More stories

  • in

    Report: Sustainability in supply chains is still a firm-level priority

    Corporations are actively seeking sustainability advances in their supply chains — but many need to improve the business metrics they use in this area to realize more progress, according to a new report by MIT researchers.   During a time of shifting policies globally and continued economic uncertainty, the survey-based report finds 85 percent of companies say they are continuing supply chain sustainability practices at the same level as in recent years, or are increasing those efforts.“What we found is strong evidence that sustainability still matters,” says Josué Velázquez Martínez, a research scientist and director of the MIT Sustainable Supply Chain Lab, which helped produce the report. “There are many things that remain to be done to accomplish those goals, but there’s a strong willingness from companies in all parts of the world to do something about sustainability.”The new analysis, titled “Sustainability Still Matters,” was released today. It is the sixth annual report on the subject prepared by the MIT Sustainable Supply Chain Lab, which is part of MIT’s Center for Transportation and Logistics. The Council of Supply Chain Management Professionals collaborated on the project as well.The report is based on a global survey, with responses from 1,203 professionals in 97 countries. This year, the report analyzes three issues in depth, including regulations and the role they play in corporate approaches to supply chain management. A second core topic is management and mitigation of what industry professionals call “Scope 3” emissions, which are those not from a firm itself, but from a firm’s supply chain. And a third issue of focus is the future of freight transportation, which by itself accounts for a substantial portion of supply chain emissions.Broadly, the survey finds that for European-based firms, the principal driver of action in this area remains government mandates, such as the Corporate Sustainability Reporting Directive, which requires companies to publish regular reports on their environmental impact and the risks to society involved. In North America, firm leadership and investor priorities are more likely to be decisive factors in shaping a company’s efforts.“In Europe the pressure primarily comes more from regulation, but in the U.S. it comes more from investors, or from competitors,” Velázquez Martínez says.The survey responses on Scope 3 emissions reveal a number of opportunities for improvement. In business and sustainability terms, Scope 1 greenhouse gas emissions are those a firm produces directly. Scope 2 emissions are the energy it has purchased. And Scope 3 emissions are those produced across a firm’s value chain, including the supply chain activities involved in producing, transporting, using, and disposing of its products.The report reveals that about 40 percent of firms keep close track of Scope 1 and 2 emissions, but far fewer tabulate Scope 3 on equivalent terms. And yet Scope 3 may account for roughly 75 percent of total firm emissions, on aggregate. About 70 percent of firms in the survey say they do not have enough data from suppliers to accurately tabulate the total greenhouse gas and climate impact of their supply chains.Certainly it can be hard to calculate the total emissions when a supply chain has many layers, including smaller suppliers lacking data capacity. But firms can upgrade their analytics in this area, too. For instance, 50 percent of North American firms are still using spreadsheets to tabulate emissions data, often making rough estimates that correlate emissions to simple economic activity. An alternative is life cycle assessment software that provides more sophisticated estimates of a product’s emissions, from the extraction of its materials to its post-use disposal. By contrast, only 32 percent of European firms are still using spreadsheets rather than life cycle assessment tools.“You get what you measure,” Velázquez Martínez says. “If you measure poorly, you’re going to get poor decisions that most likely won’t drive the reductions you’re expecting. So we pay a lot of attention to that particular issue, which is decisive to defining an action plan. Firms pay a lot of attention to metrics in their financials, but in sustainability they’re often using simplistic measurements.”When it comes to transportation, meanwhile, the report shows that firms are still grappling with the best ways to reduce emissions. Some see biofuels as the best short-term alternative to fossil fuels; others are investing in electric vehicles; some are waiting for hydrogen-powered vehicles to gain traction. Supply chains, after all, frequently involve long-haul trips. For firms, as for individual consumers, electric vehicles are more practical with a larger infrastructure of charging stations. There are advances on that front but more work to do as well.That said, “Transportation has made a lot of progress in general,” Velázquez Martínez says, noting the increased acceptance of new modes of vehicle power in general.Even as new technologies loom on the horizon, though, supply chain sustainability is not wholly depend on their introduction. One factor continuing to propel sustainability in supply chains is the incentives companies have to lower costs. In a competitive business environment, spending less on fossil fuels usually means savings. And firms can often find ways to alter their logistics to consume and spend less.“Along with new technologies, there is another side of supply chain sustainability that is related to better use of the current infrastructure,” Velázquez Martínez observes. “There is always a need to revise traditional ways of operating to find opportunities for more efficiency.”  More

  • in

    MIT OpenCourseWare is “a living testament to the nobility of open, unbounded learning”

