possibly could,” Mannai says. “MIT was amazing for us.”

    Mannai officially launched the company after his postdoc at MIT, and Amplified raised its first round of funding in early 2020. That year, Amplified’s small team moved into the Greentown Labs startup incubator in Somerville.

    Mannai says building the company’s battery-powered, low-cost sensors was a huge challenge. The sensors run machine-learning inference models and their batteries last for 10 years. They also had to be able to handle extreme conditions, from the scorching hot New Mexico desert to the swamps of Louisiana and the freezing cold winters in North Dakota.

    “We build very rugged, resilient hardware; it’s a must in those environments” Mannai says. “But it’s also very simple to deploy, so if a device does break, it’s like changing a lightbulb: We ship them a new one and it takes them a couple of minutes to swap it out.”

    Customers equip each well with four or five of Amplified’s sensors, which attach to the well’s cables and pipes to measure variables like tension, pressure, and amps. Vast amounts of data are then sent to Amplified’s cloud and processed by their analytics engine. Signal processing methods and AI models are used to diagnose problems and control the equipment in real-time, while generating notifications for the operators when something goes wrong. Operators can then remotely adjust the well or shut it down.

    “That’s where AI is important, because if you just record everything and put it in a giant dashboard, you create way more work for people,” Mannai says. “The critical part is the ability to process and understand this newly recorded data and make it readily usable in the real world.”

    Amplified’s dashboard is customized for different people in the company, so field technicians can quickly respond to problems and managers or owners can get a high-level view of how everything is running.

    Mannai says often when Amplified’s sensors are installed, they’ll immediately start detecting problems that were unknown to engineers and technicians in the field. To date, Amplified has prevented hundreds of thousands of gallons worth of brine water spills, which are particularly damaging to surrounding vegetation because of their high salt and sulfur content.

    Preventing those spills is only part of Amplified’s positive environmental impact; the company is now turning its attention toward the detection of methane leaks.

    Helping a changing industry

    The EPA’s proposed new Waste Emissions Charge for oil and gas companies would start at $900 per metric ton of reported methane emissions in 2024 and increase to $1,500 per metric ton in 2026 and beyond.

    Mannai says Amplified is well-positioned to help companies comply with the new rules. Its equipment has already showed it can detect various kinds of leaks across the field, purely based on analytics of existing data.

    “Detecting methane leaks typically requires someone to walk around every valve and piece of piping with a thermal camera or sniffer, but these operators often have thousands of valves and hundreds of miles of pipes,” Mannai says. “What we see in the field is that a lot of times people don’t know where the pipes are because oil wells change owners so frequently, or they will miss an intermittent leak.”

    Ultimately Mannai believes a strong data backend and modernized sensing equipment will become the backbone of the industry, and is a necessary prerequisite to both improving efficiency and cleaning up the industry.

    “We’re selling a service that ensures your equipment is working optimally all the time,” Mannai says. “That means a lot fewer fines from the EPA, but it also means better-performing equipment. There’s a mindset change happening across the industry, and we’re helping make that transition as easy and affordable as possible.” More