    Mostafa Fawzy became interested in physics in high school. It was the “elegance and paradox” of quantum theory that got his attention and led to his studies at the undergraduate and graduate level. But even with a solid foundation of coursework and supportive mentors, Fawzy wanted more. MIT Open Learning’s OpenCourseWare was just the thing he was looking for.  Now a doctoral candidate in atomic physics at Alexandria University and an assistant lecturer of physics at Alamein International University in Egypt, Fawzy reflects on how MIT OpenCourseWare bolstered his learning early in his graduate studies in 2019.  Part of MIT Open Learning, OpenCourseWare offers free, online, open educational resources from more than 2,500 courses that span the MIT undergraduate and graduate curriculum. Fawzy was looking for advanced resources to supplement his research in quantum mechanics and theoretical physics, and he was immediately struck by the quality, accessibility, and breadth of MIT’s resources. “OpenCourseWare was transformative in deepening my understanding of advanced physics,” Fawzy says. “I found the structured lectures and assignments in quantum physics particularly valuable. They enhanced both my theoretical insight and practical problem-solving skills — skills I later applied in research on atomic systems influenced by magnetic fields and plasma environments.”  He completed educational resources including Quantum Physics I and Quantum Physics II, calling them “dense and mathematically sophisticated.” He met the challenge by engaging with the content in different ways: first, by simply listening to lectures, then by taking detailed notes, and finally by working though problem sets. Although initially he struggled to keep up, this methodical approach paid off, he says. He is grateful to his undergraduate mentors, professors M. Sakr and T. Bahy of Alexandria University, as well as to MIT OpenCourseWare, calling it a “steadfast companion through countless solitary nights of study, a beacon in times when formal resources were scarce, and a living testament to the nobility of open, unbounded learning.”  Recognizing the power of mentorship and teaching, Fawzy serves as an academic mentor with the African Academy of Sciences, supporting early-career researchers across the continent in theoretical and atomic physics.  “Many of these mentees lack access to advanced academic resources,” he explains. “I regularly incorporate OpenCourseWare into our mentorship sessions, using it as a foundational teaching and reference tool. It’s an equalizer, providing the same high-caliber content to students regardless of geographical or institutional limitations.” As he looks toward the future, Fawzy has big plans, influenced by MIT. “I aspire to establish a regional center for excellence in atomic and plasma physics, blending cutting-edge research with open-access education in the Global South,” he says. As he continues his research and teaching, he also hopes to influence science policy and contribute to international partnerships that shine the spotlight on research and science in emerging nations.  Along the way, he says, “OpenCourseWare remains a cornerstone resource that I will return to again and again.”  Fawzy says he’s also interested in MIT Open Learning resources in computational physics and energy and sustainability. He’s following MIT’s Energy Initiative, calling it increasingly relevant to his current work and future plans.  Fawzy is a proponent of open learning and a testament to its power. “The intellectual seeds sown by Open Learning resources such as MIT OpenCourseWare have flourished within me, shaping my identity as a physicist and affirming my deep belief in the transformative power of knowledge shared freely, without barriers,” he says.  More

  • in

    Concrete “battery” developed at MIT now packs 10 times the power

    Concrete already builds our world, and now it’s one step closer to powering it, too. Made by combining cement, water, ultra-fine carbon black (with nanoscale particles), and electrolytes, electron-conducting carbon concrete (ec3, pronounced “e-c-cubed”) creates a conductive “nanonetwork” inside concrete that could enable everyday structures like walls, sidewalks, and bridges to store and release electrical energy. In other words, the concrete around us could one day double as giant “batteries.”As MIT researchers report in a new PNAS paper, optimized electrolytes and manufacturing processes have increased the energy storage capacity of the latest ec3 supercapacitors by an order of magnitude. In 2023, storing enough energy to meet the daily needs of the average home would have required about 45 cubic meters of ec3, roughly the amount of concrete used in a typical basement. Now, with the improved electrolyte, that same task can be achieved with about 5 cubic meters, the volume of a typical basement wall.“A key to the sustainability of concrete is the development of ‘multifunctional concrete,’ which integrates functionalities like this energy storage, self-healing, and carbon sequestration. Concrete is already the world’s most-used construction material, so why not take advantage of that scale to create other benefits?” asks Admir Masic, lead author of the new study, MIT Electron-Conducting Carbon-Cement-Based Materials Hub (EC³ Hub) co-director, and associate professor of civil and environmental engineering (CEE) at MIT.The improved energy density was made possible by a deeper understanding of how the nanocarbon black network inside ec3 functions and interacts with electrolytes. Using focused ion beams for the sequential removal of thin layers of the ec3 material, followed by high-resolution imaging of each slice with a scanning electron microscope (a technique called FIB-SEM tomography), the team across the EC³ Hub and MIT Concrete Sustainability Hub was able to reconstruct the conductive nanonetwork at the highest resolution yet. This approach allowed the team to discover that the network is essentially a fractal-like “web” that surrounds ec3 pores, which is what allows the electrolyte to infiltrate and for current to flow through the system. “Understanding how these materials ‘assemble’ themselves at the nanoscale is key to achieving these new functionalities,” adds Masic.Equipped with their new understanding of the nanonetwork, the team experimented with different electrolytes and their concentrations to see how they impacted energy storage density. As Damian Stefaniuk, first author and EC³ Hub research scientist, highlights, “we found that there is a wide range of electrolytes that could be viable candidates for ec3. This even includes seawater, which could make this a good material for use in coastal and marine applications, perhaps as support structures for offshore wind farms.”At the same time, the team streamlined the way they added electrolytes to the mix. Rather than curing ec3 electrodes and then soaking them in electrolyte, they added the electrolyte directly into the mixing water. Since electrolyte penetration was no longer a limitation, the team could cast thicker electrodes that stored more energy.The team achieved the greatest performance when they switched to organic electrolytes, especially those that combined quaternary ammonium salts — found in everyday products like disinfectants — with acetonitrile, a clear, conductive liquid often used in industry. A cubic meter of this version of ec3 — about the size of a refrigerator — can store over 2 kilowatt-hours of energy. That’s about enough to power an actual refrigerator for a day.While batteries maintain a higher energy density, ec3 can in principle be incorporated directly into a wide range of architectural elements — from slabs and walls to domes and vaults — and last as long as the structure itself.“The Ancient Romans made great advances in concrete construction. Massive structures like the Pantheon stand to this day without reinforcement. If we keep up their spirit of combining material science with architectural vision, we could be at the brink of a new architectural revolution with multifunctional concretes like ec3,” proposes Masic.Taking inspiration from Roman architecture, the team built a miniature ec3 arch to show how structural form and energy storage can work together. Operating at 9 volts, the arch supported its own weight and additional load while powering an LED light.However, something unique happened when the load on the arch increased: the light flickered. This is likely due to the way stress impacts electrical contacts or the distribution of charges. “There may be a kind of self-monitoring capacity here. If we think of an ec3 arch at architectural scale, its output may fluctuate when it’s impacted by a stressor like high winds. We may be able to use this as a signal of when and to what extent a structure is stressed, or monitor its overall health in real time,” envisions Masic.The latest developments in ec³ technology bring it a step closer to real-world scalability. It’s already been used to heat sidewalk slabs in Sapporo, Japan, due to its thermally conductive properties, representing a potential alternative to salting. “With these higher energy densities and demonstrated value across a broader application space, we now have a powerful and flexible tool that can help us address a wide range of persistent energy challenges,” explains Stefaniuk. “One of our biggest motivations was to help enable the renewable energy transition. Solar power, for example, has come a long way in terms of efficiency. However, it can only generate power when there’s enough sunlight. So, the question becomes: How do you meet your energy needs at night, or on cloudy days?”Franz-Josef Ulm, EC³ Hub co-director and CEE professor, continues the thread: “The answer is that you need a way to store and release energy. This has usually meant a battery, which often relies on scarce or harmful materials. We believe that ec3 is a viable substitute, letting our buildings and infrastructure meet our energy storage needs.” The team is working toward applications like parking spaces and roads that could charge electric vehicles, as well as homes that can operate fully off the grid.“What excites us most is that we’ve taken a material as ancient as concrete and shown that it can do something entirely new,” says James Weaver, a co-author on the paper who is an associate professor of design technology and materials science and engineering at Cornell University, as well as a former EC³ Hub researcher. “By combining modern nanoscience with an ancient building block of civilization, we’re opening a door to infrastructure that doesn’t just support our lives, it powers them.” More

  • in

    A beacon of light

    Placing a lit candle in a window to welcome friends and strangers is an old Irish tradition that took on greater significance when Mary Robinson was elected president of Ireland in 1990. At the time, Robinson placed a lamp in Áras an Uachtaráin — the official residence of Ireland’s presidents — noting that the Irish diaspora and all others are always welcome in Ireland. Decades later, a lit lamp remains in a window in Áras an Uachtaráin.The symbolism of Robinson’s lamp was shared by Hashim Sarkis, dean of the MIT School of Architecture and Planning (SA+P), at the school’s graduation ceremony in May, where Robinson addressed the class of 2025. To replicate the generous intentions of Robinson’s lamp and commemorate her visit to MIT, Sarkis commissioned a unique lantern as a gift for Robinson. He commissioned an identical one for his office, which is in the front portico of MIT at 77 Massachusetts Ave.“The lamp will welcome all citizens of the world to MIT,” says Sarkis.

    Geolectric: Sustainable, Low-Carbon Ceramics for Embedded Electronics and Interaction DesignVideo: MIT Design Intelligence Lab

    No ordinary lanternThe bespoke lantern was created by Marcelo Coelho SM ’08, PhD ’12, director of the Design Intelligence Lab and associate professor of the practice in the Department of Architecture.One of several projects in the Geoletric research at the Design Intelligence Lab, the lantern showcases the use of geopolymers as a sustainable material alternative for embedded computers and consumer electronics.“The materials that we use to make computers have a negative impact on climate, so we’re rethinking how we make products with embedded electronics — such as a lamp or lantern — from a climate perspective,” says Coelho.Consumer electronics rely on materials that are high in carbon emissions and difficult to recycle. As the demand for embedded computing increases, so too does the need for alternative materials that have a reduced environmental impact while supporting electronic functionality.The Geolectric lantern advances the formulation and application of geopolymers — a class of inorganic materials that form covalently bonded, non-crystalline networks. Unlike traditional ceramics, geopolymers do not require high-temperature firing, allowing electronic components to be embedded seamlessly during production.Geopolymers are similar to ceramics, but have a lower carbon footprint and present a sustainable alternative for consumer electronics, product design, and architecture. The minerals Coelho uses to make the geopolymers — aluminum silicate and sodium silicate — are those regularly used to make ceramics.“Geopolymers aren’t particularly new, but are becoming more popular,” says Coelho. “They have high strength in both tension and compression, superior durability, fire resistance, and thermal insulation. Compared to concrete, geopolymers don’t release carbon dioxide. Compared to ceramics, you don’t have to worry about firing them. What’s even more interesting is that they can be made from industrial byproducts and waste materials, contributing to a circular economy and reducing waste.”The lantern is embedded with custom electronics that serve as a proximity and touch sensor. When a hand is placed over the top, light shines down the glass tubes.The timeless design of the Geoelectric lantern — minimalist, composed of natural materials — belies its future-forward function. Coelho’s academic background is in fine arts and computer science. Much of his work, he says, “bridges these two worlds.”Working at the Design Intelligence Lab with Coelho on the lanterns are Jacob Payne, a graduate architecture student, and Jean-Baptiste Labrune, a research affiliate.A light for MITA few weeks before commencement, Sarkis saw the Geoelectric lantern in Palazzo Diedo Berggruen Arts and Culture in Venice, Italy. The exhibition, a collateral event of the Venice Biennale’s 19th International Architecture Exhibition, featured the work of 40 MIT architecture faculty.The sustainability feature of Geolectric is the key reason Sarkis regarded the lantern as the perfect gift for Robinson. After her career in politics, Robinson founded the Mary Robinson Foundation — Climate Justice, an international center addressing the impacts of climate change on marginalized communities.The third iteration of Geolectric for Sarkis’ office is currently underway. While the lantern was a technical prototype and an opportunity to showcase his lab’s research, Coelho — an immigrant from Brazil — was profoundly touched by how Sarkis created the perfect symbolism to both embody the welcoming spirit of the school and honor President Robinson.“When the world feels most fragile, we need to urgently find sustainable and resilient solutions for our built environment. It’s in the darkest times when we need light the most,” says Coelho.  More

  • in

    MIT’s work with Idaho National Laboratory advances America’s nuclear industry

    At the center of nuclear reactors across the United States, a new type of chromium-coated fuel is being used to make the reactors more efficient and more resistant to accidents. The fuel is one of many innovations sprung from collaboration between researchers at MIT and the Idaho National Laboratory (INL) — a relationship that has altered the trajectory of the country’s nuclear industry.Amid renewed excitement around nuclear energy in America, MIT’s research community is working to further develop next-generation fuels, accelerate the deployment of small modular reactors (SMRs), and enable the first nuclear reactor in space.Researchers at MIT and INL have worked closely for decades, and the collaboration takes many forms, including joint research efforts, student and postdoc internships, and a standing agreement that lets INL employees spend extended periods on MIT’s campus researching and teaching classes. MIT is also a founding member of the Battelle Energy Alliance, which has managed the Idaho National Laboratory for the Department of Energy since 2005.The collaboration gives MIT’s community a chance to work on the biggest problems facing America’s nuclear industry while bolstering INL’s research infrastructure.“The Idaho National Laboratory is the lead lab for nuclear energy technology in the United States today — that’s why it’s essential that MIT works hand in hand with INL,” says Jacopo Buongiorno, the Battelle Energy Alliance Professor in Nuclear Science and Engineering at MIT. “Countless MIT students and postdocs have interned at INL over the years, and a memorandum of understanding that strengthened the collaboration between MIT and INL in 2019 has been extended twice.”Ian Waitz, MIT’s vice president for research, adds, “The strong collaborative history between MIT and the Idaho National Laboratory enables us to jointly contribute practical technologies to enable the growth of clean, safe nuclear energy. It’s a clear example of how rigorous collaboration across sectors, and among the nation’s top research facilities, can advance U.S. economic prosperity, health, and well-being.”Research with impactMuch of MIT’s joint research with INL involves tests and simulations of new nuclear materials, fuels, and instrumentation. One of the largest collaborations was part of a global push for more accident-tolerant fuels in the wake of the nuclear accident that followed the 2011 earthquake and tsunami in Fukushima, Japan.In a series of studies involving INL and members of the nuclear energy industry, MIT researchers helped identify and evaluate alloy materials that could be deployed in the near term to not only bolster safety but also offer higher densities of fuel.“These new alloys can withstand much more challenging conditions during abnormal occurrences without reacting chemically with steam, which could result in hydrogen explosions during accidents,” explains Buongiorno, who is also the director of science and technology at MIT’s Nuclear Reactor Laboratory and the director of MIT’s Center for Advanced Nuclear Energy Systems. “The fuels can take much more abuse without breaking apart in the reactor, resulting in a higher safety margin.”The fuels tested at MIT were eventually adopted by power plants across the U.S., starting with the Byron Clean Energy Center in Ogle County, Illinois.“We’re also developing new materials, fuels, and instrumentation,” Buongiorno says. “People don’t just come to MIT and say, ‘I have this idea, evaluate it for me.’ We collaborate with industry and national labs to develop the new ideas together, and then we put them to the test,  reproducing the environment in which these materials and fuels would operate in commercial power reactors. That capability is quite unique.”Another major collaboration was led by Koroush Shirvan, MIT’s Atlantic Richfield Career Development Professor in Energy Studies. Shirvan’s team analyzed the costs associated with different reactor designs, eventually developing an open-source tool to help industry leaders evaluate the feasibility of different approaches.“The reason we’re not building a single nuclear reactor in the U.S. right now is cost and financial risk,” Shirvan says. “The projects have gone over budget by a factor of two and their schedule has lengthened by a factor of 1.5, so we’ve been doing a lot of work assessing the risk drivers. There’s also a lot of different types of reactors proposed, so we’ve looked at their cost potential as well and how those costs change if you can mass manufacture them.”Other INL-supported research of Shirvan’s involves exploring new manufacturing methods for nuclear fuels and testing materials for use in a nuclear reactor on the surface of the moon.“You want materials that are lightweight for these nuclear reactors because you have to send them to space, but there isn’t much data around how those light materials perform in nuclear environments,” Shirvan says.People and progressEvery summer, MIT students at every level travel to Idaho to conduct research in INL labs as interns.“It’s an example of our students getting access to cutting-edge research facilities,” Shirvan says.There are also several joint research appointments between the institutions. One such appointment is held by Sacit Cetiner, a distinguished scientist at INL who also currently runs the MIT and INL Joint Center for Reactor Instrumentation and Sensor Physics (CRISP) at MIT’s Nuclear Reactor Laboratory.CRISP focuses its research on key technology areas in the field of instrumentation and controls, which have long stymied the bottom line of nuclear power generation.“For the current light-water reactor fleet, operations and maintenance expenditures constitute a sizeable fraction of unit electricity generation cost,” says Cetiner. “In order to make advanced reactors economically competitive, it’s much more reasonable to address anticipated operational issues during the design phase. One such critical technology area is remote and autonomous operations. Working directly with INL, which manages the projects for the design and testing of several advanced reactors under a number of federal programs, gives our students, faculty, and researchers opportunities to make a real impact.”The sharing of experts helps strengthen MIT and the nation’s nuclear workforce overall.“MIT has a crucial role to play in advancing the country’s nuclear industry, whether that’s testing and developing new technologies or assessing the economic feasibility of new nuclear designs,” Buongiorno says. More

  • in

    Climate Action Learning Lab helps state and local leaders identify and implement effective climate mitigation strategies

    This spring, J-PAL North America — a regional office of MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) — launched its first ever Learning Lab, centered on climate action. The Learning Lab convened a cohort of government leaders who are enacting a broad range of policies and programs to support the transition to a low-carbon economy. Through the Learning Lab, participants explored how to embed randomized evaluation into promising solutions to determine how to maximize changes in behavior — a strategy that can help advance decarbonization in the most cost-effective ways to benefit all communities. The inaugural cohort included more than 25 participants from state agencies and cities, including the Massachusetts Clean Energy Center, the Minnesota Housing Finance Agency, and the cities of Lincoln, Nebraska; Newport News, Virginia; Orlando, Florida; and Philadelphia.“State and local governments have demonstrated tremendous leadership in designing and implementing decarbonization policies and climate action plans over the past few years,” said Peter Christensen, scientific advisor of the J-PAL North America Environment, Energy, and Climate Change Sector. “And while these are informed by scientific projections on which programs and technologies may effectively and equitably reduce emissions, the projection methods involve a lot of assumptions. It can be challenging for governments to determine whether their programs are actually achieving the expected level of emissions reductions that we desperately need. The Climate Action Learning Lab was designed to support state and local governments in addressing this need — helping them to rigorously evaluate their programs to detect their true impact.”From May to July, the Learning Lab offered a suite of resources for participants to leverage rigorous evaluation to identify effective and equitable climate mitigation solutions. Offerings included training lectures, one-on-one strategy sessions, peer learning engagements, and researcher collaboration. State and local leaders built skills and knowledge in evidence generation and use, reviewed and applied research insights to their own programmatic areas, and identified priority research questions to guide evidence-building and decision-making practices. Programs prioritized for evaluation covered topics such as compliance with building energy benchmarking policies, take-up rates of energy-efficient home improvement programs such as heat pumps and Solar for All, and scoring criteria for affordable housing development programs.“We appreciated the chance to learn about randomized evaluation methodology, and how this impact assessment tool could be utilized in our ongoing climate action planning. With so many potential initiatives to pursue, this approach will help us prioritize our time and resources on the most effective solutions,” said Anna Shugoll, program manager at the City of Philadelphia’s Office of Sustainability.This phase of the Learning Lab was possible thanks to grant funding from J-PAL North America’s longtime supporter and collaborator Arnold Ventures. The work culminated in an in-person summit in Cambridge, Massachusetts, on July 23, where Learning Lab participants delivered a presentation on their jurisdiction’s priority research questions and strategic evaluation plans. They also connected with researchers in the J-PAL network to further explore impact evaluation opportunities for promising decarbonization programs.“The Climate Action Learning Lab has helped us identify research questions for some of the City of Orlando’s deep decarbonization goals. J-PAL staff, along with researchers in the J-PAL network, worked hard to bridge the gap between behavior change theory and the applied, tangible benefits that we achieve through rigorous evaluation of our programs,” said Brittany Sellers, assistant director for sustainability, resilience and future-ready for Orlando. “Whether we’re discussing an energy-efficiency policy for some of the biggest buildings in the City of Orlando or expanding [electric vehicle] adoption across the city, it’s been very easy to communicate some of these high-level research concepts and what they can help us do to actually pursue our decarbonization goals.”The next phase of the Climate Action Learning Lab will center on building partnerships between jurisdictions and researchers in the J-PAL network to explore the launch of randomized evaluations, deepening the community of practice among current cohort members, and cultivating a broad culture of evidence building and use in the climate space. “The Climate Action Learning Lab provided a critical space for our city to collaborate with other cities and states seeking to implement similar decarbonization programs, as well as with researchers in the J-PAL network to help rigorously evaluate these programs,” said Daniel Collins, innovation team director at the City of Newport News. “We look forward to further collaboration and opportunities to learn from evaluations of our mitigation efforts so we, as a city, can better allocate resources to the most effective solutions.”The Climate Action Learning Lab is one of several offerings under the J-PAL North America Evidence for Climate Action Project. The project’s goal is to convene an influential network of researchers, policymakers, and practitioners to generate rigorous evidence to identify and advance equitable, high-impact policy solutions to climate change in the United States. In addition to the Learning Lab, J-PAL North America will launch a climate special topic request for proposals this fall to fund research on climate mitigation and adaptation initiatives. J-PAL will welcome applications from both research partnerships formed through the Learning Lab as well as other eligible applicants.Local government leaders, researchers, potential partners, or funders committed to advancing climate solutions that work, and who want to learn more about the Evidence for Climate Action Project, may email na_eecc@povertyactionlab.org or subscribe to the J-PAL North America Climate Action newsletter. More

  • in

    New self-assembling material could be the key to recyclable EV batteries

    Today’s electric vehicle boom is tomorrow’s mountain of electronic waste. And while myriad efforts are underway to improve battery recycling, many EV batteries still end up in landfills.A research team from MIT wants to help change that with a new kind of self-assembling battery material that quickly breaks apart when submerged in a simple organic liquid. In a new paper published in Nature Chemistry, the researchers showed the material can work as the electrolyte in a functioning, solid-state battery cell and then revert back to its original molecular components in minutes.The approach offers an alternative to shredding the battery into a mixed, hard-to-recycle mass. Instead, because the electrolyte serves as the battery’s connecting layer, when the new material returns to its original molecular form, the entire battery disassembles to accelerate the recycling process.“So far in the battery industry, we’ve focused on high-performing materials and designs, and only later tried to figure out how to recycle batteries made with complex structures and hard-to-recycle materials,” says the paper’s first author Yukio Cho PhD ’23. “Our approach is to start with easily recyclable materials and figure out how to make them battery-compatible. Designing batteries for recyclability from the beginning is a new approach.”Joining Cho on the paper are PhD candidate Cole Fincher, Ty Christoff-Tempesta PhD ’22, Kyocera Professor of Ceramics Yet-Ming Chiang, Visiting Associate Professor Julia Ortony, Xiaobing Zuo, and Guillaume Lamour.Better batteriesThere’s a scene in one of the “Harry Potter” films where Professor Dumbledore cleans a dilapidated home with the flick of the wrist and a spell. Cho says that image stuck with him as a kid. (What better way to clean your room?) When he saw a talk by Ortony on engineering molecules so that they could assemble into complex structures and then revert back to their original form, he wondered if it could be used to make battery recycling work like magic.That would be a paradigm shift for the battery industry. Today, batteries require harsh chemicals, high heat, and complex processing to recycle. There are three main parts of a battery: the positively charged cathode, the negatively charged electrode, and the electrolyte that shuttles lithium ions between them. The electrolytes in most lithium-ion batteries are highly flammable and degrade over time into toxic byproducts that require specialized handling.To simplify the recycling process, the researchers decided to make a more sustainable electrolyte. For that, they turned to a class of molecules that self-assemble in water, named aramid amphiphiles (AAs), whose chemical structures and stability mimic that of Kevlar. The researchers further designed the AAs to contain polyethylene glycol (PEG), which can conduct lithium ions, on one end of each molecule. When the molecules are exposed to water, they spontaneously form nanoribbons with ion-conducting PEG surfaces and bases that imitate the robustness of Kevlar through tight hydrogen bonding. The result is a mechanically stable nanoribbon structure that conducts ions across its surface.“The material is composed of two parts,” Cho explains. “The first part is this flexible chain that gives us a nest, or host, for lithium ions to jump around. The second part is this strong organic material component that is used in the Kevlar, which is a bulletproof material. Those make the whole structure stable.”When added to water, the nanoribbons self-assemble to form millions of nanoribbons that can be hot-pressed into a solid-state material.“Within five minutes of being added to water, the solution becomes gel-like, indicating there are so many nanofibers formed in the liquid that they start to entangle each other,” Cho says. “What’s exciting is we can make this material at scale because of the self-assembly behavior.”The team tested the material’s strength and toughness, finding it could endure the stresses associated with making and running the battery. They also constructed a solid-state battery cell that used lithium iron phosphate for the cathode and lithium titanium oxide as the anode, both common materials in today’s batteries. The nanoribbons moved lithium ions successfully between the electrodes, but a side-effect known as polarization limited the movement of lithium ions into the battery’s electrodes during fast bouts of charging and discharging, hampering its performance compared to today’s gold-standard commercial batteries.“The lithium ions moved along the nanofiber all right, but getting the lithium ion from the nanofibers to the metal oxide seems to be the most sluggish point of the process,” Cho says.When they immersed the battery cell into organic solvents, the material immediately dissolved, with each part of the battery falling away for easier recycling. Cho compared the materials’ reaction to cotton candy being submerged in water.“The electrolyte holds the two battery electrodes together and provides the lithium-ion pathways,” Cho says. “So, when you want to recycle the battery, the entire electrolyte layer can fall off naturally and you can recycle the electrodes separately.”Validating a new approachCho says the material is a proof of concept that demonstrates the recycle-first approach.“We don’t want to say we solved all the problems with this material,” Cho says. “Our battery performance was not fantastic because we used only this material as the entire electrolyte for the paper, but what we’re picturing is using this material as one layer in the battery electrolyte. It doesn’t have to be the entire electrolyte to kick off the recycling process.”Cho also sees a lot of room for optimizing the material’s performance with further experiments.Now, the researchers are exploring ways to integrate these kinds of materials into existing battery designs as well as implementing the ideas into new battery chemistries.“It’s very challenging to convince existing vendors to do something very differently,” Cho says. “But with new battery materials that may come out in five or 10 years, it could be easier to integrate this into new designs in the beginning.”Cho also believes the approach could help reshore lithium supplies by reusing materials from batteries that are already in the U.S.“People are starting to realize how important this is,” Cho says. “If we can start to recycle lithium-ion batteries from battery waste at scale, it’ll have the same effect as opening lithium mines in the U.S. Also, each battery requires a certain amount of lithium, so extrapolating out the growth of electric vehicles, we need to reuse this material to avoid massive lithium price spikes.”The work was supported, in part, by the National Science Foundation and the U.S. Department of Energy. More

  • in

    New method could monitor corrosion and cracking in a nuclear reactor

    MIT researchers have developed a technique that enables real-time, 3D monitoring of corrosion, cracking, and other material failure processes inside a nuclear reactor environment.This could allow engineers and scientists to design safer nuclear reactors that also deliver higher performance for applications like electricity generation and naval vessel propulsion.During their experiments, the researchers utilized extremely powerful X-rays to mimic the behavior of neutrons interacting with a material inside a nuclear reactor.They found that adding a buffer layer of silicon dioxide between the material and its substrate, and keeping the material under the X-ray beam for a longer period of time, improves the stability of the sample. This allows for real-time monitoring of material failure processes.By reconstructing 3D image data on the structure of a material as it fails, researchers could design more resilient materials that can better withstand the stress caused by irradiation inside a nuclear reactor.“If we can improve materials for a nuclear reactor, it means we can extend the life of that reactor. It also means the materials will take longer to fail, so we can get more use out of a nuclear reactor than we do now. The technique we’ve demonstrated here allows to push the boundary in understanding how materials fail in real-time,” says Ericmoore Jossou, who has shared appointments in the Department of Nuclear Science and Engineering (NSE), where he is the John Clark Hardwick Professor, and the Department of Electrical Engineering and Computer Science (EECS), and the MIT Schwarzman College of Computing.Jossou, senior author of a study on this technique, is joined on the paper by lead author David Simonne, an NSE postdoc; Riley Hultquist, a graduate student in NSE; Jiangtao Zhao, of the European Synchrotron; and Andrea Resta, of Synchrotron SOLEIL. The research was published Tuesday by the journal Scripta Materiala.“Only with this technique can we measure strain with a nanoscale resolution during corrosion processes. Our goal is to bring such novel ideas to the nuclear science community while using synchrotrons both as an X-ray probe and radiation source,” adds Simonne.Real-time imagingStudying real-time failure of materials used in advanced nuclear reactors has long been a goal of Jossou’s research group.Usually, researchers can only learn about such material failures after the fact, by removing the material from its environment and imaging it with a high-resolution instrument.“We are interested in watching the process as it happens. If we can do that, we can follow the material from beginning to end and see when and how it fails. That helps us understand a material much better,” he says.They simulate the process by firing an extremely focused X-ray beam at a sample to mimic the environment inside a nuclear reactor. The researchers must use a special type of high-intensity X-ray, which is only found in a handful of experimental facilities worldwide.For these experiments they studied nickel, a material incorporated into alloys that are commonly used in advanced nuclear reactors. But before they could start the X-ray equipment, they had to prepare a sample.To do this, the researchers used a process called solid state dewetting, which involves putting a thin film of the material onto a substrate and heating it to an extremely high temperature in a furnace until it transforms into single crystals.“We thought making the samples was going to be a walk in the park, but it wasn’t,” Jossou says.As the nickel heated up, it interacted with the silicon substrate and formed a new chemical compound, essentially derailing the entire experiment. After much trial-and-error, the researchers found that adding a thin layer of silicon dioxide between the nickel and substrate prevented this reaction.But when crystals formed on top of the buffer layer, they were highly strained. This means the individual atoms had moved slightly to new positions, causing distortions in the crystal structure.Phase retrieval algorithms can typically recover the 3D size and shape of a crystal in real-time, but if there is too much strain in the material, the algorithms will fail.However, the team was surprised to find that keeping the X-ray beam trained on the sample for a longer period of time caused the strain to slowly relax, due to the silicon buffer layer. After a few extra minutes of X-rays, the sample was stable enough that they could utilize phase retrieval algorithms to accurately recover the 3D shape and size of the crystal.“No one had been able to do that before. Now that we can make this crystal, we can image electrochemical processes like corrosion in real time, watching the crystal fail in 3D under conditions that are very similar to inside a nuclear reactor. This has far-reaching impacts,” he says.They experimented with a different substrate, such as niobium doped strontium titanate, and found that only a silicon dioxide buffered silicon wafer created this unique effect.An unexpected resultAs they fine-tuned the experiment, the researchers discovered something else.They could also use the X-ray beam to precisely control the amount of strain in the material, which could have implications for the development of microelectronics.In the microelectronics community, engineers often introduce strain to deform a material’s crystal structure in a way that boosts its electrical or optical properties.“With our technique, engineers can use X-rays to tune the strain in microelectronics while they are manufacturing them. While this was not our goal with these experiments, it is like getting two results for the price of one,” he adds.In the future, the researchers want to apply this technique to more complex materials like steel and other metal alloys used in nuclear reactors and aerospace applications. They also want to see how changing the thickness of the silicon dioxide buffer layer impacts their ability to control the strain in a crystal sample.“This discovery is significant for two reasons. First, it provides fundamental insight into how nanoscale materials respond to radiation — a question of growing importance for energy technologies, microelectronics, and quantum materials. Second, it highlights the critical role of the substrate in strain relaxation, showing that the supporting surface can determine whether particles retain or release strain when exposed to focused X-ray beams,” says Edwin Fohtung, an associate professor at the Rensselaer Polytechnic Institute, who was not involved with this work.This work was funded, in part, by the MIT Faculty Startup Fund and the U.S. Department of Energy. The sample preparation was carried out, in part, at the MIT.nano facilities. More